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TREES, FREE RIGHT-SYMMETRIC ALGEBRAS, FREE
NOVIKOV ALGEBRAS AND IDENTITIES

ASKAR DZHUMADIL’DAEV and CLAS LÖFWALL

(communicated by Larry Lambe)

Abstract
An algebra with the identity x ◦ (y ◦ z− z ◦ y) = (x ◦ y) ◦ z−

(x ◦ z) ◦ y is called right-symmetric. A right-symmetric algebra
with the identity x ◦ (y ◦ z) = y ◦ (x ◦ z) is called Novikov.
We describe bases of free right-symmetric algebras and free
Novikov algebras and give realizations of them in terms of trees.
The free Lie algebra is obtained as a Lie subalgebra of the
free right-symmetric algebra. We use our methods to study
identities of Witt algebras.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

An algebra A over a commutative ring R is an R-module with a bilinear operation
◦ : A×A → A. The R-algebra A is called right-symmetric if it satisfies the identity

a ◦ (b ◦ c− c ◦ b) = (a ◦ b) ◦ c− (a ◦ c) ◦ b .

The reason for this name is the following. If (a, b, c) = a ◦ (b ◦ c) − (a ◦ b) ◦ c
is the associator, the identity can be rewritten as a right-symmetric condition of
associators

(a, b, c) = (a, c, b).

A right-symmetric algebra is called Novikov if it also satisfies the left-commutativity
identity

a ◦ (b ◦ c) = b ◦ (a ◦ c).

Right-symmetric algebras first appeared in Cayley’s paper [3]. In this paper the
identity QPU = (Q× P )U + (QP )U is mentioned. From this it is easy to obtain a
right-symmetric identity for the right-symmetric Witt algebra. Cayley in fact also
considered a realization of the right-symmetric Witt algebra as rooted trees. Right-
symmetric algebras were re-examined in [9], [10], [15]. These algebras have many
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other names: Vinberg algebras, Koszul algebras, Gerstenhaber algebras and pre-
Lie algebras. An algebra is called left-symmetric, if it satisfies the left-symmetric
condition for associators

(a, b, c) = (b, a, c).

Any right (respectively left)-symmetric algebra is left (respectively right)-symmetric
under the opposite multiplication a ? b = b ◦ a. Novikov algebras firstly appeared in
the study of hydrodynamical equations [1] (see also [11], [12], [13]).

Example 1.1. Let U = k[x1, . . . , xn] and ∂i = ∂/∂xi be the partial derivative.
Then W rsym

n = {
∑

ui∂i : ui ∈ U} under multiplication u∂i◦v∂j = v∂j(u)∂i is right-
symmetric. This algebra is called the right-symmetric Witt algebra (in n variables).
When n = 1 this algebra is Novikov. More generally, if A is a commutative algebra
and ∂ is a derivation on A, then A is a Novikov algebra under multiplication a∗ b =
∂(a)b. In fact, we will prove in Section 7 that any Novikov algebra is a quotient of
a subalgebra of an algebra of this kind.

In our paper we describe two bases of free right-symmetric algebras. The first uses
the concept of rooted trees, and the basis elements are called t-elements. The other
basis is obtained by considering a basis for the free (non-associative) algebra modulo
the right-symmetric axiom. Here the basis elements are called r-elements. They
have the same structure as the t-elements, but the multiplication rule is different.
An r-element may be seen as a non-associative monomial and this basis is therefore
suitable when the value of algebra homomorphisms are studied. This is indeed the
case in section 10, where T -ideals in the free right-symmetric algebra appear in
studying identities of the Witt algebra (see below).

On the other hand, the multiplication of t-elements has a nice explicit form,
which sometimes makes it easier to use this basis.

The basis for the free right-symmetric algebra in terms of trees was established
independently in [4]. Tree algebras also appears in quantum field theory [5] and in
numerical analysis [2].

We also give a description of a basis in the free Novikov algebra. We prove that
the number of basis elements in degree n of the free Novikov algebra with 1 generator
is equal to the number of non-ordered partitions of n− 1.

For the free Novikov algebra on k generators, this number is the coefficient of
y−1zn in the series

∞
∏

j=−1

1
(1− yjz)k .

