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Abstract
This paper takes its starting point in an idea of

Grothendieck on the representation of homotopy types. We
show that any locally finite nilpotent homotopy type can be
represented by a simplicial set which is a finitely generated
free group in all degrees and whose maps are given by poly-
nomials with rational coefficients. Such a simplicial set is in
some sense a universal localisation/completion as all localisa-
tions and completions of the homotopy is easily constructed
from it. In particular relations with the Quillen and Sulli-
van approaches are presented. When the theory is applied to
the Eilenberg-MacLane space of a torsion free finitely gener-
ated nilpotent group a close relation to the the theory of Passi
polynomial maps is obtained.

To Jan–Erik Roos on his sixty–fifth birthday

Inspired by some ideas of A. Grothendieck ([5]) I shall in this article give an
algebraic description of nilpotent homotopy types with finitely generated homology
(in each degree).

From a homotopy theoretic perspective the main result says that every such nilpo-
tent homotopy type may be represented by a simplicial set which is of the form Zn

for some n in each degree and for which the face and degeneracy maps are numerical
maps; maps that are given by polynomials with rational coefficients. Furthermore,
the cohomology may be computed using numerical cochains, any map between such
models is homotopic to a numerical one and homotopic numerical maps are numer-
ically homotopic. The construction of a model is rather straightforward; one first
shows that the cohomology of an Eilenberg Mac-Lane space can be computed using
numerical cochains and then uses induction over a principal Postnikov tower.

Localisation and completion fits very nicely into this framework. If R is either a
subring of Q or is the ring of p-adic numbers for some prime p and K := R

⊗

Q then
a numerical function Zm → Zn clearly induces a map Km → Kn but also takes Rm

to Rn. Hence a numerical simplicial set gives rise to a numerical set obtained by
replacing each Zn that appears in some degree by Rn. For a model this new space
is the R-localisation when R is a subring of Q and the p-completion when R = Zp.
In this way a numerical model might be thought of as a universal localisation.
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If G is a finitely generated nilpotent torsion-free group, the theory may be applied
to K(G, 1) but stronger results are available. In fact G has a canonical structure of
numerical group and for that structure the numerical functions G → Z are exactly
the polynomial functions in Passi’s sense (cf., [10]). Furthermore, the cohomology
of the group (with Z-coefficients) may be computed using numerical cochains (which
are the same as the Passi polynomial maps).

The theory can be reformulated in terms of cosimplicial rings. The cosimplicial
ring of numerical mappings of a model into Z has the property of being a free
numerical ring in each degree, where a numerical ring is a ring together with certain
extra operations. The cosimplicial ring of all cochains is a numerical ring and the
numerical model can be obtained by the usual construction of a free cosimplicial
object homology equivalent to a given one. As a further motivation for the relevance
of numerical rings for homotopy we also note that the cohomology of cosimplicial
numerical rings admit an action of all cohomology operations.

When passing to the rational localisation of a numerical model, the theory should
be compared to the theories of Quillen ([12]) and Sullivan ([14]) of rational homo-
topy. In the case of Quillen’s theory the first step in his construction of a differential
Lie algebra model is to represent a nilpotent homotopy type by the simplicial clas-
sifying space of a simplicial group G that in each degree is the quotient of a finitely
generated free group by some element of the descending central series. That means
that G is a torsion free finitely generated nilpotent group and hence K(G, 1) is a
numerical space. As for Sullivan’s approach the closest connection I have found is
by considering his spatial realisation of a differential graded algebra model. We will
define a natural quotient of that spatial realisation that has a natural structure of
Q-numerical model.

To return to the starting point for the results of this article, Grothendieck’s idea
was to represent any (locally finite) homotopy type by a simplicial set that is Zn

and for which the face and degeneracy maps would be polynomial maps. While
this seems reasonable for rational homotopy types as rational homotopy theory is
fairly linear (and is a consequence of the results of this article) several people have
pointed out problems with that idea (though I am not aware of any proof that it is
impossible). It is the suggestion of the present article that polynomial maps should
be replaced by numerical maps that are the same as polynomial maps over the
rationals. Of course, numerical maps have appeared previously in homotopy theory
in connection with polynomial functors but I do not know if there is any relations
with that theory.

1. Preliminaries

It will be convenient to state a few preliminary results in some generality. If A
is an additive category for which all idempotents have kernels, then the category of
homological complexes in A, concentrated in non-negative degrees, is equivalent, by
the Dold-Puppe constructions, to the category of simplicial objects in A. Following
[9], which will be our general reference concerning simplicial results, we will use
N(−) for the functor going from simplicial objects to complexes and Γ(−) for the
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functor going the other way. Similarly for cosimplicial objects and cohomological
complexes concentrated in non-negative degrees.

If C now is a category having finite products (and in particular a final object ∗),
then if X is a simplicial object in C we say that X is a Kan complex in C if the
simplicial set XK , where (XK)n := HomC(K, Xn), is a Kan complex for all K ∈ C.
If X, Y ∈ sC, sC being the simplicial objects of sC, then we can define the function
complex Y X as a simplicial set using the definition in terms of (p, q)-shuffles as in [9,
6.7]. Then [9, 6.9] goes through, so that if Y is Kan, then so is Y X . Furthermore,
we say that a sequence F → X → Y of simplicial objects is a Kan fibration if,
for all K ∈ C, FK → XK → Y K is a Kan fibration in the usual sense. Finally,
still following [9, 18.3], we define for F, B ∈ sC, G a group object in sC, and a
group action G× F → Fm a twisted cartesian product (TCP) to be an E(τ) ∈ sC
s.t. E(τ)n = Fn ×Bn and

∂i(f, b) =(∂if, ∂ib) i > 0, (i)

∂0(f, b) =(τ(b) · ∂0f, ∂0b), (ii)

si(f, b) = (sif, sib), (iii)

where τ : Bq → Gq−1 is a morphism fulfilling the identities of ([9]). If F = G with
the action being translation we will, still following ([9]), speak of a principal twisted
tensor product (PTCP). It is then clear that if T : C → C′ is a product preserving
functor, then it takes TCP’s to TCP’s and PTCP’s to PTCP’s. In particular, if
K ∈ C then (FK , BK , GK , E(τ)K) is a TCP and so, [9, 18.4], F → E(τ) → B is a
Kan fibration if F is a Kan complex and, in particular, E(τ) is Kan if B is.

Suppose now that A is a ring object in C s. t. multiplication induces

HomC(X × Y, A) = HomC(X,A)
⊗

Z

HomC(Y,A)

for all X, Y ∈ C and that HomC(X,A) is torsion free for all X ∈ C. If F ∈ sC,
HomC(F, A) is a cosimplicial abelian group and we put H∗

A(X) :=
H∗(N(HomC(F, A))) and more generally H∗

A(X,M) := H∗(N(HomC(F,A))
⊗

Z M),
for M an abelian group. Now, Szczarba’s proof of the simplicial Brown’s theorem
[15] uses only universal expressions and hence goes through in this context. If τ is
1-trivial (i.e., τ|Bi = ∗, i = 0, 1) we therefore get a spectral sequence

Ep,q
2 = H∗,p

A (B, H∗,q
A (F )) ⇒ Hp+q

A (E(τ)). (1)

This is functorial for product preserving functors T : C → C′ and this is so also if
C′ = Sets and we make no particular assumption on T (A).

2. Numerical spaces
Having dealt with some preliminaries we can start getting down to business.

Definition 2.1. A numerical function from Zm to Zn, m,n > 0, is a function
Zm → Zn which can be expressed by polynomials with rational coefficients. If M
and N are free abelian groups of rank m resp. n, then a numerical function from
M to N is a function M → N such that for one (and hence any) choice of group
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isomorphisms Zm −̃→ M and N −̃→ Zn, the composite Zm −̃→ M → N −̃→ Zn

is a numerical function. The category Num has as objects finitely generated free
abelian groups and as morphisms the numerical functions.

Remark 1. In the literature numerical functions sometimes appear under the name
of polynomial maps. I dislike this terminology as it could easily be interpreted to
mean maps given by polynomials with integer coefficients, indeed to me it seems
the natural interpretation. Furthermore, it does not seem unlikely that polynomial
maps will have a role to play in homotopy theory and hence deserve a name of their
own.

It is clear that M,N 7→ M × N is a product in Num and that the zero group
is a final object so that Num has finite products. Furthermore, addition makes
all objects in Num abelian group objects and addition and product makes Z a
ring object. If X ∈ s(Num) then we will put H∗

Num(X,Z) := H∗
Z(X). Define

Numi := HomNum(Zi,Z) which thus is a ring, the ring of numerical functions in i
variables.

Proposition 2.2. i) Num1 =
⊕

k>0 Z
(x
k

)

where
(x
k

)

is the numerical function
n 7→

(n
k

)

.
ii) Numi = Num1

⊗

Num1
⊗

. . .
⊗

Num1 (i times).
iii) For M,N ∈ Num,

HomNum(M ×N,Z) = HomNum(M,Z)
⊗

Z

HomNum(N,Z).

iv) Num is anti-equivalent to the full subcategory of the category of rings whose
objects are the rings isomorphic to Numi for some i.

