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Abstract. In this paper we study a hinged, extensible, and elastic nonlin-
ear beam equation with structural damping and Balakrishnan-Taylor damp-
ing with the full exponent 2(n + β) + 1. This strongly nonlinear equation,
initially proposed by Balakrishnan and Taylor in 1989, is a very general and
useful model for large aerospace structures. In this work, the existence of
global solutions and the existence of absorbing sets in the energy space are
proved. For this equation, the feature is that the exponential rate of the ab-
sorbing property is not a global constant, but which is uniform for the family
of trajectories starting from any given bounded set in the state space. Then
it is proved that there exists an inertial manifold whose exponentially at-
tracting rate is accordingly non-uniform. Finally, the spillover problem with
respect to the stabilization of this equation is solved by constructing a lin-
ear state feedback control involving only finitely many modes. The obtained
results are robust in regard to the uncertainty of the structural parameters.

1. Introduction and Formulation

The objective of this paper is to study the following initial-boundary
value problem for a nonlinear beam equation,

(1)

utt + αuxxxx − δuxxt

−
{
a+ b

∫ 1

0
|ux(t, ξ)|2dξ + q

[∫ 1

0
(uxuxt)(t, ξ)dξ

]2(n+β)+1}
uxx

= f, for (t, x) ∈ R+ × (0, 1),

u(t, 0) = uxx(t, 0) = u(t, 1) = uxx(t, 1) = 0, for t ≥ 0,

u(0, x) = u0(x), ut(0, x) = u1(x), for x ∈ [0, 1].
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Here u(t, x) is the transverse deflection of the beam. All the parameters
α, δ, b, and q are assumed to be positive constants, but a ∈ R. The term
−δuxxt represents the structural damping, [a + b‖ux‖2]uxx is the tension
due to the extensibility, and the last term on the left-hand side is called the
Balakrishnan-Taylor damping. The parameter β satisfies 0 ≤ β < 1/2 and
n ≥ 0 is an integer. The function f(t, x) stands for an external input which
practically may be a control function. The boundary conditions correspond
to hinged endpoints. This model equation of nonlinear beams was initially
proposed by Balakrishnan and Taylor in 1989 (cf. [1] and [2]). The original
motivation for studying this model seemed to solve the spillover problem,
namely, to design a feedback control function f that involves only finitely
many modes in order to achieve a high performance of the closed-loop sys-
tem, such as a robust and exponential stabilization of the system when there
might be some uncertainty in the values of the parameters.

In this paper we first analyze the global dynamics of the uncontrolled
equation and prove the existence of inertial manifolds. Then, based on this
analysis and result, we provide a solution to the spillover problem by con-
structing an implementable feedback control which involves only finitely
many modes and is robust with respect to parameter uncertainty.

An initial result on the existence of a flat inertial manifold for the dynam-
ics of a rotating beam was obtained in [3]. The long time behavior and global
dynamics of a simpler version of Equation (1) with q = 0 and damping δut

has been studied by many authors (cf. [6], [7] and [8]). This model with
a simplified exponent assumption that n = β = 0 has been investigated
and the affirmative results on the existence of inertial manifolds and on
the finite-dimensional stabilization have been proved in [11] and [12]. More
background materials in regard to infinite dimensional dynamical systems,
especially the theory of global attractors, inertial manifolds, and approxi-
mate inertial manifolds, can be found in [5], [7], [9] and [10].

First of all, let us formulate this initial-boundary value problem for the
uncontrolled equation

(2)

utt + αuxxxx − δuxxt

−
{
a+ b

∫ 1

0
|ux(t, ξ)|2dξ + q

[∫ 1

0
(uxuxt)(t, ξ)dξ

]2(n+β)+1}
uxx

= 0,

into an abstract semilinear evolution equation and consider the existence,
uniqueness, and regularity of local solutions.

Let H = L2(0, 1) with norm and inner-product denoted by | · | and 〈, 〉,
respectively. Define a linear operator A : D(A) → H by

Aφ =
d4φ

dx4
, for φ ∈ D(A), with
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D(A) = {φ ∈ H4(0, 1) : φ(0) = φ′′(0) = φ(1) = φ′′(1) = 0},
where, in general, the derivatives are taken in the distributional sense. Here
for φ ∈ D(A) these derivatives are consistent with the usual derivatives. This
closed linear operator A is densely defined, self-adjoint, and positive defi-
nite. It has compact resolvent A−1. The spectrum σ(A) consists of the simple
eigenvalues {λk = k4π4 : k ≥ 1}, with eigenvectors

{ek =
√
2 sin(kπx) : k ≥ 1}.

By the approach of Fourier expansions, it can be shown that

(3) A1/2φ = −d2φ/dx2 end |φx|2 = |A1/4φ|2.
Thus, Equation (2) can be formulated into a second-order semilinear evolu-
tion equation:

(4)

d2u

du2
+ αAu+ δA1/2 du

dt

+
{
a+ b|A1/4u|2 + q〈A1/2u, ut〉2(n+β)+1

}
A1/2u = 0,

u(0) = u0, ut(0) = u1.