The identities studied in section 10 are the following, which we call the left and
right standard polynomial.

sl
k+1(X0, . . . , Xk) =

∑

σ∈Symk

sign(σ)Xσ(1) ◦ (Xσ(2) ◦ · · · ◦ (Xσ(k) ◦X0) · · · )

sr
k(X1, . . . , Xk) =

∑

σ∈Symk

sign(σ)(· · · (Xσ(1) ◦Xσ(2)) ◦ · · · ◦Xσ(k−1)) ◦Xσ(k)
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They are obtained from the standard skew-symmetric associative identity

sk(t1, . . . , tk) =
∑

σ∈Symk

sign(σ)tσ(1) · · · tσ(k)

in the following way. Let lX and rX be the left and right multiplication operators:
lX(Y ) = X ◦ Y, rX(Y ) = Y ◦X. Then sl

k+1 is obtained by substituting lXi for ti in
sk and apply the result on X0, while sr

k is obtained by substituting rXi for ti in sk

and apply the result on a unit e (which is added if necessary).
In [8] some identities of the right-symmetric Witt algebra was found. It was

proved that W rsym
n satisfies the left standard polynomial identity of degree 2n + 1

sl
2n+1 = 0.

It is not difficult to prove that W rsym
n also satisfies the right standard polynomial

identity

sr
n2+2n = 0.

A conjecture in [8] states that

sr
n2+2n−1 = 0

is also a polynomial identity and that this identity is minimal for right polynomial
identities. It is easy to see that in any right-symmetric algebra

sl
3 = 0 ⇒ sr

q = 0, q > 3.

In our paper we prove that, given k > 3, there is a right-symmetric algebra which
satisfies the identity sl

k = 0 but which does not satisfy the identity sr
q = 0 for any

q.
In particular, for n > 1, the identity sr

n2+2n = 0 does not follow from sl
2n+1 = 0,

so, W rsym
n has at least two independent polynomial identities when n > 1.

The key method here is to introduce in the free right-symmetric algebra

• a compatible order and

• a non-archimedian norm

The compatible order in the free right-symmetric algebra is very much like the
orders studied in Gröbner theory for associative algebras and Lie algebras. Using
this method, we prove that the Lie subalgebra generated by Ω of the free right-
symmetric algebra on Ω under the Lie commutator [X, Y ] = X ◦ Y − Y ◦X is free
as a Lie algebra.

The non-archimedian norm allows us to make the free right-symmetric algebra
to a topological algebra with a decreasing filtration of balls, such that these balls
are closed under the action of algebra endomorphisms.

2. The set of rooted trees

Let Ω be any set. The set of rooted trees with nodes labelled from Ω, denoted
T (Ω), is defined in the following way. Define recursively a set T̂ (Ω) by the rules
given below, where t is just a formal symbol.
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• a ∈ Ω ⇒ a ∈ T̂ (Ω)
• a ∈ Ω, x1, . . . , xn ∈ T̂ (Ω) ⇒ t(a, x1, . . . , xn) ∈ T̂ (Ω)

We do not exclude the possibility that n = 0 in the second clause above, so t(a) ∈
T̂ (Ω) if a ∈ Ω. The set T (Ω) is now defined as T̂ (Ω)/ ∼, where ∼ is the least
equivalence relation that satisfies

• a ∼ t(a)
• t(a, x1, . . . , xn) ∼ t(a, xi1 , . . . , xin)

if (i1, . . . , in) is a permutation of (1, . . . , n).
• t(a, x1, . . . , xn) ∼ t(a, y1, . . . , yn)

if xi ∼ yi for i = 1, . . . , n.

An equivalence class in T (Ω) is denoted by any of its representatives in T̂ (Ω).

Example 2.1. We have

t(a, b, t(b, a, b)) ∈ T ({a, b}) and t(a, b, t(b, a, b)) = t(a, t(b, b, a), b) .

It is clear that the above definition of T (Ω) coincides with the graph theoretical
notion of “rooted labelled trees”, where two such trees are considered to be equal
if there is an isomorphism of labelled graphs which sends the root to the root.

Example 2.2. The equality t(a, b, t(b, a, b)) = t(a, t(b, b, a), b) may be illustrated
by the following isomorphic rooted trees.

s
a

b b

a b

@
@

�
�
@

@
�

�r rr r
∼= s

a

b b

ab

@
@

�
�

@
@

�
�r rrr

Definition 2.3. We make the following definitions for y ∈ T (Ω).

(i) The length of y, denoted |y|, is defined by

|t(a, x1, . . . , xn)| = 1 + |x1|+ · · ·+ |xn| for n > 0.

(ii) The number of branches in y, denoted br(y), is defined by

br(t(a, x1, . . . , xn)) = n for n > 0.

(iii) The operation • on T (Ω) is defined as follows, where a ∈ Ω and
x1, . . . , xn, y ∈ T (Ω),

t(a, x1, . . . , xn) • y = t(a, x1, . . . , xn, y).

