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Abstract
Generalizations of Borsuk’s characterization theorems for

AR and ANR spaces (for metrizable spaces) are provided.
Moreover, a simple proof of Morita’s theorem is given, in gen-
eralization of Borsuk’s homotopy extension theorem.

Introduction

The classes of absolute retracts AR and of absolute neighborhood retracts ANR (for
metrizable spaces) where introduced by K. Borsuk. They play an important role in
Homotopy Theory and in Algebraic Topology essentially because, in the category
M of metrizable spaces, AR is the class of injective objects with respect to closed
embeddings, while ANR-spaces are homotopically equivalent to CW-spaces and to
polyhedra. Borsuk’s theorems characterizing AR and ANR ([3], Thm. 4.2, p. 87)
are concerned with closed pairs of metrizable spaces. We generalizes them to pairs
(X,B), where X is an arbitrary topological space and B is a P-embedded ([2])
zero-set of X.
Borsuk’s homotopy extension theorem ([3], Thm. 8.1, p. 94) asserts that every closed
pair (X,B) of metrizable spaces has the homotopy extension property with respect
to the class ANR. The latest and most remarkable generalization of this theorem is
due to Morita ([11]). He showed that the same result holds for every pair (X, B),
where B is a P-embedded, zero-set of X. The definition of P-embedded subset used
there is different from the previous one but the two are equivalent as shown in [8].
We were led to rediscover such a result, for which we present a new and simple
proof.
M is a proreflective subcategory of the category T of all topological spaces, hence
every space can be approximated by an inverse system of metrizable spaces (see
Section 1). This fact allows one to extend Borsuk’s original proofs from closed pairs
in M to general pairs (X,B) in T, where B is a P-embedded zero-set of X.

1. Preliminaries

Let C be a fixed category. In the following we shall work within the category ProC

of inverse systems in C. We refer to [10] for all details of its definition. We only
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recall the following basic facts that will be explicitly used in the sequel :
- an inverse system in C is a contravariant functor X : Λ → C, where Λ = (Λ, 6)

is a directed set, and will be denoted as X = (Xλ, xλλ′ ,Λ), where Xλ = X(λ) , for
every λ ∈ Λ, and xλλ′ : Xλ′ → Xλ , where xλλ′ = X(λ 6 λ′).

- a morphism p : X → X, where X ∈ C, is simply a cone, i.e. a family p = {pλ :
X → Xλ | λ ∈ Λ} of morphisms of C having the property that xλλ′ · pλ′ = pλ , for
all λ 6 λ′ .

- if K is a full subcategory of C then ProK is a full subcategory of ProC. K is
said to be proreflective in C whenever ProK is reflective in ProC. This amounts to
saying ([4], [12]) that, for every X ∈ C, there exists an inverse system X ∈ ProK
and a morphism p : X → X in ProC having the following properties :
(1) for every f : X → K, K ∈ K, there exists a λ ∈ Λ and a morphism fλ : Xλ → K,
such that fλ · pλ = f .
(2) if fλ′ : Xλ′ → K has also the property that fλ′ · pλ′ = f , then there exists a
λ” ∈ Λ, λ, λ′ 6 λ”, such that fλ · xλλ” = fλ′ · xλ′λ”.
If this is the case, then p : X → X is said to be a K-expansion for X. It is clear that
a K-expansion for X is uniquely determined up to isomorphisms in ProK.

A subcategory K of the category T of topological spaces (resp. T2 of Hausdorff
spaces) is proreflective if and only if [6] it is closed under finite products and sub-
spaces (resp. closed subspaces). With this result at hand, one can produce a great
number of proreflective subcategories of topological spaces. In particular, the cate-
gories PM and M of pseudometrizable and metrizable spaces, respectively, are both
proreflective in T. In what follows we discuss these facts.

Let X = (X, τ) be a topological space. Recall that a pseudometric on X is a map
λ : X ×X → R+ having the following properties:

(i) λ(x, x) > 0,
(ii) λ(x, y) = λ(y, x),
(iii) λ(x, y) + λ(y, z) 6 λ(x, z),

for all x, y, z ∈ X. λ is said to be continuous [2] if it is continuous with respect to
the product topology on X × X. If τλ denotes the topology induced on X by the
pseudometric λ, then λ will be continuous if and only if τλ ⊂ τ holds.