Let V = D(A1/2) with the norm ‖v‖ = |A1/2v|. V is also a Hilbert space. De-
fine the product Hilbert space E = V × H, which can be called the energy
space. Similarly, define E1 = D(A) × V = D(A) × D(A1/2) with the graph
norm. Then define a linear operator G by

(5) G =
(

0 IV

−αA −δA1/2

)
: D(G) → E, with D(G) = D(A) × V,

where IV is the identity operator on V, and a nonlinear mapping R by

(6) R

(
φ
ψ

)
=

(
0

− [
a+ b|A1/4φ|2 + q〈A1/2φ, ψ〉2(n+β)+1

]
A1/2φ

)
.

Then Equation (4) can be further formulated into a first-order semilinear
evolution equation:

(7)
d

dt

(
u
v

)
= G

(
u(t)
v(t)

)
+R

(
u(t)
v(t)

)
, t ≥ 0,(

u(0)
v(0)

)
=

(
u0
v0

)
∈ E,

where v0 = u1. Let w(t) =
(

u(t)
v(t)

)
and w0 =

(
u0
v0

)
. Then Equation (7)

can be rewritten as

(8)
dw

dt
= Gw +R(w), t ≥ 0, w(0) = w0 ∈ E.

It can be shown that the operator −G is a sectorial operator and that
G generates an analytic contraction semigroup which will be denoted by
{T (t) : t ≥ 0}. Moreover, G has compact resolvent. The nonlinear mapping
R : E → E is locally Lipschitz continuous and maps bounded sets into
bounded sets. Therefore, by the standard semigroup theory, we have the
following local existence and regularity result, whose proof is omitted.
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Lemma 1. For any w0 ∈ E, there is a τ = τ(w0) > 0 such that the mild
solution w(t) of Equation (8) with the initial condition w(0) = w0 exists
uniquely for t ∈ [0, τ ] and

(9) w ∈ C([0, τ ];E) ∩ C1((0, τ);E) ∩ C((0, τ);E1).

If w0 ∈ E1, then this mild solution is a classical solution of Equation (8) for
t ∈ [0, τ ].

2. Global Existence of Solutions and Dissipativity

In this section we shall simultaneously prove the global existence of mild
solutions of Equation (8) and the dissipativity of the dynamical system asso-
ciated with the solutions semigroup. Let us introduce the relevant concepts.

A fixed bounded set N is called an absorbing set for the solution semi-
group S(t), t ≥ 0, generated by the mild solutions of Equation (8), if for
any given bounded set Z of E, there exist constants ε(Z) > 0 and K(Z) ≥ 0
such that, for any initial data w0 ∈ Z,

distE(w(t;w0),N) ≤ K(Z) exp (−ε(Z)t), t ≥ 0.

Theorem 2. For any w0 ∈ E, there exists a unique global mild solution
w(t) of Equation (8), t ∈ [0,∞), which has the regularity properties stated
in Lemma 1. The associated solution semigroup S(t), t ≥ 0, is dissipative
in the sense that there exists an absorbing set in E.

Proof. By taking the inner product in H of Equation (2) with 2ut, we obtain

(10)

d

dt

(|ut|2 + α|uxx|2) + 2δ|uxt|2

+

{
a+ b|ux|2 + q

(
1
2

d

dt
|ux|2

)2(n+β)+1
}

d

dt
|ux|2

=
d

dt

[
|ut|2 + α|uxx|2 + 1

2b
(
a+ b|ux|2)2]

+ 2δ|uxt|2 + q

(
1
2

d

dt
|ux|2

)2(n+β+1)

= 0.

By integrating (10) over [0, t], for any t ≥ 0, we have

(11)

|ut|2 + α|uxx|2 + 1
2b

(
a+ b|ux|2)2

+
∫ t

0

[
2δ|uxt|2(s) + q

(
1
2

d

dt
|ux|2(s)

)2(n+β+1)
]
ds

≤ |u1|2 + α|A1/2u0|2 + 1
2b

(
a+ b|A1/4u0|2

)2

≤ C0 + C1‖(u0, u1)‖4E ,
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where C0 and C1 > 0 are constants independent of the initial data (u0, u1).
Note that each term on the left-hand side of the first inequality of (11) is
uniformly bounded in t, if the initial data (u0, u1) belong to a given bounded
subset Z of E.

Then take the inner product in H of Equation (2) with εu, where ε > 0
is an undetermined constant, to obtain

(12)

d

dt

(
ε〈ut, u〉 + εδ

2
|ux|2

)
+ εα|uxx|2 − ε|ut|2

+ ε

{
a+ b|ux|2 + q

(
1
2

d

dt
|ux|2

)2(n+β)+1
}

|ux|2

=
d

dt

(
ε〈ut, u〉 + εδ

2
|ux|2

)
+ εα|uxx|2 − ε|ut|2

+ ε

{
1
2
ab−1/2 + b1/2|ux|2

}2

− 1
4
εa2b−1

+ εq

(
1
2

d

dt
|ux|2

)2(n+β)+1

|ux|2

= 0.

Adding (10) and (12), we obtain

(13)

d

dt

{
|ut|2 + α|uxx|2 + 1

2b
(
a+ b|ux|2)2 + ε〈ut, u〉 + εδ

2
|ux|2

}

+

{
2δ|uxt|2 + q

(
1
2

d

dt
|ux|2

)2(n+β+1)

+ εα|uxx|2 − ε|ut|2

+ ε

[
1
2
ab−1/2 + b1/2|ux|2

]2 }
+ εq

(
1
2

d

dt
|ux|2

)2(n+β)+1

|ux|2

=
1
4
εa2b−1.