Proof. i) and ii) are well known. (Use ∆f(x) := f(x + 1)− f(x) and induction on
the degree for i) and ∆last variable for ii).) Then iii) follows from ii) as any object in
Num is isomorphic to some Zi. As for iv), M 7→ HomNum(M,Z) gives a functor in
one direction and properly interpreted R 7→ HomRings(R,Z) will be a quasi-inverse.
Now, evaluation gives a natural morphism

φM :M → HomRings(HomNum(M,Z),Z)

in the category of sets. I claim that this map is a bijection. Indeed, we may assume
that M = Zi for some i and using ii) that i = 1. As already x =

(x
1

)

separates
points φ := φZ is injective. Since Num1

⊗

Z Q = Q[x], any ring homomorphism
Num1 → Z is determined by what it does to x and so φ is surjective. We now want
to show that any ring homomorphism HomNum(N,Z) → HomNum(M,Z) induces,
through φM and φN , a numerical map M → N . We reduce to M = Zi and
N = Z so we want to show that if ρ:Num1 → Numi is a ring homomorphism then
Zi 3 n 7→ ρ(x)(n) ∈ Z is a numerical function which is obvious by the definition
of Numi. Hence R 7→ HomRings(R,Z) maps the subcategory of rings isomorphic
to some Numi into Num and by what we have just proved it is a quasi-inverse to
M 7→ HomNum(M,Z).

The proposition immediately gives the following corollary:
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Corollary 2.3. The category s(Num) is anti-equivalent to the full subcategory of
the category of cosimplicial rings consisting of those cosimplicial rings R. for which
Rn is isomorphic to some Numi for all n.

Proof.

Remark 2. It is this corollary that will allow us to interpret the results of this section
in terms of cosimplicial rings and eventually an algebraic description of nilpotent
homotopy types.

Let us now note that if M, N ∈ Num, then any group homomorphism M → N
is a numerical function so that the category Free of free abelian groups of finite
rank and homomorphisms embeds naturally in Num. This is an additive category
where all idempotents have kernels so the equivalences Γ and N are defined. From
the explicit description of Γ, [9, p. 95], it follows that there is a unique function
T :NN → NN such that if . . . → Cn → Cn−1 → . . . is a complex in Free and
rC∗ ∈ NN is defined by rC∗(i) = rk Ci, then T (rC∗)(i) = rk Γ(C∗)i. If M is a
finitely generated abelian group we let g(M) be the minimal number of generators
of M . If X is a nilpotent space with Hi(X,Z) finitely generated for all i > 0, we
put

gn(X) :=
∞
∑

i=0

g(πi
n(X)/πi+1

n (X)), (2)

hn(X) :=
∞
∑

i=0

g(torsion(πi
n(X)/πi+1

n (X))), (3)

where π0
n(X) := πn(X) and πi+1

n (X) := 〈γ(x)x−1|x ∈ πi
n(X); γ ∈ π1(X)〉. We

note also that the rank of a f. g. free abelian group is invariant under numerical
isomorphisms so we may unambigously speak of its rank as an object in Num.

Definition 2.4. i) A numerical space is a connected numerical simplicial object X
s. t. if F is the forgetful functor Num → Sets, then the natural map H∗

Num(X,Z) →
H∗(F (X),Z) is an isomorphism and the homology groups H∗(F (X),Z) are finitely
generated.

ii) A fibred numerical space is a connected simplicial object X which is an inverse
limit

X = lim←−(. . . → Xn+1 → Xn → . . . → X0.)

where

1. Xn
0 is a point for all n.

2. For all j there is an N s.t. Xn+1
j → Xn

j is an isomorphism for all n > N .

3. For all n, Xn+1 → Xn is a PTCP (in Num) with fiber some Γ(Mn), Mn an
Free-complex.

4. X0 = ∗.
iii) A special numerical space is a fibred numerical simplicial object X s. t., using

the notations of the previous definition, there is for each n integers (hn, in) so that
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Hi(Mn) = 0 for i 6= hn and Hhn(Mn) = πin
hn

(X)/πin+1
hn

(X). We will call the
sequence . . . → Xn+1 → Xn → . . . a special tower.

iv) A special numerical space X is minimal if

∀n : rk Mn =
∑

i

T (τi)(n),

where

τi(j) =







gi(X), if j = i,
hi(X), if j = i + 1,

0, if j 6= i, i + 1.

We will call the sequence . . . → Xn+1 → Xn → . . . a minimal tower.

Remark 3. For X a special numerical space

∀n : rk Mn >
∑

i

T (τi)(n),

which justifies the terminology minimal.

Lemma 2.5. i) If F → E → B is a 1-trivial TCP in s(Num) and if F and B are
numerical spaces then so is E.

ii) A special numerical space X is a numerical space and a Kan object. In
particular, F (X) = HomNum(∗, X) is Kan.

iii) If X is a special numerical space then

∀n : rk Xn >
∑

i

T (τi)(n).

Proof. Indeed, i) follows immediately from the map between the spectral sequences
of (1) for the TCP and the induced TCP in s(Sets). As for ii), the trivial nature
of the limit in the definition of a special numerical space allows us to assume that
X equals some Xn and then by i) that X = Γ(M), for some Free-complex M . As
H∗(M) is concentrated in one degree, M is homotopic to a bounded complex M ′,
indeed to one concentrated in 2 degrees, and then using the naive truncations of
M ′ and i) again we may assume that M = N [n] for some object N in Free. Now
there is a numerical (indeed a Free-) PTCP Γ(N [n − 1]) → X → Γ(N [n]) with X
Free-contractible so by induction on n and Zeeman’s comparison theorem (cf., [16])
we may assume that n = 1. We have a Free-PTCP

Γ(N1[1]) → Γ((N1 ×N2)[1]) → Γ(N2[1]),

so we may assume that N = Z. Hence we are reduced to showing that
H∗
Num(K(Z, 1)) → H∗(K(Z, 1)) is an isomorphism. A numerical 1-cocycle (for

K(Z,1)) is just a numerical function f :Z → Z s.t. f(x + y) = f(x) + f(y) so
f(x) = ax + b for some a, b ∈ Z and a 1-coboundary is of the form f(x) = c. As we
have exactly the same description for set theoretical 1-cochains and 1-coboundaries
we get an isomorphism for ∗ = 1. As ∗ = 0 is trivial it only remains to show that
Hi
Num(K(Z, 1)) = 0 for i > 2 as this is true in the set case. Now K(Z, 1)n = Zn+1
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and all the face operators are projections or sums of two adjacent coordinates. We
can grade Numi by

deg
(

x1

n1

)(

x2

n2

)

. . .
(

xk

nk

)

=
∑

i

ni

and then HomNum(K(Z, 1),Z) becomes a graded complex as
(

x + y
n

)

=
∑

i+j=n

(

x
i

)(

y
j

)

.

Hence to show the required vanishing we can replace

Numi =
∑

Z
(

x1

n1

)(

x2

n2

)

. . .
(

xk

nk

)

by

Numi =
∏

(

x1

n1

)(

x2

n2

)

. . .
(

xk

nk

)

as the cohomology can be computed degree by degree. This gives us a complex T ,
say. Now, Numi = Hom(Ni,Z) where

(

x1

n1

)(

x2

n2

)

. . .
(

xk

nk

)

7→ char fct of(n1, n2, . . . , nk)

and this equality respects maps induced by projections and sums of coordinates (but
it is not a ring isomorphism). Therefore, T is additively isomorphic to the standard
cochain complex of K(N, 1) and so H∗(T ) = H∗(K(N, 1),Z) = Ext∗Z[t](Z,Z) and
the latter group is clearly concentrated in degree 0 and 1. That a special numerical
space is Kan follows by induction on the Postnikov tower and a trivial passage to
the limit. Finally, to prove iii) it suffices to prove that if M is a Free-complex with
a single non-zero homology group Hi(M), then rk Mi > g(Hi(M)) and rk Mi+1 >
g(tor(Hi(M))). This, however, is clear by the principal divisor theorem.

Remark 4. i) The next to last part of the proof of ii) looks somewhat mysterious and
may be clarified by noting that Numi is the ring of invariant differential operators
on the formal i-dimensional torus. Its coproduct is therefore dual by Cartier duality
[3, II,§4]) to the product on the coordinate ring of the formal i-dimensional torus.
Similarly, Hom(Ni,Z) is the Cartier dual of the i-dimensional formal additive group.
As the formal i-dimensional torus and the i-dimensional formal additive group are
isomorphic as formal schemes but not as formal group schemes, Numi is isomorphic
to Hom(Ni,Z) as coalgebras but not as rings. However, in defining the differentials
of chains on K(−, 1) only the coproduct is used.

ii) Had we worked with polynomial instead of numerical functions everything
would have worked up to the statement Hi

pol(K(Z, 1)) = 0 for i > 1. This statement
is false however. As a matter of well known fact, the polynomial 2-cocycle ((x +
y)p − xp − yp)/p, p prime, is not the coboundary of a polynomial 1-cochain. It is
the boundary of the numerical 1-cochain (xp − x)/p as the lemma predicts.
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Lemma 2.6. Let Y be a special numerical space and X a numerical space. Then
F , the forgetful functor, induces a bijection

Hom(X, Y )/(numerical homotopy) → Hom(F (X), F (Y ))/(homotopy)

where Hom(−,−) means based maps.