Let Λ be the set of all continuous pseudometrics on X, modulo the relation that
identifies two pseudometrics whenever they induce the same topology on X. Λ is
directed by the relation λ 6 λ′ ⇐⇒ τλ ⊂ τλ′ .

For every λ ∈ Λ, let Xλ denote the metric identification of the pseudometric space
(X, τλ) while, for λ 6 λ′, xλλ′ : Xλ′ → Xλ is the map induced on the quotients by
the the identity (X, τλ′) → (X, τλ) , which is continuous. Then X = (Xλ, xλλ′ , Λ) is
an inverse system in the category M and the morphism x : X → X where, for λ ∈ Λ,
xλ : X → Xλ is the identity (X, τ) → (X, τλ) followed by the identification map,
turns out to be a M-expansion for X [6], [7]. We call it the metrizable expansion of
X.
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Recall from [2] that a subset B of a topological space X is said to be P -embedded
in X if every continuous pseudometric on B can be continuously extended over X.
An equivalent formulation for this definition is given in [8], Thm. 2.10.

Note that, whenever B is P-embedded in X, then the metrizable expansion b :
B → B of B is obtained by restriction from that of X. In fact, in such a case every
continuous pseudometric on B can be thought of as the restriction of any of its
extensions to X.
The embedding i : B → X induces a level morphism, actually a natural transfor-
mation of functors, i : B → X, i = {iλ : Bλ → Xλ | λ ∈ Λ}. That is, for every
λ ∈ Λ, there is a commutative diagram

B Bλ

X Xλ

-

-
??

bλ

xλ

i iλ

with iλ the corresponding inclusion.

Proposition 1.1. Let X be a topological space and let x : X → X be its metrizable
expansion. For a P-embedded subset B of X the following properties are equivalent:

(1) B is a zero-set of X.
(2) For every µ ∈ Λ, there exists λ ∈ Λ, λ > µ, such that Bλ is closed in Xλ.

Proof. Let B be a P-embedded, zero-set of X. There exists a continuous map f :
X → R such that B = f−1(0). From the universal property of the metrizable
expansion of X one obtains, for some η ∈ Λ, a map fη : Xη → R such that f = fη ·xη.
It follows B = f−1(0) = x−1

η f−1
η (0), hence Bη = xη(B) = f−1

η (0). For any µ ∈ Λ,
let λ > η, µ, then Bλ = f−1

λ (0), for fλ = fη · xηλ. Let now B be a P-embedded
subset of X for which (2) holds and let λ ∈ Λ be any continuous pseudometric on
X such that Bλ is closed in Xλ. Here Bλ denotes the pseudometrizable subspace of
Xλ defined by B. Then Bλ is a zero-set of Xλ, hence there exists a continuous map
fλ : Xλ → R with Bλ = f−1

λ (0). It follows that B = (fλ · xλ)−1(0).

In the following we shall say that a subset B of a space X is P0-embedded if it is
P-embedded and satisfies the equivalent conditions of the above proposition.

Examples 1.2.
1. Every closed subset B of a metrizable space X is P0-embedded. This follows from
Arens’ theorem ([2], 15.4), which states that every closed subset of a metrizable
space is P-embedded.
2. The P0-embedded subsets of a collectionwise normal space are exactly its zero-sets
([2], 15.7).
3. Every closed, P-embedded, Gδ-subset of a normal space is P0-embedded.
4. Every closed, P-embedded subset of a perfectly normal T1-space is P0-embedded.
5. Every C-embedded zero-set of a normal, countably paracompact space is P0-
embedded.
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2. Results

The machinery we have given in the previous section allows us to obtain the follow-
ing generalization of Borsuk’s characterization theorems for AR and ANR spaces.

Theorem 2.1. Let Y be a metrizable space. Then
(1) Y ∈ AR if and only if, for every pair (X,B) of topological spaces, where B is

P0-embedded in X, every map f : B → Y has a continuous extension f̃ : X → Y .
(2) Y ∈ ANR if and only if, for every pair (X, B) of topological spaces, where B

is P0-embedded in X, every map f : B → Y has a continuous extension f̃ : U → Y ,
to some neighborhood U of B in X.