The operation • is non-associative and non-commutative. It satisfies however the
right-commutative identity (a • b) • c = (a • c) • b (in fact we will prove later that
T (Ω) is the free right-commutative magma on Ω, cf. Proposition 6.3).

For a given set X, let Mon(X) denote the free commutative monoid on X; i.e.,
Mon(X) consists of words (including the empty word) in the alphabet X, where the
letters may be written in any order. We have a bijection

T (Ω) → Ω×Mon(T (Ω)) (1)
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where the correspondence is t(a, x1, . . . , xn) 7→ (a, x1 · · ·xn) and a 7→ (a, 1).
Let T (Ω)n denote the subset of T (Ω) consisting of all elements of length n.

Suppose Ω is finite, |Ω| = k. Then T (Ω)n is finite and we may form the generating
series fk(z) =

∑

n>1 a(n, k)zn where a(n, k) = |T (Ω)n|.
The length of a monomial x1 · · ·xj is defined as |x1|+ · · ·+ |xj |. It is well-known

that the generating series for Mon(T (Ω)) with respect to length is (|Ω| = k)

exp(fk(z)) def=
∞
∏

n=1

1
(1− zn)a(n,k) .

Hence by (1), fk(z) satisfies the following functional equation, which may be
found in [3].

fk(z) = kz exp(fk(z)) (2)

This equation makes it possible to compute the numbers a(n, k) recursively. E.g.,
if |Ω| = 1 then a(1, 1) = a(2, 1) = 1, a(3, 1) = 2, a(4, 1) = 4, . . . where the
corresponding trees look as follows

s sr s@
@

�
�

r r sr
r

s@
@

�
�

r rr s@
@

�
�

r rr s@
@

�
�

r r r
sr
rr

It is easily seen that a(n, k) is a polynomial in k of degree n for each n. The first
polynomials are

a(1, k) = k, a(2, k) = k2

a(3, k) =
3
2
k3 +

1
2
k2, a(4, k) =

8
3
k4 + k3 +

1
3
k2 .

We may write fk(z) as a power series in k:

fk(z) = ϕ1(z)k + ϕ2(z)k2 + ϕ3(z)k3 + · · ·

We will now give recursive formulas for the functions ϕ1, ϕ2, . . . . We have

exp(fk)(z) =
∞
∏

j=1

exp(ϕj(z)kj) =
∞
∏

j=1

(exp(ϕj(z)))kj
.

Hence by (2),

fk(z)
kz

=
∞
∏

j=1

(exp(ϕj(z)))kj
= e

P∞
j=1 log(exp(ϕj))kj

.

Definition 2.4. For any series without constant term, g(z) =
∑

n>1 bnzn, let
logexp(g) denote the series

∑

n>1−bn log(1− zn). Also, let y(n) = yn/n!.
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The multinomial theorem may be written

(y1 + · · ·+ yr)(n) =
∑P
ni=n

x(n1)
1 · . . . · x(nr)

r

and we get

fk(z)
kz

=
∞
∑

n=1

∑P
jnj=n

(ψ(n1)
1 ψ(n2)

2 · . . .)kn

where ψj = logexp(ϕj).

Hence
1
z
(ϕ1(z) + ϕ2(z)k + ϕ3(z)k2 + · · · ) =

1 + ψ1(z)k + (ψ(2)
1 (z) + ψ2(z))k2 + (ψ(3)

1 (z) + ψ1(z)ψ2(z) + ψ3(z))k3 + · · ·

and we have proved the following theorem

Theorem 2.5. Let Ω be a set with k elements and let fk(z) = ϕ1(z)k + ϕ2(z)k2 +
ϕ3(z)k3 + · · · be the generating function for T (Ω). Then

ϕ1(z) = z

ϕ2(z) = zlogexp(z) = −z log(1− z)

ϕ3(z) = z(
1
2
(log(1− z))2 + logexp(ϕ2))

ϕ4(z) = z(−1
6
(log(1− z))3 − log(1− z)logexp(ϕ2) + logexp(ϕ3))

. . .

and in general, given ϕ1, . . . , ϕn−1, we have

ϕn(z)/z =
∑P
jnj=n

(ψ(n1)
1 ψ(n2)

2 · . . .)

where ψj = logexp(ϕj).