Proof. Indeed, it will be easier to prove a stronger statement. Let Z, V ∈ Num be
pointed objects and V Kan and put [Z, V ]n := πn((V Z)b, ∗), where (−)b denotes
based maps. As above, if V1 → V2 → V3 is a TCP of Kan objects then (V Z1)b →
(V Z2)b → (V Z3)b is a fibration and we get a long exact sequence of homotopy. If
V1 → V2 → V3 is a PTCP then we get as usual the extra precision that the fibers of
[Z, V2]0 → [Z, V3]0 are the orbits under an action of [Z, V1] and the sequence extends
to [Z, V2]0 → [Z, V3]0 → [Z, WV1]0 (cf. [9, p. 87]). We now consider a sequence of
PTCP’s Y n → Y n−1 as in the definition of a special numerical space. We want
to prove by induction on n that [X, Y n]m → [F (X), F (Y n)]m is a bijection for all
m. The case n = 0 certainly causes no problem and in general we have the PTCP
Y n → Y n−1 with fiber some Γ(Mn). The extra precision given to the long exact
sequence is exactly what is needed to make the 5-lemma work and we reduce hence
to showing that [X, Γ(Mn)]m → [F (X), F (Γ(Mn))]m is a bijection. Now, Mn is
homotopic to a bounded complex, so we may assume that Mn is bounded. By the
same dvissage as before we reduce to Mn = Z[0] and then this bijection is true
by the definition of numerical space. Putting m = 0 we then get the lemma for Y
replaced by Y n. To pass from Y n to Y we use the Milnor exact sequence

∗ → lim←−
1[X, Y n]1 → [X,Y ] → lim←−[X, Y n] → ∗,

the similar sequence for F (X) etc and the 5-lemma.

We have now come to the main result of this section.

Theorem 2.7. Let X be a simplicial set which is nilpotent (which to us will include
being connected) of finite type (i. e., finitely generated homology in each degree).

i) There is a minimal special numerical space Y and a homotopy equivalence
X → F (Y ).

ii) If Y ′ is a numerical space and X → F (Y ′) a homotopy equivalence, there is
a unique, up to numerical homotopy, numerical morphism Y ′ → Y , where Y is as
in i), making the following diagram commute up to homotopy

F (Y )

↗ ↑

X → F (Y ′).
iii) If Y ′ is also special then Y ′ → Y is a numerical homotopy equivalence.

Remark 5. It is not true that a homology equivalence between minimal special
numerical spaces is necessarily an isomorphism as is shown by the following example:

Γ(Z 2−→ Z) 3−→ Γ(Z 2−→ Z).

Indeed, multiplication by 3 induces an isomorphism on the homology, Z/2, but is
clearly not an isomorphism.
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Proof. Let . . . → Xn → Xn−1 → . . . be a minimal principal Postnikov system, i.e.,
the Xn → Xn−1 are principal fibrations with fiber some K(πi

m(X)/πi+1
m (X),m)

using the notations of (2) in order of increasing i and m. We will step by step
replace, up to homotopy, Xn by some F (Y n) and Xn → Xn−1 by F (−) of a PTCP
Y n → Y n−1. Assume that we have done this up to n−1. We then have a cartesian
diagram, where K(M,m) is the fiber of Xn → Xn−1,

K(M,m)

↓

Xn → T

↓ ↓

F (Y n−1) −̃→ Xn−1 → K(M,m− 1).

Here the right hand fibration is the standard one with T ∼ ∗. Choose a resolution
F∗ → M by free f.g. abelian groups s.t. rk F0 = g(M), rk F1 = g(tor M) and Fi = 0
for i > 1. There is then a numerical PTCP Γ(F.[m]) → I → Γ(F.[m + 1]) s.t. F (−)
applied to it is homotopic to K(M,m) → T → K(M, m + 1). Hence by lemma
2.5 there is a morphism ρ: Y n−1 → Γ(F.[m + 1]) such that F (ρ) is homotopic to
Y n−1 → Xn−1 → K(M,m + 1). Let Y n → Y n−1 be the PTCP induced by ρ
from Γ(F.[m]) → I → Γ(F.[m + 1]). Then F (Y n) → F (Y n−1) is homotopic to
Xn → Xn−1 and we put Y := lim←−(. . . → Y n → Y n−1 → . . . .). Then there is a
morphism X → F (Y ) which by construction is a homology equivalence and so a
homotopy equivalence as X and F (Y ) are nilpotent. If X → F (Y ′) is a homology
equivalence, where Y ′ is a numerical space, then by obstruction theory applied to
the F (Y n) → F (Y n−1) there is a map F (Y ′) → F (Y ) s. t.

F (Y ′)

↗ ↓

X → F (Y )

commutes up to homotopy. By lemma 2.6 there is a morphism Y ′ → Y s.t. F (Y ′) →
F (Y ) is homotopic to the given F (Y ′) → F (Y ). In case Y ′ also is special another
application of lemma 2.6 shows that Y ′ → Y is a numerical homotopy equivalence.

As we will see in an example in the next section, minimal models are not unique
up to isomorphism. In the simple case we can however say that a minimal tower
must be preserved.

Proposition 2.8. Let X and Y be simple minimal numerical spaces and X · and
Y · their minimal towers. Any map f :X → Y induces a map f ·:X · → Y ·.

Proof. The proof is easily reduced to the following statement. If X ′ → X is a
PTCP for a simplicial group Γ(M.) with Mi = 0 if i 6 n and Y ′ → Y is a PTCP
for a simplicial group Γ(N.) with N i = 0 for i > n + 1 and for which Nn+1 → Nn



Homology, Homotopy and Applications, vol. 4(2), 2002 200

is injective then for any commutative diagram

X ′ f ′−−−−→ Y ′

g




y





y

X −−−−→ Y

there is a factorisation X → Y ′ of the diagram. This again amounts to saying that
f ′ is constant on a fibre of g. In proving this we immediately reduce to the case
when X = Y = ∆m, and then need only show that the map is constant on the fibre
over em, the unique non-degenerate n-simplex of ∆n. As PTCP’s over a simplex
are trivial we may assume that X ′ → X and Y ′ → Y are trivial PTCP’s. Hence we
reduce to showing that any map Γ(M.)×∆m → Γ(N.) is constant on Γ(M.)m×{em}.
In general a map Γ(M.) × ∆m → Γ(N.) is the same thing as an additive map
Z[Γ(M.) ×∆m] → Γ(N.) and what we want to show is that [(k, em)] − [(0, em)] is
mapped to zero for k ∈ Γ(M.)m. If m 6 n then this is obvious. When m > n
want to show that the kernel K of the map Z[Γ(M.) × ∆m] → Z[∆m] induced
by projection maps to zero in Γ(N.). To prove this is equivalent to showing that
N(K) → N(Γ(N.)) = N. is zero. Now, N(K) is a complex of free abelian groups,
Hi(M.) is zero when i > n and Ki is zero when i 6 n so that any map N(K) → N.

is null-homotopic. However, Mi is zero when i > n+1 so any homotopy is zero.

3. Localisation and completion

We will now extend the theory presented so far to some other base rings than
the (sometimes only implicitly mentioned) ring of rational integers. Our choice of
rings is dictated on the one hand by which rings that are being used for defining
localisation and completion in homotopy theory, on the other hand by which rings
for which a straightforward generalisation of the notion of numerical function admits
a description similar to the one given for the integers. Somewhat surprisingly these
two requirements seem to give the same answer.

Definition-Lemma 3.1. Let R the rational numbers or the ring Zp of p-adic
integers. An (R-)numerical function F → G between finitely generated free R-
modules is a function that can be defined by polynomials with coefficients in R

⊗

Q.
i) The R-algebra, Numn(R), of numerical functions Rn → R is free as R-module

on the functions (r1, r2, . . . , rn) 7→
( r1
m1

)

. . .
( rn
mn

)

.
ii) The evaluation map Rn → HomR−algebras(Numn(R), R) is a bijection.

Proof. Let us first prove that a polynomial with rational coefficients mapping Zn

to Z will map Rn to R. If R is a subring of Q then it is an intersection of the
localisations Z(p) that contains it so in that case one is reduced to R = Z(p) and
then to R = Zp as Z(p) = Q ∩ Zp. Our polynomial defines a continuous function
Zn

p → Qp, Zp ⊂ Qp is a closed subset and Zn ⊂ Zn
p is a dense subset. As Zn is

mapped into Z ⊂ Zp it follows that Zn
p is mapped into Zp. Conversely, if we have

a polynomial with R
⊗

Q-coefficients mapping Rn into R it maps in particular Zn
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into R and a slight modification of the argument in the proof of proposition 2.2
show that it is an R-linear combination of products of binomial polynomials.

The proof of the second part is entirely analogous to the same statement for
R = Z given in the proof of proposition 2.2.

Remark 6. One may wonder whether torsion free rings R other than the ones
mentioned in the lemma have the property that elements of Numn maps Rn into
R. Of course, Numn itself or any ring containing Q is such an example but one
can show that if R is a finitely generated ring and if P (r) ∈ R for all r ∈ R
and all numerical polynomials P ∈ Num1 then R ⊂ Q. Indeed, we have that
(xp−x)/p ∈ Num1 for all primes p and hence rp−r ∈ pR. From this one concludes
that r is algebraic for all r ∈ R and hence that R is a subring of a number field K.
The condition that rp− r ∈ pR for all primes p and r ∈ R then implies that almost
all primes in K are of degree 1 which implies that K = Q (details of this type of
argument can be found in [6]).

We will say that a ring R is a coefficient ring if it is a subring of Q or equals
the ring Zp of p-adic integers for some prime p. By some abuse of language we
will say that a nilpotent simplicial set is R-local if it is R-local in the usual sense if
R ⊆ Q and is p-complete if R = Zp. Similarly we will speak of the R-localisation
of a nilpotent simplicial set.