Note that

q

(
1
2

d

dt
|ux|2

)2(n+β+1)

≥ 0.

However,

εq

(
1
2

d

dt
|ux|2

)2(n+β)+1

|ux|2
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may be negative. Define the functionals N(t) and L(t) by

(14)

N(t) = 2δ|uxt|2 + εα|uxx|2 − ε |ut|2 + ε

[
1
2
ab−1/2 + b1/2|ux|2

]2

+ q

(
1
2

d

dt
|ux|2

)2(n+β) [
1
2

d

dt
|ux|2 + ε

2
|ux|2

]2

= ε

{
2δε−1|uxt|2 + α|uxx|2 − |ut|2 +

[
1
2
ab−1/2 + b1/2|ux|2

]2}

+ q

(
1
2

d

dt
|ux|2

)2(n+β) [
1
2

d

dt
|ux|2 + ε

2
|ux|2

]2
and

(15) L(t) = |ut|2 + α|uxx|2 + 1
2b

(
a+ b|ux|2)2 + ε〈ut, u〉 + εδ

2
|ux|2.

By Poincaré’s inequality and (3), we have |uxt| ≥ |ut| and |uxx| ≥ |ux| ≥ |u|.
Then,

(16)

2ε−1N(t) − L(t) ≥
(
4δ
ε

− 3 − ε

)
|uxt|2 +

(
α − ε − εδ

2

)
|uxx|2

+
1
2b

[
a+ 2b|ux|2]2 − 1

2b
(
a+ b|ux|2)2

≥
(
4δ
ε

− 3 − ε

)
|uxt|2 +

(
α − ε − εδ

2

)
|uxx|2

+ |ux|2 (
a+ b|ux|2) .

Now we can choose ε > 0 sufficiently small so that

4δ
ε

− 3 − ε ≥ 0, α − ε − εδ

2
≥ 0, and

1
2
min{1, α} ≥ ε.

By completing the square for the last term on the right-hand side of In-
equality (16), we get

(17) 2ε−1N(t) − L(t) ≥ −a2

4b
.

Substitution of (17) into (13) gives rise to a differential inequality:

(18)

d

dt
L(t) +

ε

2
L(t) ≤ εa2

2b
+

ε2

4
q

(
1
2

d

dt
|ux|2

)2(n+β)

|ux|4

≤ εa2

2b
+ C(n+ β)ε2q

{[
1
2

d

dt
|ux|2

]2(n+β+1)

+ |ux|4(n+β+1)

}

≤ εa2

2b
+ C(n+ β)ε2q

{[
1
2

d

dt
|ux|2

]2(n+β+1)

+ C2(u0, u1)

}



INERTIAL MANIFOLDS AND STABILIZATION 89

for t ∈ Imax (the maximal interval of existence), where C(n+β) is a constant
depending on n + β and obtained by applying Young’s inequality to split
the product on the right-hand side of the first inequality of (18). Besides,
the inequality

(19)
1
2b

(
a+ b|ux|2)2 ≤ C0 + C1‖(u0, u1)‖4E

is utilized to bound |ux|4(n+β+1), with the constant C2(u0, u1) given by

(20) C2(u0, u1) =

{[
2b

(
C0 + C1‖(u0, u1)‖4E

)]1/2 + |a|
b

}2(n+β+1)

.

Hence it follows that

(21)

L(t) ≤ L(0) exp
(
−ε

2
t
)
+

a2

b

+ C(n+ β)ε2q
∫ t

0

[
1
2

d

dt
|ux|2(s)

]2(n+β+1)

ds

+ C(n+ β)ε2q
∫ t

0
C2(u0, u1) exp

(
−ε

2
(t − s)

)
ds

≤ L(0) exp
(
−ε

2
t
)
+

a2

b

+ C(n+ β)ε2
(
C0 + C1‖(u0, u1)‖4E

)
+ 2C(n+ β)εqC2(u0, u1),

where the bound for the first integral term comes from the property (11).
Note that

(22)

L(t) = |ut|2 + α|uxx|2 + 1
2b

(
a+ b|ux|2)2 + ε〈ut, u〉 + εδ

2
|ux|2

≥ (1 − ε)|ut|2 + (α − ε)|uxx|2

≥ 1
2
min {1, α} ‖(u(t), ut(t))‖2E .

Combining (22) with (21), we see that for any given bounded subset Z of
E, there exists a constant ε = ε(n + β, Z) > 0, which can be chosen small
enough so that

(23) C(n+ β)ε2
(
C0 + C1‖(u0, u1)‖4E

)
+ 2C(n+ β)εqC2(u0, u1) ≤ 1.

It follows that

(24)
1
2
min {1, α} ‖(u(t), ut(t))‖2E ≤ L(0) exp

(
−ε

2
t
)
+

a2

b
+ 1,
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for t ∈ Imax. This inequality shows that any mild solution w(t) = (u(t), ut(t))
cannot blow up. In other words, all the solutions exist globally for t ∈
[0,∞). In addition,

(25) lim sup
t→∞

‖w(t)‖2E ≤ 2 (min{1, α})−1 (
a2b−1 + 1

)
.

Hence the closed bounded ball

(26)
Br = {y ∈ E : ‖y‖E ≤ r},

with constant r >
[
2max

{
1, α−1} (

a2b−1 + 1
)]1/2

,

is an absorbing set for the solution semigroup S(t). Here, as usual, the
solution semigroup is defined by S(t)w0 = w(t;w0) for t ≥ 0 and w0 ∈ E.

