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Abstract
The homotopy category of parity quasi-complexes is intro-

duced. The homotopy structure is compatible with the non-
abelian homology of parity quasi-complexes.

Parity contracting homotopies are defined, determining the
parity free resolutions in a canonical way, enabling the non-
abelian bar construction.

In this way, the even/odd grouping of the simplicial maps in
the cocycle conditions of nonabelian cohomology is explained.

1. Introduction

The article develops the approach to nonabelian cohomology via canonical parity
resolutions proposed by the author in [11].

The empirical even-odd grouping of the simplicial maps yielding parity differ-
entials is obtained from a homotopy structure on the category of parity quasi-
complexes (PQC) on some concrete, possibly non-additive, category.

The homotopy structure is compatible with the categorical structure and the par-
ity homology functor descends to the corresponding homotopy category. Canonical
resolutions are constructed, by adapting classical techniques from relative homolog-
ical algebra. Namely, parity contracting homotopies (PCH) are introduced and the
canonical PCH corresponding to the free object determines the parity differentials,
as usual.

Section 2 recalls some of the main approaches to non-abelian cohomology, with
emphasis on those using resolutions, attempting to define an analog of the bar
construction.

Section 3 recalls parity quasi-complexes and the corresponding homology functor
(Definitions 3.1, 3.2)). The homotopy structure relevant to non-abelian cohomology
is defined (3.3) and proved compatible with the categorical structure, yielding the
associated homotopy category (Theorem 3.1). Finally, the compatibility with non-
abelian homology is proved (Corollary 3.2). Specializing the definition of homotopy,
parity contracting homotopies are introduced (Definition 3.5).
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Section 4 introduces the non-abelian bar resolution (Definition 4.1) as a canonical
parity quasi-complex associated to a contracting parity homotopy (Theorem 4.1).

The article concludes mentioning some present limitations of the proposed ap-
proach, discussing future developments.

Acknowledgments This work was partly supported by the NFIG/2002 grant
under ISU-URG program.

2. Trends in non-abelian cohomology

The study of group extensions with given abstract kernel was completed by
Eilenberg-Mac Lane in 1946, settling the question in dimension n 6 2 [5].

Previous attempts to find the right definition of non-abelian cohomology in higher
dimensions (n-step extensions), are of two types. One approach looks for a non
abelian analog of the bar construction, in order to define derived functors using res-
olutions. The other approach uses “objects” representing cocycles via monodromy.

As an example of the complexity of the defining equations for cocycle and
coboundary conditions within the first approach, we will mention those in dimension
three, in two versions. One version is due to P. Dedecker, 1969 [4]. A non-abelian
cochain is actually a pair of classical cochains (λ, k). Additional maps (α, φ, h, ...)
are involved in the condition for two non-abelian cocycles to be cohomologous:

λ′(s, t) =α(s) ·φ(s) α(t) · λ(s, t) ·ρh(s,t) α(st)−1 · ρa(s, t)−1

k′(s, t, u) =α(s)φ(s)a(t, u) ·φ(s)
α(s) L(t, u) ·[φ(s)ρh(t,u)] a(s, tu)·

k(s, t, u) ·ρh(s,t) a(st, u)−1 · a(s, t)−1

The other version we will mention is due to L. Breen, 1992 [1]. A non-abelian
cochain is now a quadruple (x, z, λ, a) and the condition for two cocycles a(k, l,m)
and a′(k, l, m) to be cohomologous is (loc. cit. p.488):

z(k)x′(k)z(l)x′(k)x′(l)z(m)a′(k, l, m)z(k)(x′(k)a(l, m)){λ(k), z(l, m)}x(k)z(l,m)a(k, lm)

=z(k)x′(k)z(l){λ′(k, l), z(m)}−1a(k, l)z(k,l)a(kl,m)a(k, l, m)

It is a mixture of classical 1, 2 and 3 cochains. We will not go into details regarding
these conditions.

The other approach to non-abelian cohomology involves a change of point of
view, considering objects and concepts representing cocycles.