From the lemma one can continue almost verbatim and introduce, when R is a
coefficient ring, (special) R-numerical spaces (the condition being that cohomology
with R-coefficients can be computed using R-numerical cochains). One also, though
we shall not use it, gets that one may represent any R-local nilpotent finite type
space by a special R-numerical space. We will however note that if F → G is a
numerical map between finitely generated free abelian groups and R is a subring
of Q or Zp then we get an induced R-numerical map F

⊗

R → G
⊗

R. This gives
a functor, also denoted by −

⊗

R from simplicial numerical objects to simplicial
R-numerical objects. We also get a map of simplicial sets F (X) → F (X

⊗

R). For
special numerical spaces this is a localisation map:

Theorem 3.2. Let R be a coefficient ring.
i) A special R-numerical space is R-local.
ii) If X is a special numerical space then F (X) → F (X

⊗

R) is an R-localisation
map.

Proof. The first part uses the fact that locality is stable under fibrations, that
K(M, n) is local if M is a finitely generated free R-complex which is clear as its
homotopy groups are and that by speciality one may reduce to such K(M, n)’s.
For the second part we again reduce to K(M, n)’s for M a finitely generated free
Z-complex.

Remark 7. I do not know if X
⊗

R is a R-numerical space if X is a numerical space
nor if it always is local.

Proposition 3.3. Let X and Y be minimal R-numerical spaces where R is Q,
Z(p) or Zp. Then any homotopy equivalence f :X → Y is homotopic to a map that



Homology, Homotopy and Applications, vol. 4(2), 2002 202

is the inverse limit of a map of inverse systems X · → Y · (where X . and Y . are
sequences as required in the definition of minimality) such that each Xn → Y n is
an isomorphism at each point. In particular, a homotopy equivalence between min-
imal numerical spaces is homotopic to an isomorphism and even more particularly
minimal models of the same space are isomorphic.

Proof. Let p be the characteristic of R modulo its maximal proper ideal. For evident
reasons we will have to carefully distinguish between equality versus homotopy of
maps and we will start off with some observations. They will apply equally well
to simplicial sets as to numerical spaces but for simplicity we will speak only of
simplicial sets;N in any case the numerical case may be deduced from the set-
theoretic one using (2.7). To begin with, if G is a simplicial abelian group with a
single homotopy group M in degree n > 0 then isomorphism classes of PTCP’s with
structure group G over a simplicial set X. correspond to elements of Hn+1(X, M)
(cf., [9, class of PTCP’s]). It follows from that proof together with the use of the
mapping cone construction that if X → Y is a map of simplicial sets then the
relative cohomology Hn+1(Y, X, M) correspond to equivalence classes of PTCP’s
over Y together with a trivialisation of its pullback to X where two of them are
equivalent if they are isomorphic over Y by an isomorphism whose pullback to X
is homotopic to one that preserves the given trivialisations. Let us also note that
as we are dealing with principal fibrations, giving a trivialisation is the same thing
as giving a section.

The way the Postnikov tower {X ·} fits into this description is that Xn+1 → Xn

is universal for PTCP’s in degree hn over Xn that are provided with a trivialisation
over X. From this we can construct the maps by induction over n. We therefore
may assume we have the following diagram that is assumed to commute up to
homotopy:

X
f−−−−→ Y





y





y

Xn+1 Y n+1





y





y

Xn fn

−−−−→ Y n

and fn is an isomorphism. Let Mn resp. Nn be the complexes for which Xn+1 → Xn

resp. Y n+1 → Y n are Γ(Mn)- resp. Γ(Nn)-PTCP’s. As Hn(M·) resp. Hn(N·)
are πin

hn
(X) resp. πin

hn
(Y ), f induces an isomorphism between them. We lift this

isomorphism to a map of complexes M. → N.. Now, as N. is minimal, the image of
Nn+1 in Nn is contained in pNn and hence by Nakayama’s lemma the map Nn → Nn

is a surjection. As M. also is minimal, the rank of Mn is the same as that of Nn

and so the map Mn → Nn is an isomorphism. This implies that M. → N. is an
isomorphism.

Now, the pullback of Y n+1 → Y n along the composite X → Y → Y n has a
section and hence a trivialisation. As the diagram is homotopy commutative we get
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a trivialisation of the pullback of Y n+1 → Y n along the composite X → Xn → Y n.
This in turn, by the universality of Xn+1 → Xn, gives a mapping from Xn+1 → Xn

to the pullback of Y n+1 → Y n along Xn → Y n covering the isomorphism Γ(M.) →
Γ(N.). This again is nothing but a map fn+1: Xn+1 → Y n+1 of PTCP’s covering
Γ(M.) → Γ(N.). As the latter as well as the base map, fn, are isomorphisms so is
fn+1. By construction it gives rise to a homotopy commutative diagram

X
f−−−−→ Y





y





y

Xn+1 fn+1

−−−−→ Y n+1

and thus finishes the induction step.

Remark 8. Uniqueness of minimal models is not true over the integers: Fix an
integer n > 1 and consider a class α of order n in H4(K(Z/n, 1),Z) = Z/n. This
can be used as k-invariant for a fibration over Γ(Z[2] n−→ Z[1]) with fibre K(Z, 3).
Now, multiplication by any invertible residue β modulo n on H2(Z/n,Z) = Z/n
can be induced by a homotopy equivalence of the base. Taking into account also
the action of multiplication by −1 on K(Z, 4) we see that two k-invariants α and
α′ give homotopic total minimal models if (and only if) α′ = ±β2α.

On the other hand it follows from (2.8) that any isomorphism between two such
models induces an isomorphism over Γ(Z[2] n−→ Z[1]). Let us first consider the
induced isomorphism on the base B := Γ(Z[2] n−→ Z[1]). As B consists of a point
in degree 0 any map from B to itself preserves the base point 0. Then in degree
we have a numerical isomorphism from Z to Z taking 0 to 0. This in turn is
a polynomial isomorphism from Q to Q and as such is well known to have the
form x 7→ ax + b and as 0 is preserved b = 0, as Z is preserved a ∈ Z and as
its inverse has the same properties a = ±1. Now, it is easy to see that a map
B → B is determined by what it does in degree 1 so any automorphism of B
is given by multiplication by ±1. Multiplication by −1 acts trivially on the k-
invariants in question so we may assume that the induced map on B is the identity.
For the rest of the argument we will ignore the numerical structure. Any K(Z, 3)-
PTCP over B is classified as fibration over B by a torsor over the simplicial set
of automorphisms of the simplicial set K(Z, 3). On the one hand we have the
translations which is isomorphic as simplicial set K(Z, 3). Using them we may
concentrate on based isomorphisms. If we more generally consider the simplicial set
of based endomorphisms of K(Z, 3) then the argument of (2.8) shows that they are
determined by the action on the third homotopy group so that the simplicial group
of based automorphisms is equal to the constant simplicial group {±1}. Hence the
simplicial group of automorphisms of K(Z, 3) is the split extension of K(Z, 3) by
the constant group {±1} acting by multiplication. From this it follows that two
K(Z, 3)-PTCP’s that are isomorphic as fibrations either are isomorphic as PTCP’s
or one is isomorphic to the transformation by multiplication of −1 on the other. In
the notation above that means the relation α′ = ±1α. Hence, there are in general
minimal models that are homotopic but not isomorphic.
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Remark 9. Note that the fibrations we get are exactly the first non-trivial step in the
Postnikov tower of the three-dimensional lens spaces. I have no idea whether the fact
that the isomorphism classes of minimal models coincides with the homeomorphism
classes of these lens spaces has any significance.

4. Cosimplicial ring interpretation

We now want to interpret what we have proved in terms of cosimplicial rings.
The rings that we have already encountered have the property of being closed
under binomial, and not just polynomial, functions. We will need to formalise this
property. Note first that by (2.2) there are unique polynomials hm

n (x), fn(x, y) and
gm

n (x), which are linear, bilinear and linear respectively s.t.
(

x
m

)(

x
n

)

= hm
n

((

x
1

)

,
(

x
2

)

, . . . ,
(

x
mn

))

(

xy
n

)

= fn

((

x
1

)

, . . . ,
(

x
n

)

,
(

y
1

)

, . . . ,
(

y
n

))

((x
m

)

n

)

= gm
n

((

x
1

)

,
(

x
1

)

, . . . ,
(

x
mn

))

.

Definition 4.1. A numerical ring is a commutative ring R together with functions
(−

n

)

: R → R, n > 0, s.t.
i)

(0
n

)

= 1,
ii)

(1
n

)

= 0, n > 2.
iii)

(r
1

)

= r,
iv)

(r+s
n

)

=
∑

i+j=n

(r
i

)(s
i

)

,
v)

( r
m

)(r
n

)

= hm
n

((r
1

)

,
(r
2

)

, . . . ,
( r
mn

))

,
vi)

(rs
n

)

= fn
((r

1

)

, . . . ,
(r
n

)

,
(s
1

)

, . . . ,
(s
n

))

,

vii)
(( r

m)
n

)

= gm
n

((r
1

)

,
(r
1

)

, . . . ,
( r
mn

))

.