Proof. (1) Let Y ∈ AR and let f : B → Y be any map. Since Y is metrizable, by
the universal property of the metrizable expansion b : B → B, one can find λ ∈ Λ
and a map gλ : Bλ → Y such that gλ · bλ = f . Since B is P0-embedded in X, then
one can assume that Bλ is closed in the metrizable space Xλ. Applying now the
first theorem of Borsuk to the pair (Xλ, Bλ), there exists a map hλ : Xλ → Y which
extends gλ, that is hλ · iλ = gλ. Finally, f = gλ · bλ = hλ · iλ · bλ = hλ · xλ · i, so
that f̃ = hλ · xλ is an extension of f . Conversely, let every map f : B → Y have
an extension f̃ : X → Y , whenever B is P0-embedded in X. Since this holds in
particular for every closed pair (X,B) of metrizable spaces, from Borsuk’s theorem
it follows that P has to be an AR.
(2) The proof of the second part is analogous to that of the first one, unless to
take an extension hλ : Uλ → Y of gλ, for Uλ a neighborhood of Bλ in Xλ, whose
existence is guaranteed by the second Borsuk theorem. Then consider U = x−1

λ (Uλ)
to obtain the extension f̃ = hλ · xλ : U → Y of f .

Recall that a continuous map i : B → X is said to have the homotopy exten-
sion property (HEP) with respect to a class K of topological spaces, whenever the
diagram

B B × I

X X × I

-

-
??

eB
0

eX
0

i

i× 1

is a weak pushout with respect to K. This means that, for every map g : X →
Y, Y ∈ K, and homotopy F : B × I → Y such that F · eB

0 = g · i, there exists a
homotopy G : X× I → Y with G ·eX

0 = g and G · (i×1) = F. Here eX
0 : X → X× I

is the map defined by eX
0 (x) = (x, 0), for all x ∈ X. In the sequel we will consider

the HEP for a pair (X, B) of topological spaces, where B is a subset of X and
i : B → X is the embedding map.

Theorem 2.2. (The Homotopy Extension Theorem)
A pair of topological spaces (X, B) has the homotopy extension property with respect
to ANR whenever B is P0-embedded in X.
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Proof. Given a commutative diagram

B B × I

X Y

-

-
??

eB
0

G0

i F

where Y ∈ ANR, we have to construct an extension G : X × I → Y of F , such that
G · eX

0 = G0.
Note that the metrizable expansion of X × I is given by x × 1 : X × I → X × I =
(Xλ×I, xλλ′×1,Λ), and the related metrizable expansion of B×I by b×1 : B×I →
B × I = (Bλ × I, bλλ′ × 1, Λ). By the proreflection property, there exists an index
λ ∈ Λ and a homotopy Fλ : Bλ× I → Y , such that Fλ · (bλ× 1) = F . On the other
hand, there exists a λ′ ∈ Λ and a map Gλ′

0 : Xλ → Y , such that Gλ′
0 · xλ′ = G0.

Since the equality Gλ′
0 · iλ′ · bλ′ = Fλ · eBλ

0 · bλ = G0 · i holds, then there exists a
λ∗ > λ, λ′ such that Fλ · eBλ

0 · bλλ∗ = Gλ′
0 · iλ′ · bλ′λ∗ . Since B is P0-embedded in X

we can assume that, for such a λ∗, the corresponding embedding iλ∗ is closed. Let
us define Gλ∗

0 = Gλ′
0 · xλ′λ∗ and Fλ∗ = Fλ · (bλλ∗ × 1). Then the following diagram

is commutative

Bλ∗ Bλ∗ × I

Xλ∗ Y ,

-

-
??

e
B∗λ
0

Gλ∗
0

iλ∗ Fλ∗

in fact, Fλ∗ · eBλ∗
0 = Fλ · eBλ

0 · bλλ∗ = Gλ′
0 · iλ′ · bλ′λ∗ = Gλ′

0 · xλ′λ∗ · iλ∗ = Gλ∗
0 · iλ∗ .

If we apply now Borsuk’s homotopy extension theorem to the pair (Xλ∗ , Bλ∗), we
get the extension Gλ∗ : Xλ∗ × I → Y of Fλ∗ . Finally G = Gλ∗ · (xλ∗ × 1) turns out
to be the extension of F we were searching for.
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