As a typical example we mention the notions of torsors, gerbes and liens stud-
ied in the work of Giraud, 1971 [8], and more generally the technique of descent,
Grothendieck, 1959.

We may think of a G-torsor over a space X as being a principal G-bundle with a
discrete structure group G. Closely related notions are local systems and principal
bundles with flat connections.

A gerbe may be thought of as a categorification of the notion of a torsor. Now
the “base” is a site (category with a Grothendieck topology) and the “total space”
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is a fibered category, with fibers groupoids verifying some additional conditions.
Our approach belongs to the first type and exploits the “parity” features exhib-

ited by the cocycle and coboundary equations in low dimensions. This empirical fact
was generalized in [11], being thought of as an incarnation of the key idea of par-
ity, present for example in super-symmetry, duality, completions etc.. Non-abelian
cohomology based on parity quasi-complexes may be thought of as implementing
the sphere spectrum using the language of cobordism theory. It is a shadow of
n-category theory.

Although this attempt was initiated independently in [11] and then used to
investigate the relation with the cohomology of monoidal categories [10] via cate-
gorification [13], the idea that parity is important in the description of non abelian
cohomology was known, including its relevance to n-categories. Street introduced
parity complexes in [17] and studied the algebra of simplices with applications to
category theory [18]. Davidov defined parity quasi-complexes of natural transfor-
mations to characterize cohomology of monoidal categories [3] (see also [16]).

We will “explain” the parity structure of the parity differentials as emerging
from a parity contracting homotopy, which determines the non abelian bar differen-
tials in the same way the contracting homotopy of a free resolution determines the
differential [15] (Theorem 7.2, p.271).

3. Homotopy category of parity quasi-complexes

We begin with a recollaction on parity quasi-complexes, as introduced in [11].
Then a homotopy structure will be introduced in the corresponding category. It
is compatible with the categorical structure and the NA-homology functor, which
descends to the homotopy category of parity quasi-complexes, as first noted in [12].

3.1. Parity quasi-complexes and nonabelian homology functor
Fix a concrete category C for simplicity (strict monoidal, with finite limits and

colimits), so that we can talk about group objects, equalizers and coequalizers. The
category of its group objects is denoted by G. A typical example is the pair of
categories of sets and groups.

Definition 3.1. Let Ch±(C) be the category of sequences {∂+
n , ∂−n }n∈Z of pairs of

morphisms of C, called parity quasicomplexes (PQC):

(C, ∂±) : . . . Cn

∂−n

11

∂+
n --

∂n⇑ Cn−1 . . . (1)

A morphism of PQC is a map f ∈ Hom0(X, Y ), i.e. a family of morphisms fn :
Xn → Yn, commuting with the parity differentials ∂±.

A PQC (X, ∂±) should rather be thought of as sequence of 2-morphisms ∂n :
∂−n → ∂+

n , being denoted also by (X, ∂). The relation to ω-categories steaming from
interpreting the parity differentials as source and target maps, will be investigated
elsewhere.
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We will be interested in the homology of monoids of C. The corresponding cate-
gory will be denoted by G. Although non commutative, the additive notation will
be used for the multiplication of an object of G.

Definition 3.2. The nth NA-homology space of a PQC of monoids in C is defined
as the pointed set of cycles Zn(X), i.e. the equalizer of ∂+

n and ∂−n , modulo the
equivalence relation defined below:

HN
n (X) = equal(∂+, ∂−)/ ∼ .

Two elements x, y ∈ Xn are homologous, denoted by x
c∼ y (or simply x ∼ y), iff

there exists c ∈ Xn+1 such that ∂+c + x = y + ∂−c:

x

²²

∂−c //

y

²²
∂+c

//

A PQC is called exact if it has trivial homology.

Since a morphism of PQCs commutes with both differentials, it induces as usual
a morphism on homology.

Proposition 3.1. A morphism f : (X, ∂) → (Y, ∂) of PQCs induces in a functorial
way a morphism of pointed sets between the corresponding NA-homology spaces:
HN (f) : HN (X) → HN (Y ).