Remark 10. i) In the presence of v), i-iv) and vi-vii) are equivalent to R being
a λ-ring and one can in fact replace the polynomials f and g by those used in
the theory of λ-rings (they are equal modulo vi)). Indeed, in the presence of vi)
the polynomials appearing in the theory of λ-rings reduce to linear resp. bilinear
polynomials. As f and g are characterised by iv) resp. v) being true for r, s ∈ Z
and Z is a special λ-ring we see that they necessarily reduce to f and g.

ii) In terms of the ring homomorphism φ: R → 1 + R
[

[t]
]

from the theory of
λ-rings the extra axiom v) can be described as follows. The map φ can be thought
of as giving an exponentiation of 1 + t by elements of R through (1 + t)r := φ(r).
For the exponentiation of an arbitrary element 1 + c(t) of 1 + R

[

[t]
]

there are two
candidates. Either we can use the R-module structure on 1 + R

[

[t]
]

given by φ or
we can substitute c(t) for t in (1 + t)r. In the presence of the λ-ring axioms, v) is
equivalent to these two constructions coinciding. The details are left to the reader.
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As usual we can construct for any set S the free numerical ring Num(S) on S, i.e.,
HomSets(S, R) = HomNum −rings(Num(S), R) for any numerical ring R and also
the free numerical ring Numg(M) on an abelian group M . Then Num(S) =
Numg(Z[S]).

Lemma 4.2. For any set S, ZS is a numerical ring with pointwise operations.
Let xj ∈ Numi, 1 6 j 6 i, be the projection on the j’th factor. Then Numi =
Num({xj : 1 6 j 6 i}).

Proof. It is clear that Z with the binomial functions is a numerical ring, in fact
the axioms were set up precisely to ensure this. Hence ZS certainly is a numerical
ring with pointwise operations. Furthermore, Numi ⊂ ZZi

is clearly stable under
all operations and is hence a sub-numerical ring. Therefore, if S := {xj} there is
a map of numerical rings Num(S) → Numi taking xj to xj . By (2.2) this map is
surjective and if we prove that

Num(S) =
∑

Z
(

x1

n1

)

. . .
(

xi

ni

)

=: A,

where the sum is not necessarily direct, then we are finished. As xj ∈ A it is
sufficient to show that A is a numerical subring of Num(S). That A is a subring
follows from v) and stability under

(−
n

)

follows from the rest of the axioms.

For any complex 0 → C0 → C1 → C2 → . . . of abelian groups we may con-
struct a cosimplicial numerical ring as Num(C ·) := Numg(Γ(C ·)), where Num(−)
is extended pointwise to simplicial objects. In case Ci is f.g. free for all i, then
Num(C ·) = HomNum(Γ(HomZ(C ·)),Z) giving the relation with the preceding re-
sults.

Lemma 4.3. Let R → S and R → T be morphisms of numerical rings. Then there
is a structure of numerical ring on S

⊗

R T making it the pushout, in the category
of numerical rings, of R → S and R → T .

Proof. If S → S
⊗

R T and T → S
⊗

R T are to be morphisms of numerical rings
then the definition of

(−
n

)

are forced by the axioms so we begin by showing that
they are well-defined. As was remarked above any numerical ring is also a special
λ-ring. This means that if U is a numerical ring and if we put

φ: U → 1 + tU
[

[t]
]

r 7→
∑∞

i=0

(r
i

)

ti
,

then φ is a ring homomorphism where 1 + tU
[

[t]
]

is given the ring structure of [2,
Exp. V,2.3] with multiplication denoted by *. This gives us ring homomorphisms
S → 1 + tS

⊗

R T
[

[t]
]

and T → 1 + tS
⊗

R T
[

[t]
]

coinciding on R and hence we
get a ring homomorphism S

⊗

R T → 1+ tS
⊗

RT
[

[t]
]

showing that the operations
(−

n

)

are well-defined on S
⊗

R T . To show that we get a numerical ring we reduce
to R = Z and S and T free numerical rings on finite sets and conclude by (2.2)
and (4.2) as these show that S

⊗

T then is again a (free) numerical ring. Clearly
S

⊗

R T has the required universal property.
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We can now define twisted cartesian coproducts (TCcP’s) of cosimplicial numer-
ical rings (CNR’s) etc by dualising section 1 using the coproduct of lemma 4.3.

Definition 4.4. A fibred CNR is a cosimplicial numerical ring Y s. t. Y = lim−→(. . . →
Yn → Yn+1 → . . .) and

i) ∀i∃N : Y i
n → Y i

n+1 is an isomorphism for n > N ,
ii) Yn → Yn+1 is a PTCcP with cofibre of the form Num(Γ(C ·n)), where C ·n is a

bounded complex of free (not necessarily f. g.) abelian groups.

We will say that a cosimplicial numerical ring R is connected if H0(R) = Z and
H1(R) is torsion free and 1-connected if H0(R) = Z, H1(R) = 0 and H2(R) is
torsion free, where H∗(R) denotes the cohomology of the corresponding complex.

Remark 11. i) In condition ii) we do not need the condition on the cohomology of
C ·n; by refining and modifying the sequence . . . → Yn → Yn+1 → . . . this condition
can always be fulfilled.

ii) The conditions defining connectivity and 1-connectivity should be considered
in the light of the universal coefficient sequence; connectivity and 1-connectivity
refers to vanishing of homology.

Theorem 4.5. i) Let X be a fibred CNR and Y1 → Y2 a CNR-morphism which is
a cohomology equivalence. Then every morphism X → Y2 can be lifted to Y1.

ii) Any cohomology equivalence between fibred CNR’s is a homotopy equivalence.
iii) Let Y be a 1-connected CNR. Then there is a unique (up to homotopy) fi-

bred CNR X and a numerical ring homomorphism X → Y which is a cohomology
equivalence.

iv) Let Y be a connected CNR. Then there is a unique (up to homotopy) CNR
X fulfilling the liftability with respect to cohomology equivalences as in i) and a
numerical ring homomorphism X → Y which is a cohomology equivalence.

Proof. i) is proved by successive liftings (and is essentially a numerical cosimplicial
version of the proof of the similar property for cdga’s). The lifting at one stage is ac-
complished as follows. By the definition of 4.4 C ·n will consist of normalised cochains
in Xn and the subcomplex K of N(Xn) generated by N(Xn−1) and C ·n is the map-
ping cone of a map of complexes N(Xn−1)[1] → C·n. We then extend the lifting of
N(Xn−1) → Y2 to K. This in turn gives a lift of Γ(C ·n) → Y2 which then gives a
lift of Num(Γ(C ·n)) → Y2. Then ii) follows similarly. Let us turn to iii). We will
build a Postnikov tower. Note to begin with that when building this tower we must
kill homology and not cohomology. Hence we assume that we have f :Xn−1 → Y
s.t. if we consider Xn−1 and Y as complexes then Hi(C(f)) = 0 if i < n and
Hn(C(f)) torsion free. Let C0 → C1 be a free complex s.t. H0(C ·) = Hn(C(f)) and
H1(C ·) = torHn+1(C(f)). Then there is a morphism of complexes C ·[−n] → C(f)
inducing the identity on Hn and the natural inclusion on Hn−1. Hence there is a
morphism of cosimplicial groups Γ(C ·[−n]) → Γ(C(f)) and by composition a mor-
phism Γ(C ·[−n − 1]) → Xn. (Note that C(f) fits in to a distinguished triangle
N(Xn) → N(Y ) → C(f).) The composite Γ(C ·[−n− 1]) → Y is, by construction,
nullhomotopic. By adjunction we get Num(C ·[−n − 1]) → Xn whose composite
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with Xn → Y is again nullhomotopic as adjunctions preserve homotopies. There-
fore there is a PTCcP Xn → Xn+1 → Num(C · [−n]) and a lifting g:Xn+1 → Y .
I claim that Hi(C(g)) = 0 for i 6 n and that Hn+1(C(g)) is torsion free. To do
this one has to say something about the cohomology of Num(C ·[−n]). When C ·

is finitely generated this has already been done and the general case is done by
approximating C· by finitely generated subcomplexes. After that one has to look at
the Serre spectral sequence for the PTCcP constructed above. A small conceptual
problem arises as we want to kill homology but are working with cohomology. This
can certainly be overcome by brute force, but we will instead choose a hopefully
more conceptual approach. This entails, however, the introduction of pro-(finitely
generated abelian groups) and the reader who is unfamiliar with the concept of
pro-objects will have no problem in translating the proof to follow into one using
only cohomology. If D· is a complex of torsion free abelian groups then we de-
fine its homology by Hi(D·) := ” lim←− ”{Hi(Hom(D·

α,Z))} (cf. [1, Exp. I,8]), where
D·

α runs over all finitely generated subcomplexes of D·. We have the usual uni-
versal coefficient sequences expressing cohomology and homology in terms of each
other if we put, for an abelian group M , Hom(M,Z) resp. Ext1(M,Z) equal to
” lim←− ”{Hom(Mα,Z)} resp. ” lim←− ”{Ext1(Mα,Z)}, where Mα runs over all f.g. sub-
groups of M and, for a pro-object {Mα}, Hom({Mα},Z) resp. Ext1({Mα},Z) equal
to lim−→{Hom(Mα,Z)} resp. lim−→{Ext1(Mα,Z)}. Hence our assumptions imply that
Hi(C(f)) = 0 if i < n and we want to prove that Hi(C(g)) = 0 if i 6 n. Fur-
thermore, we may present C · as a direct limit of complexes C ·α which are finitely
generated free, concentrated in degrees 0 and 1 with H0 free and H1 torsion. Then

H∗(Num(C ·[−n])) = ” lim←− ”{H∗(Num(C ·α[−n]))}

and by (2.5 ii)

H∗(Num(C ·α[−n])) = H∗(K(H0(C ·α), n)).

By the well-known computation of the cohomology of Eilenberg-MacLane
spaces we get that H̃i(Num(C ·[−n])) = 0 if i < n or = n + 1 (as n > 2) and
Hn(Num(C ·[−n])) = H0(C ·) = Hn(C(f)). Finally, as above we get a Serre s.s.