Based on the dissipativity of this semiflow, one can explore the existence
of a global attractor. However, since the spillover problem is not closely
related to the global attractor even if it exists, we shall skip over the discus-
sion about the global attractor and directly work on the existence of inertial
manifolds in the next section.

3. The Existence of Inertial Manifolds

For the dynamical system ϑ in the space E defined by the solution semi-
group {S(t) : t ≥ 0} , a set M ⊂ E is called an inertial manifold for ϑ, if
M is a Lipschitz continuous finite-dimensional manifold, positively invariant
under S(t), and attracts all the trajectories at a locally uniform exponential
rate. That is, for any given bounded subset Z of E, there exist constants
µ(Z) > 0 and C(Z) > 0, such that

distE(w(t;w0),M) ≤ C(Z) exp (−µ(Z)t), for t ≥ 0, and any w0 ∈ Z.

Note that this definition is slightly generalized. Because usually it is required
that an inertial manifold have a uniform exponential attracting rate µ > 0,
but the coefficient C(Z) can depend on the given bounded set Z from which
the trajectory is started (cf. [5]).

In this section, we shall prove that there exist inertial manifolds for
the concerned dynamical system ϑ associated with this solution semigroup
{S(t) : t ≥ 0}.

Let Hm = Span{e1, . . . , em} and Pm : H → Hm be the orthogonal
projection from H onto Hm. Then let

Qm = IH − Pm,

Πm = diag(Pm, Pm) : E → Hm × Hm,

Θm = IE − Πm.
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The decompositions H = PmH ⊕ QmH and E = (ΠmE) ⊕ (ΘmE) are
orthogonal direct sums of subspaces, in which PmH has a finite dimension
m and ΠmE has a finite dimension 2m.

Accordingly, the H-valued function u(t) admits an orthogonal decom-
position u(t) = p(t) + h(t), with p(t) = Pmu(t) and h(t) = Qmu(t). The
E-valued function w(t) = col(u(t), v(t)) has an orthogonal decomposition
w(t) = π(t) + ϑ(t), with π(t) = Πmw(t) and ϑ(t) = Θm(t)w(t). Because of
the commutativity between A1/2 and Pm, the second-order evolution equa-
tion (4) can be decomposed into the following coupled equations:

(27)p

d2p

dt2
+ αAp+ δA1/2 dp

dt

+
[
a+ b|A1/4u|2 + q〈A1/2u, ut〉2(n+β)+1

]
A1/2p = 0,

(27)h

d2h

dt2
+ αAh+ δA1/2 dh

dt

+
[
a+ b|A1/4u|2 + q〈A1/2u, ut〉2(n+β)+1

]
A1/2h = 0,

with initial data p(0) = Pmu0, pt(0) = Pmu1, and h(0) = Qmu0, ht(0) =
Qmu1, respectively. Define a functional Ju(t) by

(28) Ju(t) = a+ b|A1/4u|2 + q〈A1/2u, ut〉2(n+β)+1.

Theorem 3. There exists a flat inertial manifold M in E, given by

(29) M = Hm × Hm,

for the dynamical system ϑ generated by the solution semigroup of Equation
(8), where m > 0 is a suitably large number.

Proof. Obviously, the set M given by (29) is a finite-dimensional subspace,
hence it is a Lipschitz continuous, linear manifold. This M is positively
invariant under the semigroup {S(t) : t ≥ 0}, because of the commutativity
between A1/2 and Pm. In fact, if w0 = (u0, u1) ∈ M ⊂ D(G), the mild
solution w(t) = (u(t), ut(t) of Equation (8) is a classical solution, so that
the first component u(t) = p(t) + h(t) satisfies Equation (4).

Therefore, the functions p(t) and h(t) are respectively classical solutions
of Equation (27)p and Equation (27)h, with h(0) = ht(0) = 0. By the
uniqueness of solutions of Equation (27)h, it follows that h(t) = 0, for t ≥ 0,
and consequently p(t) is the solution of

(30)

d2p

dt2
+ αAp+ δA1/2 dp

dt

+
[
a+ b|A1/4p|2 + q〈A1/2p, pt〉2(n+β)+1

]
A1/2p = 0,
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p(0) = u0 ∈ Hm, pt(0) = u1 ∈ Hm.

This proves the positive invariance of M.
It remains to prove that M is exponentially attracting. By taking the

inner product in H of Equation (27)h with 2ht + ξh, where ξ is an undeter-
mined constant, we obtain

(31)

d

dt

{|ht|2 + α|hxx|2 + ξ〈ht, h〉 + (ξδ/2)|hx|2}
+

{
2δ|hxt|2 − ξ|ht|2 + ξα|hxx|2}

+
{
2Ju(t)〈hx, hxt〉 + ξJu(t)|hx|2}

= 0.

By Theorem 2 and its proof, we know that, for every given bounded set Z
in E and for any initial point w0 ∈ Z, the trajectory w(t;w0) will enter the
fixed absorbing ball Br in E (and stay in it forever) at an exponential rate
ε(n+ β, Z)/2 after a transient period [0, t0] with t0 = t0(Z) also depending
on Z. For this reason, below we assume that the trajectories have already
been staying in the fixed absorbing ball Br after the transient period. Then
we have

(32)

|Ju(t)| ≤ |a+ b|ux|2 − q〈uxx, ut〉2(n+β)+1|
≤ |a| + b‖w(t;w0)‖2E + q‖w(t;w0)‖4(n+β)+2

E

≤ |a| + br2 + qr4(n+β)+2, for t ≥ t0,

where r is the radius of the ball Br in (26). By using (32), we can estimate
the last two terms in (31) as follows. Let

(33) Π(r) = |a| + br2 + qr4(n+β)+2.