3. The tree algebra
Let R be a commutative ring. For any set Ω we define the “tree algebra”, T (Ω),

as the free R-module on T (Ω). The operation • on T (Ω) is extended to T (Ω) by
linearity. A bilinear multiplication ◦ on T (Ω) is defined recursively on basis elements
as follows, where a ∈ Ω, x1, . . . , xn, y ∈ T (Ω).

a ◦ y = a • y = t(a, y)

t(a, x1, . . . , xn) ◦ y = t(a, x1, . . . , xn, y) +
n

∑

i=1

t(a, x1, . . . , x̂i, . . . , xn) • (xi ◦ y)

In other words, y1 ◦ y2 is obtained as follows. Add a new branch to the root of
y2 and “plant” this graph to each node of y1 and add the resulting trees. In this
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way (T (Ω), ◦) becomes a positively graded (non-associative) R-algebra, T (Ω) =
⊕n>1T (Ω)n, where T (Ω)n is the free R-module on T (Ω)n. We will use the notation
T (Ω) for this algebra (without mentioning the operation ◦).

Proposition 3.1. The operations • and ◦ on T (Ω) satisfy the following identities.

(i)
(x • y) • z = (x • z) • y

i.e., (T (Ω), •) is right-commutative.
(ii)

(x • y) ◦ z = (x ◦ z) • y + x • (y ◦ z)

i.e., (T (Ω), ◦) is a derivation algebra of (T (Ω), •)
(iii)

(x ◦ y) ◦ z = (x ◦ z) ◦ y + x ◦ (y ◦ z)− x ◦ (z ◦ y)

i.e., T (Ω) is right-symmetric.

Proof. The first two identities follow directly from the definitions. We use (i) and
(ii) and induction over the length of x to prove (iii). Suppose first that x = a ∈ Ω.
Then (a ◦ y) ◦ z − a ◦ (y ◦ z) = (a • y) ◦ z − a • (y ◦ z) and by (ii) this equals
(a ◦ z) • y = (a • z) • y. In the same way (a ◦ z) ◦ y − a ◦ (z ◦ y) = (a • y) • z and
hence by (i) we get (iii). If x /∈ Ω we may write x = x1 • x2, where |x1| < |x| and
|x2| < |x|. By (ii)

((x1 • x2) ◦ y) ◦ z = ((x1 ◦ y) • x2) ◦ z + (x1 • (x2 ◦ y)) ◦ z

= ((x1 ◦ y) ◦ z) • x2 + (x1 ◦ y) • (x2 ◦ z) +

(x1 ◦ z) • (x2 ◦ y) + x1 • ((x2 ◦ y) ◦ z).

Hence

(x ◦ y) ◦ z − (x ◦ z) ◦ y = ((x1 ◦ y) ◦ z − (x1 ◦ z) ◦ y) • x2 +

x1 • ((x2 ◦ y) ◦ z − (x2 ◦ z) ◦ y)

and hence by induction and (ii)

(x ◦ y) ◦ z − (x ◦ z) ◦ y = (x1 ◦ (y ◦ z − z ◦ y)) • x2 +

x1 • (x2 ◦ (y ◦ z − z ◦ y))

= (x1 • x2) ◦ (y ◦ z − z ◦ y) = x ◦ (y ◦ z − z ◦ y).

Now suppose Ω is well-ordered. The order may be extended to a well-order < on
T (Ω) in such a way that y1 < y2 if |y1| < |y2| or if |y1| = |y2| and br(y1) < br(y2).
Then the following properties are easily proven.

Proposition 3.2. If a well-order < on T (Ω) satisfies that y1 < y2 if |y1| = |y2| and
br(y1) < br(y2), then the leading term of t(a, x1, . . . , xn) ◦ y is t(a, x1, . . . , xn) • y
and the leading term of (. . . (a ◦ x1) ◦ x2) ◦ · · · ◦ xn) is t(a, x1, . . . , xn).
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Proof. It follows from the definition that t(a, x1, . . . , xn) • y is the only term of
t(a, x1, . . . , xn)◦y which has n+1 branches and all terms have the same length (we
ignore the coefficients, the leading term has however coefficient 1). In the same way,
t(a, x1, . . . , xn) is the only term with n branches in (. . . (a ◦ x1) ◦ x2) ◦ · · · ◦ xn).

Proposition 3.3. As an R-algebra, T (Ω) is generated by Ω.

Proof. We prove by induction over a well-order on T (Ω) satisfying the assumptions
in Proposition 3.2, that any element in T (Ω) is generated by Ω. Suppose this is
true for all elements less than t(a, x1, . . . , xn). Since xi < t(a, x1, . . . , xn) for all i, it
follows by induction that (. . . (a◦x1)◦x2)◦· · ·◦xn) is generated by Ω. By Proposition
3.2, this expression has t(a, x1, . . . , xn) as leading term. Since by induction all other
terms are generated by Ω, it follows that t(a, x1, . . . , xn) is generated by Ω.