Hi(Xn,Hj(Num(C ·[−n]))) ⇒ Hi+j(Xn+1).

This and the information we have on Hj(Num(C ·[−n])) gives an exact sequence

0 → Hn+1(Xn+1) → Hn+1(Xn) → Hn(C(f)) →

↖ ↗

Hn+1(Y )

→ Hn(Xn+1) → Hn(Xn) → 0

↖ ↗

Hn(Y )

and isomorphisms Hi(Xn+1) → Hi(Xn) for i < n. By construction we have an
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exact sequence

Hn+1(Y ) → Hn+1(Xn) → Hn(C(f)) → Hn(Y ) → Hn(Xn) → 0.

Combining these two sequences we get that Hn+1(Y ) → Hn+1(Xn+1) is an epi-
morphism and that Hi(Y ) → Hi(Xn+1) is an isomorphism for i 6 n i.e. that
Hi(C(g)) = 0 for i 6 n. In case Y is only connected we only get that

coker(Hn+1(Y ) → Hn+1(Xn+1)) → coker(Hn+1(Y ) → Hn+1(Xn))

is zero so we may have to continue an infinite number of times just to kill homology
in one degree and the end result will not necessarily be a special CNR. It will still
have the lifting property of i) though.

As should be no surprise there is a very tight relation between CNR’s and sim-
plicial numerical objects.

Proposition 4.6. i) The functor that takes each CNR X and associates to it the
simplicial scheme SpecX obtained by taking the spectrum in each degree is an
equivalence of categories between CNR’s that are free finitely generated numerical
ring in each degree and a full subcategory N of the category of simplicial schemes.
The inverse functor is taking global sections Γ(X,O) of the structure sheaf.

ii) The functor that to a simplicial scheme Y associates its simplicial set of Z-
points is an equivalence of categories from N to the category of simplicial numerical
objects.

iii) The functor that to a simplicial numerical scheme X associates the CNR
HomRings(X,Z) induces an equivalence between the category of simplicial numerical
rings and the full subcategory of CNR’s that are finitely generated free in each degree.

Proof. The results clearly follow from (2.2).

We will use these equivalences to think of a numerical space as the Z-points
X(Z) of a simplicial scheme X. Localisation and completion has a particularly
pleasant formulation in these terms; we have that F (X(Z)

⊗

R) = X(R). In the
case of completion we have the following rather striking fact which in particular
shows that p-complete homotopy types can be described in terms of cosimplicial
Z/p-algebras whose cohomology is the cohomology of the type. We also add a
rather curious fact saying that in the p-complete case we may use continuous chains
to compute cohomology.

Proposition 4.7. i) Let X ∈ N . Then the reduction mod p map X(Zp) → X(Z/p)
is a bijection.

ii) Assume X is a Zp-numerical space and give the components of X(Zp) its
p-adic topology. Then the cohomology of the complex of Zp-continuous Zp-valued
cochains is isomorphic with ordinary cohomology of X with Zp-coefficients.

Proof. The first part clearly amounts to showing that the reduction mod p map
HomRings(Numi,Zp) → HomRings(Numi,Z/p) is a bijection. This can no doubt
be done directly but the “real” reason why it is true is the following. As we
have seen, Zi = SpecNumi is the Cartier dual of Ĝi

m, the product of i copies
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of the formal multiplicative group, and so [3, II,§4] for any ring R, Zi(R) =
HomR-formal groups(Ĝ

i
m, Ĝm) and it is well known [loc. cit.] that

HomR-formal grps(Ĝ
i
m, Ĝm) = Zi

p for R = Zp as well as Z/p.
As for the second part we note that the ring of continuous functions from Zn

p →
Zp equals the p-adic completion of Numn, this is Mahler’s theorem ([8]). Hence
the complex of continuous cochains is the completion of the complex of numerical
cochains. This gives rise to short exact sequences

0 → lim←−
1 Hi−1

Num(X,Z/pn) −→ Hi
cont(X(Zp),Zp) −→ lim←−Hi

Num(X,Z/pn) → 0

but as the Hi
Num(X,Zp) are finitely generated Zp the left hand side is zero and the

right hand side is Hi
Num(X,Zp).

Remark 12. i) The first part of the proposition shows that the category of simplicial
Zp-numerical objects is equivalent to a category cosimplicial Z/p-algebras which
in the case of Zp-numerical spaces computes the Z/p-cohomology of the space.
This accords more with the usual view of p-complete spaces where Z/p-cohomology
reflects isomorphisms. I do not however know of an intrinsic characterisation of the
algebras of the form Numi /p in the style of characterising Numi as free numerical
algebras. It should be noted that there is a Stone type duality between Z/p-algebras
R fulfilling rp = r for each r ∈ R and totally disconnected compact spaces; the space
is the set of ring homomorphisms into Z/p and the ring is the set of continuous maps
into Z/p. For p = 2 this is the usual Stone duality.

ii) By [7, V,Thm 2.3.10] we get that the cohomology of a p-complete finitely gen-
erated torsion free nilpotent group can also be computed using analytical cochains.

Let us end this section with an observation that shows that disregarding the
rest of the section cosimplicial numerical rings are related to homotopy theory.
Thus let R be a cosimplicial numerical ring and α ∈ Hi(R). If z is a representing
cocycle in N(R) for α it is represented by a map Z[−i] → N(R) and hence a
map Γ(Z[−i]) → R and again by a map Num(Γ(Z[−1])) → R. This induces a
map on cohomology H∗(Num(Γ(Z[−1]))) → H∗(R). By (2.5) this means that all
cohomology operations will operate on the cohomology of cosimplicial numerical
rings with all relations being preserved.

5. Nilpotent groups
We will spend some time considering the case of K(G, 1)’s or equivalently nilpo-

tent groups. More precisely we will only consider those that are torsion free. It can
be concluded from the results of the previous section that each such group G may
be identified as a set with Zn for some n in such a way that the multiplication and
inverse are given by numerical maps and that the cohomology may be computed
using numerical cochains. We will now see that there is a canonical way to define
the structure of object in Num on the set underlying a nilpotent group such that the
group structure is given by a group object in Num. Indeed, let G be a nilpotent f. g.
torsion free group and let Z[G] be its group algebra. Any function φ: G → Z gives
rise to an additive function, also denoted φ φ:Z[G] → Z using the fact that Z[G] is
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free on G. We say that φ is ·-numerical, where · is the product on G, if φ vanishes
on some power of the augmentation ideal of Z[G]. We denote by Num ·(−,Z) the
set of ·-numerical functions.

Remark 13. These functions were first introduced by Passi ([10]) and are also
known as “Passi polynomial” maps. We have chosen a different terminology be-
cause +-numerical functions on Zn are exactly numerical functions and because of
subsequent results.

We need a preliminary result giving a characterisation of ·-numerical functions
that may be of independent interest. For that recall that a module for a group G
is said to be unipotent if it is a successive extension of modules with trivial action.

Lemma 5.1. Let (G, ·) be a torsion-free f. g. nilpotent group. Then a map G → Z
is ·-numerical if and only if it generates a Z-finitely generated unipotent submodule
of ZG.

Proof. It is clear that a G-module M is unipotent if and only if it is annihilated by
some power of the augmentation ideal of the group ring Z[G]. By definition a map
G → Z is ·-numerical if and only if it is annihilated by a power of the augmentation
ideal and as the augmentation ideal is two-sided this is true if and only if it generates
a submodule that is. Finally, as Z[G] modulo any power of the augmentation ideal
is a finitely generated Z-module, any unipotent submodule of ZG generated by one
element is finitely generated.

We will need the following result seemingly unrelated result. Recall that a
(smooth) connected algebraic group is unipotent if it is an algebraic subgroup of
the group of unipotent upper triangular n×n-matrices for some n and that in that
case every linear representation of it is unipotent (cf. [13, Cor. 3.4]). In particu-
lar the points of the group over a base field is a nilpotent group. Furthermore, if
that base field is the rational numbers, if g is a point defined over the it and f is
a polynomial vanishing on the group then we may introduce the polynomial in x
gx := exp(x log(g)), where the logarithm is a finite series mapping unipotent upper
triangular matrices to nilpotent ones and the exponential is a finite series mapping
nilpotent upper triangular matrices to unipotent ones. This polynomial vanishes on
all integers and hence is identically zero. In particular it vanishes on gr for r ∈ Q.
As the group is closed in the Zariski topology it is equal to the common zero set of
all such f and gr is in the group. This means that the group of rational points is a
uniquely divisible nilpotent group.

Lemma 5.2. An algebraic group whose underlying algebraic variety is isomorphic
to affine space is unipotent.

Proof. By a standard specialisation argument we may assume that the base field
F is a finite field. By [13, Cor. 3.8] if the group, G say, is not unipotent it will,
after possible extending the base field, contain a non-unipotent element. It has a
non-trivial order prime to the characteristic p but the cardinality of G(F) is a power
of p as G is an affine space and is hence a p-group that cannot contain a non-trivial
element of order prime to p.
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Remark 14. The author distinctly remembers having seen this result mentioned
together with a notice that the proof used reduction to a finite base field but has
been unable to find either that attribution or the actual reference.

One of the most natural questions on the relation between nilpotent torsion-free
groups and numerical groups is answered by the following result.

Lemma 5.3. Let G be a group object in Num. Then the underlying group is finitely
generated torsion-free nilpotent.