Then,

(34)

|2Ju(t)〈hx, hxt〉 + ξJu(t)|hx|2|
≤ 2Π(r)|hx||hxt| + ξΠ(r)|hx|2

≤
[
[Π(r)]2 δ−1 + ξΠ(r)

]
|hx|2 + δ|hxt|2

≤ [Π(r)]2 δ−1 + ξΠ(r)√
λm+1

|hxx|2 + δ|hxt|2

≤ K(r, ξ)(m+ 1)−2π−2|hxx|2 + δ|hxt|2,
where K(r, ξ) = [Π(r)]2 δ−1 + ξΠ(r). Substituting (34) into (31), we obtain

(35)

d

dt

{|ht|2 + α|hxx|2 + ξ〈ht, h〉 + (ξδ/2)|hx|2}
+

{
δ|hxt|2 − ξ|ht|2 + ξα|hxx|2 − K(r, ξ)(m+ 1)−2π−2|hxx|2}

≤ 0.
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Let

(36) Y (t) = |ht|2 + α|hxx|2 + ξ〈ht, h〉 + (ξδ/2)|hx|2

and

(37) Φ(t) = δ|hxt|2 − ξ|ht|2 + ξα|hxx|2 − K(r, ξ)(m+ 1)−2π−2|hxx|2.
Then we have

(38)

Φ(t)−(ξ/2)Y (t) ≥ δ|hxt|2 − (3ξ/2)|ht|2 + (ξα/2)|hxx|2
− K(r, ξ)(m+ 1)−2π−2|hxx|2 − (ξ/2)〈ht, h〉

≥ (δ − 2ξ)|hxt|2
+

{
(ξα/2) − [(ξ/2) +K(r, ξ)] (m+ 1)−2π−2} |hxx|2

≥ 0.

Now choose ξ and fix it, such that

(39) 0 < ξ ≤ min
{
1, α(1 + δ)−1, δ/2

}
,

and then take a positive integer m large enough so that

(40) m ≥ −1 +
√

(ξαπ2)−1 [ξ + 2K(r, ξ)].

By these choices, it follows that

(41)
d

dt
Y (t) +

ξ

2
Y (t) ≤ 0, for t ≥ t0,

so that

(42)

1
2
min {1, α}

∥∥∥∥
(

h(t)
ht(t)

)∥∥∥∥
2

E

=
1
2
min {1, α} (|ht|2 + |hxx|2)

≤ 1
2
min {1, α} (|ht|2 + |hxx|2) + 1 − ξ

2
|ht|2 + 1

2
(α − ξ(1 + δ))|hxx|2

≤ |ht|2 + α|hxx|2 + ξ〈ht, h〉 + (ξδ/2)|hx|2
= Y (t)

≤ Y (t0) exp
(

−ξ

2
(t − t0)

)

≤ [1 + α+ ξ + (ξδ/2)]
∥∥∥∥
(

h(t0)
ht(t0)

)∥∥∥∥
2

E

exp
(

−ξ

2
(t − t0)

)

≤ (2 + α+ δ)
∥∥∥∥
(

u(t0)
ut(t0)

)∥∥∥∥
2

E

exp
(

−ξ

2
(t − t0)

)

≤ (2 + α+ δ)r2 exp
(

−ξ

2
(t − t0)

)
, for t ≥ t0.
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Hence,

(43)

‖ϑ(t)‖2E = ‖Θmw(t)‖2E =
∥∥∥∥
(

h(t)
ht(t)

)∥∥∥∥
2

E

≤ 2min {1, α}−1 (2 + α+ δ)
∥∥∥∥
(

u(t0)
ut(t0)

)∥∥∥∥
2

E

exp
(

−ξ

2
(t − t0)

)

≤ 2min {1, α}−1 (2 + α+ δ)r2 exp
(

−ξ

2
(t − t0)

)
, for t ≥ t0.

The inequality (43) is valid for all solutions with initial data w0 in E.
Note that, by condition (39), the exponentially decaying rate ξ depends

only on the parameters α and δ. So ξ is independent of the specific bounded
set Z in which the initial point w0 lies.

Also observe that, by condition (40), the dimension m of the flat manifold
Hm depends only on the parameters {α, δ, a, b, q, n, β} and the radius r of
the absorbing ball, where r in turn is determined by {α, a, b} . Therefore,
the dimension m is determined by the physical parameters of Equation (2).

Finally, (43) implies that, for t ≥ t0,

(44)
distE(w(t;w0),M) = distE(π(t) + ϑ(t),M) ≤ ‖ϑ(t)‖E

≤ 2min {1, α}−1 (2 + α+ δ) ‖w(t0)‖2E exp
(

−ξ

2
(t − t0)

)
.