A morphism f of PQC is a quasi-isomorphism if it induces in homology an
isomorphism H(f) in the underlying category C.

Parity quasicomplexes exhibit “curvature”, i.e. in general ∂2 6= 0. The usual no-
tion of contracting homotopy is not sufficient, as the following lemma demonstrates.

Lemma 3.1. An augmented sequence of groups (X, ∂), having a contracting homo-
topy s in Sets∗ with image generating the groups Xi, is a complex: ∂2 = 0.

Proof. The usual proof [15], p.268, yields in the nonabelian case:

∂∂s + ∂ = ∂ + s∂∂.

Since it is a positive sequence, there inductively follows ∂2s = 0. Under the assum-
tion that the image of s generates the corresponding Xi, ∂2 = 0 follows, concluding
the proof.

The notion of homotopy appropriate for PQC should not “mix the positive and
negative boundaries”: it should be a Z2-graded version.

3.2. The homotopy structure
A useful homotopy structure should behave well with respect to composition of

morphisms of PQCs and functors, yielding a 2-categorical structure. Moreover, in
order to define derived functors using resolutions, one needs that homotopic maps
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induce the same map in homology, so that the homology functor descends to the
corresponding homotopy category.

To achieve this in the context of parity quasi-complexes, it is natural to extend
the principle of “separation of signs” to homotopies and define a Z2-graded analog.

Definition 3.3. Let f, g : (X, ∂±) → (Y, ∂±) be morphisms of PQCs of monoids
in C. f is parity homotopic to g, denoted f

s→ g, iff for all n Xn is generated by the
set of elements x ∈ En satisfying the following relations:

f(x) + s(∂−(x)) = ∂+(s(x)) + g(x) (2)

s(∂+(x)) = ∂−(s(x)). (3)

Remark 3.1. The above addition is the “natural addition” of morphisms (+Y ◦
(f ⊗ g) ◦ ∆X). The “free addition” through adjunction ([7], p.211), consisting in
extending uniquely a map defined on free generators, will be used to define the parity
differentials. They satisfy the parity homotopy relations only on generators, leading
to the courser relation defined above. Note that this “technical” issue is typical in
the noncommutative case, e.g. within the theory of distributively generated near-
rings and pseudohomomorphisms ([6, 7], [14] p.313).

There is a natural “vertical” composition of homotopies.

Lemma 3.2. Parity homotopy is transitive.

Proof. If
f + s∂− = ∂+s + g, s∂+ = ∂−s

and
g + t∂− = ∂+t + h, t∂+ = ∂−t,

then
f + (s + t)∂− = ∂+s + g + t∂− = ∂+(s + t) + h

and
(s + t)∂+ = ∂−(s + t).

Parity homotopy is distributive with respect to composition of morphisms.

Lemma 3.3. If f, g : X → Y are parity homotopic s : f → g and h : Y → Z
(h : Z → X), then hs : hf → hg (sh : fh → gh) is a parity homotopy between hf
and hg (fh and gh).

Proof. We will prove left distributivity. Left multiply equations 2 and 3 by h. Since
h commutes with the parity differentials, the statement follows.

The compatibility with composition of PQC morphisms follows.

Corollary 3.1. Let f, g : X → Y and f ′, g′ : Y → Z be morphisms of PQCs. If
f → g and f ′ → g′ then f ′f → g′g.
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Proof. The parity homotopy relation ∼ is left and right distributive with respect
to composition of PQC morphisms. Then f ′f ∼ g′f ∼ g′g.

The above facts can be summarized as the following theorem.

Theorem 3.1. Ch±(C) has a natural structure of a 2-category.

Definition 3.4. Its 1-truncation, consisting of the same objects but equivalence
classes of morphisms modulo homotopy, is called the associated homotopy category
([9], p.126).

The compatibility between the non-abelian homology functor and the parity
homotopy structure is investigated next.

Lemma 3.4. Parity homotopic morphisms f → g : X → Y induce the same map
in homology: HN (f) = HN (g).