Proof. If we extend the scalars of HomNum(G,Z) to Q we get a polynomial ring
over Q which is the affine algebra of an algebraic group G over Q. Hence (5.2)
applies and we conclude that G is unipotent and hence that G(Q) is a uniquely
divisible nilpotent group. Clearly, G is a subgroup of G(Q) and hence is nilpotent
and torsion-free. To prove finite generation we note that there as a finite dimensional
faithful subrepresentation V of the representation of G on its affine algebra. We now
want show that there is finitely generated subgroup M of V stable under the action
of G. As V is finite dimensional it contains a finite number of vectors spanning it
as Q-vector space. After possibly multiplying them by a non-zero integer we may
assume that they are contained in HomNum(G,Z). It is therefore sufficient to show
that each f ∈ HomNum(G,Z) lies in a finitely generated subgroup of HomNum(G,Z)
invariant under G. For this we consider the product map ϕ:G×G → G and write
the pullback ϕ∗f ∈ HomNum(G,Z)

⊗

HomNum(G,Z) as
∑

i fi ⊗ gi. This means
that for g, h ∈ G f(g · h) =

∑

i fi(g)gi(h) and by definition h ∈ G acts on f by
(hf)(g) = f(gh). Hence we get that hf =

∑

i gi(h)fi so that the translates of f by
the elements of G lies in the finitely generated group spanned by the fi and hence
is finitely generated.

Thus, G is a subgroup of the subgroup GM of elements of G(Q) stabilising M .
As a subgroup of a finitely generated nilpotent group is finitely generated it is
enough to show that GM is finitely generated. This will be done by induction over
the dimension of V (with G changing during the induction). As G is unipotent
V contains a 1-dimensional subspace U on which G acts trivially. We may use the
induction hypothesis on the image of G in Aut(V/U) and the image M ′ of M in V/U
to conclude that the image of GM in Aut(V/U) and it is then enough to show that
the kernel of this map is finitely generated. However, that kernel is a subgroup of
the abelian group of additive maps Hom(M ′, U∩M) which is finitely generated.

Proposition 5.4. Let (G, ·) be a finitely generated torsion-free nilpotent group.
i) G may be identified with Zn in such a way that multiplication and inverse on

G are numerical functions and K(G, 1) is a numerical space.
ii) Num ·(G,Z) is a numerical subring of the numerical ring of all functions

G → Z.
iii) If G has been given the structure of group object in Num for which K(G, 1)

is a numerical space then a function G → Z is ·-numerical precisely when it is
numerical with respect to the given numerical structure.

iv) The numerical ring Num ·(G,Z) is isomorphic to the free numerical ring on
a finite number of generators and the natural map G → Hom(Num ·(G,Z),Z) is a
bijection.
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v) The product map G×G → G induces a map Num ·(G,Z) → Num ·(G,Z)
⊗

Num ·(G,Z), where Num ·(G,Z)
⊗

Num ·(G,Z) is thought of as a subring of the
set of functions G × G → Z. The inverse G → G induces a map Num ·(G,Z) →
Num ·(G,Z).

Proof. i) follows from lemma 2.5 and induction over the length of the ascending
central series,. ii) is obvious. As for iii) consider first a function f :G → Z that
is numerical with respect to the given numerical structure. Let G be the alge-
braic group over Q whose ring of regular function is HomNum(G,Z)

⊗

Q. Then
f generates a finite dimensional subrepresentation of HomNum(G,Z)

⊗

Q which is
unipotent as G is by (5.2). Hence f ·-numerical by (5.1). Assume conversely that
f : G → Z is ·-numerical. Again by lemma 5.1 it generates a unipotent module M .
We may choose a G-invariant filtration of M whose successive quotients are free of
rank 1 with trivial G-action. Having done this, the G-action on M corresponds to a
group homomorphism from G to U , the group of unipotent upper triangular integer
n × n-matrices, where n is the rank of M . Furthermore, U is a numerical group
(in fact an algebraic one) and f is the composite of a numerical map U → Z and
the group homomorphism G → U . It will therefore suffice to show that the group
homomorphism G → U is numerical. The ascending central series of U is given by
{Um}, where Um is defined by {(aij) | aij = 0 if j < i <= j + m} and U/Um is
clearly also a numerical group. We now prove by descending induction on m that the
composite G → U → U/Um is numerical. The homomorphism U/Um → U/Um−1 is
a central extension. The obstruction for lifting the homomorphism G → U/Um−1

to U/Um is an element of H2(G,Um−1/Um) that is zero as the morphism is known
to lift and the obstruction for lifting it to a numeric homomorphism is an element
of H2

Num(G, Um−1/Um). The latter group maps bijectively to the former by (2.5)
and hence the numerical homomorphism G → U/Um−1 lifts to a numerical homo-
morphism G → U/Um. The set of group homomorphism liftings are classified by
H1(G,Um−1/Um) and the set of numerical group homomorphism liftings are clas-
sified by H1

Num(G, Um−1/Um). Again by (2.5) the map between these groups is a
bijection and hence every lifting is numerical. In particular the given one is which
finishes the induction step.

Finally, iv) and v) follow from i) and iii).

We gather together the main results of this section in the following theorem.

Theorem 5.5. i) The abstract group underlying a group object in Num is a finitely
generated torsion free nilpotent group.

ii) The forgetful functor from the category of group objects of Num to the category
of finitely generated torsion free nilpotent groups is an equivalence of categories.

iii) Let G be a finitely generated torsion-free nilpotent group and let S be the
ring of ·-numerical functions on G. Then S is a free numerical ring on the rank of
G generators. The product, inverse and unit element of G induces a Hopf algebra
structure on S, the evaluation map G → HomRings(S,Z) is a bijection and through
this bijection, the Hopf algebra structure on S induces the given group structure on
G.
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iv) With notations as in the previous part, the group cohomology H∗(G,Z) of G
may be computed using ·-numerical cochains.

v) With notations as in iii) let R be a coefficient ring. Then the group structure
induced on GR := HomRings(S, R) by the Hopf algebra structure of S together with
the group homomorphism G → GR given by the composite of the isomorphism
G → HomRings(S,Z) given by iii) and the map induced by the inclusion Z → R is
an R-localisation.

Proof. This follows from the previous results of this section together with (3.2).

Apart from possible group theoretic applications we can apply our results to
more general homotopy types.

Proposition 5.6. Let G· be a simplicial group all of whose components Gn are
f.g. torsion free nilpotent groups. Then G· has a natural structure of simplicial
group in Num and using this structure K(G·), the simplicial classifying space of
G·, has a natural structure of simplicial object in Num. As such it is a numerical
space.

Proof. This follows directly from the spectral sequence

En
1 = H∗

Z(K(Gn, 1)) ⇒ H∗
Z(K(G·, 1))

and the corollary.

This result gives a relation between the present approach and one given by Quillen
to rational homotopy theory (cf. [12]). Indeed, there Quillen represents any finitely
generated complex up to homotopy by exactly a K(G·) as in the proposition. What
the proposition shows is that it also gives a representation of the complex as a
numerical space. The next step in Quillen’s construction is to pass to the Malcev
completion of the components of G· which fits very well in our context as taking
the Q-points of the Gn’s considered as group schemes.

6. Sullivan models
We now want to see how Sullivan’s theory (cf., [14]) of minimal models fits in with

the present theory. His theory is a rational so throughout this section the coefficient
ring will be the ring of rational numbers. As numerical functions then are the same
as polynomial ones we will call them just that. A numerical space then can be seen
as a simplicial scheme which in each degree is an affine space. Let us introduce some
notation appropriate to the situation. We let ∆a be the cosimplicial scheme that
in each degree n is the algebraic n-simplex SpecQ[x0, . . . , xn]/(x0 + . . . + xn − 1)
with the obvious face and degeneracy operators and let Ωa be the simplicial graded
commutative differential graded algebra (cdga) of algebraic forms on ∆a. Let us
recall that Sullivan associates to each simplicial set X the differential graded algebra
E(X) consisting of a choice of forms on Xn × ∆n

a with appropriate compatibility
conditions with respect to face and degeneracy operations, where Xn is thought
of as a zero-dimensional scheme being the disjoint union of copies of SpecQ, one
for each point of Xn. To generalise this to the case of a numerical space X we



Homology, Homotopy and Applications, vol. 4(2), 2002 214

consider relative forms on Xn × ∆n
a , relative to the projection on the first factor,

thus obtaining a cdga Ea(X). Another way to think of this is to consider the set
of simplicial algebraic maps from X to Ωa, where an algebraic map from an affine
space Y over Q to a Q-vector space V is a map Y → V whose image lies in a finite
dimensional subspace U of V and is algebraic as a map Y → U . Now, one proves as
in [14, Thm. 7.1] that the cohomology of Ea(X) computes the numerical cohomology
of X. In particular, if X is a numerical space the inclusion map Ea(X) → E(X)
is a quasi-isomorphism. Note that even though Ea(X) is considerably smaller than
E(X), even when X is a minimal numerical space Ea(X) is far from being a minimal
model (or even a model), in fact in general Ea(X) will not be connected (i. e., Q
in degree 0). It would interesting to have a modification of this construction that
would give a minimal model from a minimal numerical space. . .

Remark 15. Instead of looking at relative forms on Xn ×∆n
a one could look at all

forms. This would give a complex analogous to the de Rham complex of a simplicial
manifold and its cohomology does in fact compute the algebraic de Rham cohomol-
ogy of the simplicial scheme X. However, as each component Xn is contractible
this de Rham complex is acyclic.