From (24) we have

(45) ‖w(t0)‖2E ≤ 2min {1, α}−1
{
K1(Z) exp

(
−ε(Z)

2
t0

)
+

a2

b

}
,

where ε = ε(Z) depends on the specific bounded subset Z of E from which
the trajectory is started, and K1(Z) = sup {L(0) : w(0) = w0 ∈ Z} . Sub-
stituting (45) into (44) we have, for t ≥ t0,

(46)
distE(w(t;w0),M) ≤ 4min {1, α}−1 (2 + α+ δ)

·
{
K1(Z) exp

(
−ε(Z)

2
t0

)
+

a2

b

}
exp

(
−ξ

2
(t − t0)

)
.

In order to take into account the behavior of the solutions in the transient
period, let

(47) µ = µ(Z) =
1
2
min {ε(Z), ξ} ,

and

(48) K2(Z, t0(Z)) = 4min {1, α}−1 (2+α+ δ)
{
K1(Z) +

a2

b
exp

(
ξ

2
t0

)}
.
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Then we can conclude that

(49) distE(w(t;w0),M) ≤ K2(Z, t0(Z)) exp (−µ(Z)t), for t ≥ 0.

Thus, by definition, M = Hm × Hm is an inertial manifold with nonuni-
form exponential attracting rate for this dynamical system. The proof is
completed.

We also obtain an explicit estimate for the dimension of such an inertial
manifold. In fact,

(50) dimM = 2m,

where m is an integer satisfying the condition (40) in which ξ satisfies
(39). The following is a concrete estimate for this dimension in terms of
the physical parameters involved in this nonlinear beam equation.

Corollary 4. Let m be the smallest positive integer which satisfies

(51)
m ≥ −1

+
1

πα1/2

√
1 + 2ρ(α, a, b, q, n, β) [1 + δ−1ρ(α, a, b, q, n, β)σ(α, δ)],

where

(52)
ρ(α, a, b, q, n, β) = |a| + 2a2max

{
1, α−1}

+ 1 + q
[
2a2b−1max

{
1, α−1} + 1

]2(n+β)+1

and

(53) σ(α, δ) = max
{
1, α−1(1 + δ), 2δ−1} .

Then there exists an inertial manifold M given by (29) with dimM = 2m.

Proof. Letting r2 = 2a2b−1max
{
1, α−1

}
+ 1 and ξ = min{1, α(1 + δ)−1,

δ/2} in Π(r) and K(r, ξ), we see that formula (40) can be written as (51). So
the result holds.

Remarks.
Here we have the following two remarks. First, from (51), we see that as

the coefficient δ of the structural damping becomes smaller, the lower bound
for the dimension of an inertial manifold will increase and its growth rate is
roughly proportional to δ−1, provided that there are no dramatic changes
in the other parameters.

Second and more important, if one does not know each parameter exactly
and must allow the value variations over some moderate range, then (51)
also gives a conservative estimate of the lower bound for the dimension of
an inertial manifold. Together with the result presented in the next section,
this will be useful in providing a robust stabilization of this nonlinear beam
system by a finite-dimensional, linear feedback control.

The governing equation for the dynamics on an inertial manifold is called
inertial form, which is simply a system of ordinary differential equations.
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Corollary 5. For the inertial manifold M = Hm ×Hm the inertial form is
the following equation in the subspace Hm.

(54)

d2p

dt2
+ αAp(t)

+ δA1/2 dp

dt
+

[
a+ b|A1/4p(t)|2 + q〈A1/2p(t),

dp

dt
〉
]
A1/2p(t)

= 0, t ≥ 0,

p(0) = p0 ∈ Hm, pt(0) = p1 ∈ Hm.

Here p(t) is a finite-dimensional vector.

4. Stabilization by Finite-dimensional Feedback Control

In the last section we shall resolve the spillover problem based on the
existence of inertial manifolds. This approach for achieving stabilization is
potentially applicable to other distributed control systems featuring nonlocal
nonlinearities.

Now consider the full equation, Equation (1), with the control function
f(t, x) on the right-hand side. The stabilization problem for Equation (1) is
to find a linear or nonlinear feedback mapping F : E → H, in general it can
be nonautonomous, such that the feedback control

f(t, ·) = F (u(t), ut(t)), t ≥ 0,

makes the closed-loop system asymptotically stable in the sense that all the
mild solutions w(t) of the closed-loop equation converge to zero in E, as
t → ∞. If so, Equation (1) is said to be strongly stabilizable by the feed-
back control. Moreover, if in addition the convergence occurs at a uniform
exponential rate, then Equation (1) is called uniformly exponentially stabi-
lizable. If the convergence occurs at a nonuniform exponential rate, which
means that the decay rate depends on the bounded set which the initial
data belong to, then Equation (1) is said to be nonuniformly exponentially
stabilizable.

Theorem 6. The control system Equation (1) is nonuniformly exponen-
tially stabilizable by a finite-dimensional linear feedback control

(55) f(t, ·) = aA1/2Pmu(t), t ≥ 0,

where Pm : H → Hm is the orthogonal projection, and Hm is the factor
subspace associated with the inertial manifold M = Hm × Hm for the un-
controlled Equation (2).

Proof. By applying this feedback control (55) to Equation (1) and decom-
posing the equation into two component equations according to the decom-
position of H = Hm ⊕ QmH, we can get

(56)p ptt + αpxxxx − δpxxt − (Ju(t) − a)pxx = 0,
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(56)h htt + αhxxxx − δhxxt − Ju(t)hxx = 0,

where J(u(t)) is defined by (28), and u(t) = p(t) + h(t) is a solution of the
following closed-loop equation

(57)

utt + αAu+ δA1/2ut

+
[
a+ b|A1/4u|2 + q〈A1/2u, ut〉2(n+β)+1

]
A1/2u

= aA1/2Pmu(t),

u(0) = u0, ut(0) = u1.