Proof. If x is a cycle, i.e. ∂−x = ∂+x, and f → g, then:

∂−sx = s∂+x = s∂−x,

so that:
f(x) + ∂−sx = ∂+sx + g(x)

i.e. f(x) and g(x) are homologous cycles in Y .

This allows us to factor the homology functor through the canonical projection
onto the homotopy category.

Corollary 3.2. The non-abelian homology functor HN induces a canonical homol-
ogy functor on the homotopy category of PQCs over G.

We will investigate next resolutions of objects in G.

3.3. Parity contracting homotopies and resolutions
Consider the parity analog of contracting homotopies.

Definition 3.5. A parity contracting homotopy (PCH) is a map s ∈ End1(X), such
that 0 s→ idX :

s∂−=∂+s + idX (4)

s∂+=∂−s (5)

Corollary 3.3. A PQC possessing a parity contracting homotopy is exact, i.e. has
trivial homology.

Proof. Using Lemma 3.4, yields 0 = HN (0X) = HN (idX) = idHN (X).

Augmentations are defined in a similar way as for complexes.

Definition 3.6. An augmented PQC ε : X → G is a non-negative PQC X together
with a morphism ε : X0 → G.

An augmented PQC ε : X → G is called a PQC-resolution of G if it is an exact
PQC, when extending X as a PQC by defining ∂+

0 = ε and ∂−0 = 0.
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In an exact PQC, every cycle is a boundary having a canonical decomposition
into a “positive” and a “negative ” part (compare [17], p.317).

Proposition 3.2. If x is a cycle of an exact PQC, then it decomposes canonically
into a positive and a negative boundary:

x = ∂+(−sx)− ∂−(−s)x.

Proof. As before, ∂−x = ∂+x in combination with (4):

s∂−x = ∂+sx + x, s∂+x = ∂−sx,

yields ∂−sx = ∂+sx + x. Rearranging the terms, the above relation follows.

We will prove in section 4 that the noncommutative bar resolution has a parity
contracting homotopy.

4. Non-abelian bar construction

The results from relative homological algebra are adapted to the noncommutative
case, following [15]. The major difference is that the noncommutative case requires
a Z2-grading of the usual bar resolution, i.e. a “separation” of the positive and
negative terms. The additive notation is used for clarity [15], p.114.

The results are formulated in the context of the category of G-groups G [6],
consisting of groups with a group action and equivariant group homomorphisms.
The free constructions specified below are similar to those of [6] for the category of
G− groups.

Definition 4.1. Let G be a group.
The nonabelian bar resolution of G is the PQC (B(G), ∂±):

. . . B2

∂−2

44

∂+
2

**
B1e1oo

∂−1

44

∂+
1

**
B0e0oo

0

22

ε ,,
Z→ 0e−1oo (6)

of G-groups Bn(G) and G-equivariant group homomorphisms ∂±n , together with the
augmentation ε and the group homomorphisms en, defined as follows.

For positive n, Bn = F(U(Gn)) is the free G-group with (G-)generators [x1|...|xn]
all n-tuples of elements x1, ..., xn of G. Operation on a generator with an element
x ∈ G yields an element x[x1|...|xn] in Bn, so Bn may be described as the free group
generated by all x[x1|...|xn]. Finally B0 is the free G-group on one generator [ ], so
it is isomorphic to ZG, and B−1 = Z. To obtain a parity quasi-complex, assume
Bn = 1 for negative n.

The group homomorphisms en are defined by:

e−1(1) = −[ ] , en(x[x1|...|xn]) = −[x|x1|...|xn], n > 0.

Similar to the abelian case ([15], theorem 6.3, p.268), the PQC structure is
determined, if we require en to be a parity contracting homotopy. The negative sign
included in the definition of en will reverse the order of the odd simplicial maps in
the formula providing negative differential ∂−.
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Theorem 4.1. There is a unique structure of a parity quasi-complex (B, ∂±) on
the graded object B, admitting e as a parity contracting homotopy.