The relation with Sullivan’s geometric realisation functor (cf., [14, §8]) seems
to be more interesting. By investigating it a little bit more closely than is done
([14]) we will find a way of giving a direct construction of a minimal numerical
space from a minimal cdga. For that we need some preliminary results. We begin
by recalling that the canonical truncation, τ6n, of a complex C · is the subquotient
of C · obtained by first taking the quotient by the subcomplex C>n and then the
subcomplex which is unchanged in degrees < n and the kernel of the differential
dn: Cn → Cn+1 in degree n. Normally τ6nC · is seen as a subcomplex of C · but
done in this fashion it is clear that if C· is a cdga then we get an induced structure
of cdga on τ6n. Note that the cohomology groups of τ6nC · are the same as those
for C · in degrees 6 n and 0 otherwise.

Definition-Lemma 6.1. i) For each n > 0 the simplicial group Ωn is acyclic.
ii) Putting Zn := ker d : Ωn → Ωn+1, the simplicial abelian group Zn is 0 in

degrees < n, πn(Zn) = Q and πi(Zn) = 0 if i > n. As Zn
i = 0 for i > n there is a

mapping
∫

:Zn → K(Q, n) inducing the identity on πn. We let Tn be the simplicial
cdga that is the quotient of τ6nΩ by the kernel of

∫

.

Proof. The first part is implicit in [14] but can be found explicitly in [4, Lemma
10.7 & §17, Ex. 3]. The second part is clear when n = 0 as Z0 is the constant
simplicial object with constant value Q. For larger n it follows from the first part,
induction and the exact sequences

0 → Zn −→ Ωn −→ Zn+1 → 0

coming from the acyclicity of (Ω, d).

Remark 16. It is easily seen that the identification πn(Zn) with Q can also be given
by the map Zn

n → Q given by integration over the standard simplex hence justifying
the terminology.
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Recall now, ([14, §8]), that the spatial realisation of a commutative differential
graded Q-algebra A, that we will assume is locally finite, i. e., finite-dimensional in
each degree, is the simplicial set 〈A〉 that in degree n is the set of cdga-maps from
A to Ωn. The set of such maps is in a natural fashion the Q-points of a formal
Q-scheme. More precisely, it is a closed subset of the formal affine space of graded
linear maps from A6n to Ωn (formal as the target space is infinite dimensional when
n > 0). Hence, the spatial realisation is a simplicial formal scheme. As will be seen
in a moment it is very big when A is a (minimal) model but we will want to cut
it down to reasonable size. For two m-simplices f, g:A → Ω we define equivalence
relations for each n > 0

f ∼n g ⇐⇒

The two induced maps f ′, g′: τ6nγnA → τ6n+1Ω, where
γ6nA denotes the sub-cdga of A generated by the elements
of degree 6 n, coincide when composed by the surjection
τ6n+1Ω → Tn+1.

We then define a quotient 〈A〉t of 〈A〉 defined by the intersection of all these
equivalence relations. Clearly 〈A〉t is contravariantly functorial in A and the quo-
tient map 〈−〉 → 〈−〉t is a natural transformation.

Proposition 6.2. Let A be a locally finite cdga, V a graded finite dimensional
vector space concentrated in degree n > 0 and A

⊗

ΛV a cdga which as a graded
algebra is the graded tensor product of A and the free graded commutative algebra
on V and such that d maps V into A

⊗

Q. By functoriality the inclusion mapping
A → A

⊗

ΛV then induces maps 〈A
⊗

ΛV 〉 → 〈A〉 and 〈A
⊗

ΛV 〉t → 〈A〉t.
i) 〈A

⊗

ΛV 〉 → 〈A〉 is a PTCP of simplicial formal schemes with structure group
Hom(V, Zn).

ii) 〈A
⊗

ΛV 〉t → 〈A〉t is a PTCP of simplicial formal schemes with structure
group
K(Hom(V,Q), n). The quotient mapping 〈A

⊗

ΛV 〉 → 〈A
⊗

ΛV 〉t is a mapping
of PTCP’s over 〈A〉 → 〈A〉t with respect to the structure group map induced by the
natural surjection Zn → K(Q, n).

Proof. If we begin with the first part and we consider a fibre of 〈A
⊗

ΛV 〉 → 〈A〉
over an m-simplex φ: A → Ωn, an extension to A

⊗

ΛV is completely determined by
the restriction of d to V . Furthermore, d applied to any element v of V is determined
as it has to be the already prescribed image of dv ∈ A. That means that if f and g
are two extensions of φ then f − g maps V into Zn

m. Conversely given an extension
f and a linear map V → Zn

m there is an extension g of φ such that the restriction
of f − g to V is the given map. Hence, the map 〈A

⊗

ΛV 〉 → 〈A〉 is a principal
homogeneous space over the simplicial group Zn. To show that it is a PTCP we
need to find a section of the restriction of 〈A

⊗

ΛV 〉 → 〈A〉 to the subcategory ∆∗
of ∆ consisting of those increasing maps {0, 1, . . . , m} → {0, 1, . . . , n} that take 0
to 0 (cf., [9, 18.7]). This is obtained by the following observations

• Given a map φ: A → Ωm to extend it to A
⊗

ΛV one needs to find a map
f : V → Ωm such that df(v) = φ(dv) for all v ∈ V . This is possible as
dφ(dv) = 0 and Ωm is acyclic. It can be done explicitly given a contraction of
Ω.
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• Given a Q-point b ∈ ∆m
a we may use it as origin and use the algebraic con-

traction x → t(x − b) + b and the usual integration formulas to construct a
contraction of Ωm. This contraction is natural for affine maps preserving the
chosen basepoints.

• The restriction of the cosimplical scheme ∆a to ∆∗ has a base point and hence
the restriction of Ω to ∆∗ has a contraction.

To turn to the second part it is clear that the only of the equivalence relations
∼m on 〈A

⊗

ΛV 〉 that does not factor through 〈A
⊗

ΛV 〉 → 〈A〉 is ∼n. As for ∼n
it is clear that two m-simplices f and g are equivalent if their restrictions to A are
and if the restrictions to V of

∫

◦d ◦ f and
∫

◦d ◦ g are equal. This combined with
the first part now gives the second.

From the proposition the main result of this section immediately follows.

Theorem 6.3. Let A be a nilpotent cdga model. Then the natural map 〈A〉 → 〈A〉t
is a homotopy equivalence and 〈A〉t has a natural structure of special Q-numerical
space. It is minimal if A is.

Proof. We leave to the reader to prove, in a fashion analogous to [14], that if
A′ → A is a minimal model then 〈A〉t → 〈A′〉t is a homotopy equivalence and that
the formal scheme structure on 〈A〉 induces a special numerical space structure
on 〈A〉t and will assume that A is minimal. That means that there is a filtration
An of A by sub-cdga’s such that An = An−1⊗ΛVn, where Vn is concentrated in
a single degree and d maps Vn into An−1. Furthermore, the degree of Vn tends
monotonically to infinity with n. One now proves by induction that 〈An〉 → 〈An〉t
is a homotopy equivalence and that 〈An〉t is a minimal Q-numerical space using
proposition 6.2. One then concludes by noting that 〈A〉t is the inverse limit of
. . . → 〈An〉t → 〈An−1〉t → . . . and that this system is eventually constant in each
degree.

7. Fibrations

As a simple, and not very original, application of the ideas of this paper we will
study fibrations. We now note that we can relativise our constructions; a morphism
R → S of cosimplicial numerical rings may be factored R → S′ → S where R → S′

is a direct limit of a succession cTCP’s with fibers as before and S′ → S is a
cohomology equivalence. We call such a factorisation a special resolution of the
map. We get as before that any two special resolutions are homotopic and for any
map R → T of cosimplicial numerical rings we will call T → T

⊗

R S′ the homotopy
pushout of R → S.

Definition 7.1. Let φ: R → S be a morphism of cosimplicial numerical rings. We
say that φ is a cofibration if for one (and hence any) special resolution R → S′

ρ−→ S
of φ and every morphism R → T of cosimplicial numerical rings, ρ ⊗R T is a
cohomology equivalence.

We then have the following result.
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Proposition 7.2. i) Any morphism R → S of cosimplicial numerical rings which
is flat in each degree (i.e. Rn → Sn is a flat ring homomorphism for each n) is a
cofibration.

ii) Let f : X → Y be a morphism of numerical spaces. The homotopy pullback of
the map of simplicial sets underlying f by any map of numerical spaces has coho-
mology equal to the homotopy pushout of the corresponding cosimplicial numerical
rings of numerical functions.

iii) If R → S is a fibration and R → T a morphism, then there is a spectral
sequence

TorH∗(R)
∗ (H∗(S),H∗(T )) ⇒ H∗(S

⊗

R

T ).

Proof. i) is clear as a special morphism is flat so S
⊗

R(−) and S′
⊗

R(−) are both
exact. As for ii) one verifies it by induction over a Postnikov tower of X → Y .
Finally, iii) follows as in the simplicial case [11, II, Thm 5].

Remark 17. In the case of a diagram of spaces this gives the Eilenberg-Moore
spectral sequence.
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Études Sci. Publ. Math. (1977) 269–331.

[15] R. H. Szczarba, ‘The homology of twisted cartesian products.’ Trans. AMS
100 (1961) 197–216.

[16] E. C. Zeeman, ‘A proof of the comparison theorem for spectral sequences.’
Proc. of Cambr. Phil. Society 53 (1957) 57–62.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2002/n2a8/v4n2a8.(dvi,ps,pdf)

Torsten Ekedahl teke@matematik.su.se

Department of Mathematics
Stockholm University
S-106 91 Stockholm
Sweden