Since this linear feedback (55) only partially cancels the term −apxx on
the left-hand side of the equation (56) or (57), an easy adaptation in the
corresponding proof assures us that Theorem 2 remains valid and the ball
Br remains an absorbing set for the new closed-loop equation, Equation
(57).

Since the linear feedback (55) does not affect Equation (56)h, the same
argument used in the proof of Theorem 3 for the exponential attraction,
especially within the absorbing ball Br, of the manifold M remains true
without any change in the constants. Hence, it is true that

(58)
∥∥∥∥
(

h(t)
ht(t)

)∥∥∥∥
2

E

≤ K2(Z, t0(Z)) exp (−µ(Z)t), t ≥ 0,

where h(t) = Qmu(t) and the constants K2(Z, t0(Z)) and µ(Z) are the same
as before.

It suffices to concentrate on Equation (56)p. Specifically, we want to prove
that the component p(t) = Pmu(t) of the solution u(t) of the closed-loop
equation (57) also converges to zero at nonuniform exponential rate. By tak-
ing the inner product of (56)p in H with 2pt+κp, where κ is an undetermined
constant, we get

(59)

d

dt

{
|pt|2 + α |pxx|2 + κ〈pt, p〉 + (κδ/2) |px|2 + (b/2) |px|4

}
+

{
2δ |pxt|2 − κ |pt|2 + κα |pxx|2 + κb |px|4

}
+

{
2b〈pxx, pt〉 |hx|2 + κb |px|2 |hx|2

+ q
[
2〈pxt, px〉 + κ |px|2

]
〈ux, uxt〉2(n+β)+1

}
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(59)

=
d

dt

{
|pt|2 + α |pxx|2 + κ〈pt, p〉 + (κδ/2) |px|2 + (b/2) |px|4

}
+

{
2δ |pxt|2 − κ |pt|2 + κα |pxx|2 + κb |px|4

+
[
2q〈px, pxt〉2 + κq |px|2 〈px, pxt〉

]
〈ux, uxt〉2(n+β)

}
+

{
2b〈pxx, pt〉 |hx|2 + κb |px|2 |hx|2

+ q
[
2〈pxt, px〉 + κ |px|2

]
〈hx, hxt〉〈ux, uxt〉2(n+β)}

= 0.

Let

(60) Γ(t) = |pt|2 + α |pxx|2 + κ〈pt, p〉 + (κδ/2) |px|2 + (b/2) |px|4 ,
and

(61)
∆(t) = 2δ |pxt|2 − κ |pt|2 + κα |pxx|2 + κb |px|4

+
[
2q〈px, pxt〉2 + κq |px|2 〈px, pxt〉

]
〈ux, uxt〉2(n+β).

Using Young’s inequality to treat the last term of ∆(t), we have

(62)

∆(t) − κ

2
Γ(t) ≥ δ |pxt|2 +

(
δ − 3κ

2
− κ2

2

)
|pt|2

+ κ

(
α

2
− κ

2
− κδ

4

)
|pxx|2

+
[
3κb
4

|px|4 + 2q〈px, pxt〉2〈ux, uxt〉2(n+β)
]

− ηκq |px|4 〈ux, uxt〉2(n+β) − C(η)κq |px|2 |pxt|2 〈ux, uxt〉2(n+β)

≥
(
δ − 3κ

2
− κ2

2

)
|pt|2 + κ

(
α

2
− κ

2
− κδ

4
− ηqr4(n+β)+2

)
|pxx|2

+
[
δ − C(η)κqr4(n+β)+2

]
|pxt|2

≥ 0, for t ≥ 0,

if we choose η > 0 and κ > 0 small enough, so that

(63)
α

4
− ηqr4(n+β)+2 ≥ 0,

and

(64)
δ − 3κ

2
− κ2

2
≥ 0,

α

2
− κ − κδ

2
≥ 0, δ − κC(η)qr4(n+β)+2 ≥ 0,

min {1, α) − κ > 0.
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On the other hand, for the last {. . . } portion on the left-hand side of the
last equality in (59), we have the following estimate, which is valid within
the given absorbing ball Br.

(65)

∣∣∣∣2b〈pxx, pt〉 |hx|2 + κb |px|2 |hx|2

+ q
[
2〈pxt, px〉 + κ |px|2

]
〈hx, hxt〉〈ux, uxt〉2(n+β)

∣∣∣∣
≤ (2 + κ)br2 |hx|2 + (2 + κ)qr4(n+β)+2 |hxx| |ht|
≤ (2 + κ)r2

(
b+ qr4(n+β)

)
K2 (Z, t0(Z)) exp (−µ(Z)t), for t ≥ t0,

where we used the fact that |pxx| , |px| , |pt| , |uxx| , |ux| , |ut| ≤ r in the
fixed absorbing ball Br and, in the last inequality of (65), |hx|2 and |hxx| |ht|
are replaced by the estimate(58) for the h-component.