The parity differentials satisfy the following structural equations on group gener-
ators:

∂+
n =

→∑

06i6n

i even

∂i
n ∂−n =

←∑

06i6n

i odd

∂i
n (7)

Proof. Since the image of ei generates Bi+1, the relations 4 inductively define ∂±.
To prove the stated formulas, note that on group generators, applying e after a

simplicial map ∂i yields ∂i+1s:

∂k+1
n+1en = en−1∂

k
n, k > 0, ∂0

n+1en = −idn.

Then, on G-group generators, we have:

∂+
n+1([x, y1, ...yn]) = −∂+

n+1en(x[y]) = −[en−1∂
−
n − idn(x[y])]

and

en−1∂
−
n (x[y]) = ... + e∂3

n(x[y]) + e∂1
n(x[y]) (8)

= ... + ∂4
ne(x[y]) + ∂2

ne(x[y]) (9)

= −(∂2
n + ∂4

n + ...)[x, y]. (10)

Since idn = ∂0
nen−1, the formula for ∂+

n+1 is established.
The computations for ∂−n+1 are similar, and will be omitted.

The above G-equivariant group homomorphisms ∂± (compare [11], p.6), are
expressed in terms of the usual simplicial maps defined on G-generators by:

∂0
n[x1|...|xn] = x1[x2|...|xn], ∂n

n [x1|...|xn] = [x1|...|xn−1] (11)

∂i
n[x1|...|xn] = [x1|...|xixi+1|...|xn], i = 1, ..., n− 1

In particular s0(x[ ]) = [x] and:

∂+
1 [x] = x[ ], ∂−1 [x] = [ ], ∂+

2 [x|y] = x[y] + [x], ∂−2 [x|y] = [xy]

Definition 4.2. The G-equivariant group homomorphism defined on generators
by:

∂n([x1, ..., xn]) = ∂+
n ([x1, ..., xn])− ∂−n ([x1, ..., xn]),

will be called the differential of the PQC (X, ∂±).

Since it possesses a parity contracting homotopy, the nonabelian bar construction
is a resolution of the group G.

5. Conclusions and further developments

A homotopy structure was defined for the category of PQC of monoids of a con-
crete category C with equalizers. It was proved to be compatible with the categorical
structure, with the nonabelian homology functor and with contracting homotopies.
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A canonical PQC resolution for groups was constructed, as a consequence of
the existence of a natural parity contracting homotopy. In this way enough free
resolutions exist.

At this point we should recall that the homology of PQC generalizes the well-
known cycle and cohomologous equations in low dimensions 0 6 n 6 2. All that is
left in order to establish a nonabelian cohomology for G-groups, is a Comparison
Theorem for free or projective resolutions (see [15], p.87). This issue will not be
discussed within this article, except for mentioning that it is natural to expect that
PQC must satisfy an additional condition in order to enable such a result, e. g. being
“complexes” in some sense. The obvious requirement that parity differentials be
class functions relative to the homology equivalence relation is apparently too strong
a requirement. This requirement is not satisfied by the nonabelian bar resolution,
even as in low dimensions.

This difficulty seams to reside in the limitations of the bar construction itself,
which needs to be generalized to include additional “separators” as in [2] (see Ex-
amples p.4116). This shows the need for a categorical interpretation in the spirit
of [18], the above generalization of the bar construction [2] being a shadow of a
construction within the framework of n-categories.

Finally, we will only claim herein that, the above direction of developing the
present approach will yield applications to TQFTs obtained from state-sum con-
structions, which would also provide a testing ground for the development of the
theory (within a future article).
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[16] R. N. Saavedra, Categories Tannakiennes, L.N.M., 265 (1972), Springer-

Verlag, Berlin - Heidelberg - New York.
[17] R. Street, Parity Complexes, Cahiers de Topologie et Geometrie Differentielle

Categoriques, Vol.XXXII-4 (1991), p.315-343.
[18] R. Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987)

283-335.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2004/n1a5/v6n1a5.(dvi,ps,pdf)

Lucian M. Ionescu
lmiones@ilstu.edu
www.ilstu.edu/~LMIones

Department of Mathematics
Illinois State University
Normal
IL 61790-4520
USA