We now substitute (62) and (65) into (59), then get

(66)
d

dt
Γ(t) +

κ

2
Γ(t) ≤ K3 (Z, t0(Z)) exp (−µ(Z)t), t ≥ t0,

where

(67) K3 (Z, t0(Z)) = (2 + κ)r2
(
b+ qr4(n+β)

)
K2 (Z, t0(Z)) ,

with κ chosen and fixed as above. By integrating this inhomogeneous differ-
ential inequality (66) over the time interval [t0, t], we obtain

(68)a

Γ(t) ≤ Γ(t0) exp
(
−κ

2
(t − t0)

)
+

K3 (Z, t0(Z))∣∣κ
2 − µ(Z)

∣∣ exp
(
−min

{κ

2
, µ(Z)

}
(t − t0)

)
, t ≥ t0,

if κ
2 �= µ(Z), or

(68)b

Γ(t) ≤ Γ(t0) exp
(
−κ

2
(t − t0)

)
+K3 (Z, t0(Z)) (t − t0) exp

(
−κ

2
(t − t0)

)
≤ 4

κ
K3 (Z, t0(Z)) exp

(
−κ

4
(t − t0)

)
, t ≥ t0,

if κ
2 = µ(Z). By (47), µ(Z) = (1/2)min {ε(Z), ξ} . Now let

(69) ν = ν(Z) =
1
2
min

{κ

2
, ε(Z), ξ

}
.
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Since

(70) Γ(t) ≥ 1
2
min {1, α}

(
|pt|2 + |pxx|2

)
=

1
2
min {1, α}

∥∥∥∥
(

p(t)
pt(t)

)∥∥∥∥
2

E

,

(71) Γ(t0) ≤
(
2 + κ+

δ

2

)
r2 +

b

2
r4,

where we can take r2 = 2a2b−1max
{
1, α−1

}
+ 1 in (26). Let

(72)a

K4 (Z, t0(Z)) = 2max
{
1, α−1} [ (

2 + α+
δ

2

)
r2 +

b

2
r4

+
K3 (Z, t0(Z))∣∣κ

2 − µ(Z)
∣∣

]
exp (ν(Z)t0), if

κ

2
�= µ(Z),

or

(72)b

K4 (Z, t0(Z)) = 2max
{
1, α−1} [ (

2 + α+
δ

2

)
r2 +

b

2
r4

+
4
κ
K3 (Z, t0(Z))

]
exp (ν(Z)t0), if

κ

2
= µ(Z).

Then from (68)a and (68)b it follows that

(73)
∥∥∥∥
(

p(t)
pt(t)

)∥∥∥∥
2

E

≤ K4 (Z, t0(Z)) exp (−ν(Z)t), t ≥ t0.

Next we combine this result with the exponential decay estimate (24) in the
transient period [0, t0], which gives

(74)

∥∥∥∥
(

p(t)
pt(t)

)∥∥∥∥
2

E

≤
∥∥∥∥
(

u(t)
ut(t)

)∥∥∥∥
2

E

≤ 2max
{
1, α−1} [

L(0) exp
(
−ε

2
t
)
+

a2

b
+ 1

]

≤ 2max
{
1, α−1} [

K1(Z) +
(
a2

b
+ 1

)
exp

(ε

2
t0

)]
exp

(
−ε

2
t
)

≤ K5 (Z, t0(Z)) exp (−ν(Z)t), for t ∈ [0, t0],

where

(75) K5 (Z, t0(Z)) = 2max
{
1, α−1} [

K1(Z) +
(
a2

b
+ 1

)
exp

(ε

2
t0

)]
.
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Therefore, we have proved the nonuniform exponential decay of the p-
component of the closed-loop solution, which is given by

(76)
∥∥∥∥
(

p(t)
pt(t)

)∥∥∥∥
2

E

≤ [K4 (Z, t0(Z)) +K5 (Z, t0(Z))] exp (−ν(Z)t), t ≥ 0.

Finally, (58) and (76) together imply that the solution of the closed-loop
equation (57) has the following property of nonuniform exponential decay,

(77)
∥∥∥∥
(

u(t)
ut(t)

)∥∥∥∥
2

E

≤ K6(Z) exp (−ν(Z)t), t ≥ 0,

where

(78) K6(Z) = max {K2 (Z, t0(Z)) ,K4 (Z, t0(Z)) +K5 (Z, t0(Z))} .

Summary Remarks. As a conclusion, below we briefly summarize the
important points in this paper.

First, Theorem 6 shows that, by using the finite-dimensional linear feed-
back (55), the exponential decay rate ν(Z) and the coefficient K6(Z) can
be estimated in terms of the physical parameters in this beam equation and
the radius of the initial bounded set Z in E.

Second, the number m of the modes involved in this stabilizing feedback
can be estimated by Corollary 4. Note that m increases (roughly propor-
tionally to 1/δ) as the coefficient δ of the structural damping decreases.

Third, it is noteworthy that if we replace the physical parameters {α, δ, a,
b, q, n, β} in the dimension formula (51)-(52) by their conservative bounds
of uncertainty, then Theorem 3, Corollary 4, and Theorem 6 regarding the
existence of inertial manifolds, the dimension estimate, and the exponential
stabilization are all robust. Therefore, in other words, we have obtained a
robust solution to the concerned spillover problem.

Fourth, the results on the existence of inertial manifolds and on the finite-
dimensional stabilization hold also for the same nonlinear beam equation
except that the structural damping −δuxxt is replaced by a strong structural
damping δuxxxxt without any substantial change in the argument.
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