4. Super-trees
We will shortly describe how signs may be introduced in the notions of tree and

tree algebra. Suppose Ω is a super-set; i.e., the elements in Ω are divided into even
and odd elements. We will use the notation ε(x, y) for the sign introduced when
x and y are interchanged in a formula; i.e., ε(x, y) = −1 if both x and y are odd
and +1 otherwise. The function ε is supposed to be bi-additive (with values in the
multiplicative group {−1, 1}).

The notion of odd and even elements is naturally extended to trees. A tree is
a signed expression ±t(a, x1, . . . , xn) or 0. The definition of equality for trees is
changed to

t(a, x1, . . . , xn) = ε(xi, xi+1)t(a, x1, . . . , xi+1, xi, . . . , xn)

for any i = 1, . . . , n− 1. Also if y is odd, then for any n > 0

t(a, y, y, x1, . . . , xn) = 0.

We let Mon(X), where X is a super-set, denote the monoid of signed monomials and
0, where an odd variable occurs at most once in a monomial. We have a bijection

T (Ω) → Ω×Mon(T (Ω))/(a, 0) = 0.

If Ω is finite, a functional equation for the generating series of all unsigned non-zero
trees, T (Ω)+, may be given. The generating series for a graded super-set, which
is finite in each degree, is a power series in z and y, where y2 = 1. If f(z, y) =
∑

anzn + y
∑

bnzn, then an is the number of even elements and bn is the number
of odd elements in degree n.

If f(z, y) =
∑

n>1 anzn+y(
∑

n>1 bnzn) is the generating function for a positively
graded super-set, we make the following definition.

exp(f(z, y)) def=
∞
∏

n=1

(1 + yzn)bn

(1− zn)an

Suppose Ω consists of k0 even elements and k1 odd elements and let fk0,k1(z, y) be
the generating series for T (Ω)+. Then we have

fk0,k1(z, y) = (k0 + k1y)z exp(fk0,k1(z, y)).
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The definition of the operation • is the same as before. The tree algebra, T (Ω), is
defined as the free R-module on T (Ω)+. The operation • on T (Ω) is extended to
T (Ω) by linearity. The definition of ◦ on T (Ω) is changed to

a ◦ y = a • y = t(a, y)

t(a, x1, . . . , xn) ◦ y = t(a, x1, . . . , xn, y) +
n

∑

i=1

ε(xi, xi+1 + . . . + xn)t(a, x1, . . . , x̂i, . . . , xn) • (xi ◦ y).

Proposition 4.1. The operations • and ◦ on T (Ω), where Ω is a super-set, satisfy
the following identities.

(i)

(x • y) • z = ε(y, z)(x • z) • y

and

(x • y) • y = 0 if y is odd

i.e., (T (Ω), •) is right-super-commutative.

(ii)

(x • y) ◦ z = ε(y, z)(x ◦ z) • y + x • (y ◦ z)

(T (Ω), ◦) is a derivation algebra of (T (Ω), •)
(iii)

(x ◦ y) ◦ z = ε(y, z)(x ◦ z) ◦ y + x ◦ (y ◦ z)− ε(y, z)x ◦ (z ◦ y)

i.e., T (Ω) is right-super-symmetric.

5. Compatible orders

In this section we assume that R is an integral domain. In the applications in
later sections we will need that the order on T (Ω) is not just a well-order but also
satisfies a compatibility condition which is made precise below.

Definition 5.1. Let < be a well-order on T (Ω). We make the following definitions.

• The order < is •-compatible if
x < y ⇒ x • z < y • z and z • x < z • y for x, y, z ∈ T (Ω).

• For x ∈ T (Ω)\{0}, lead(x) ∈ T (Ω) is the maximal basis element which occurs
in x with non-zero coefficient.

• The order < is ◦-compatible if
x < y ⇒ lead(x◦z) < lead(y◦z) and lead(z◦x) < lead(z◦y) for x, y, z ∈ T (Ω).

• The order < is ◦-leading if lead(x ◦ y) = x • y for x, y ∈ T (Ω).

• For x, y ∈ T (Ω) \ {0}, x < y ⇔ lead(x) < lead(y).

Proposition 5.2. Suppose < is a well-order on T (Ω). Then the following holds.

(i) If < is •-compatible and ◦-leading, then < is ◦-compatible.
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(ii) If < is ◦-compatible, then
lead(x ◦ y) = lead(lead(x) ◦ lead(y)) for x, y ∈ T (Ω) \ {0}.

(iii) If < is •-compatible and ◦-leading, then lead(x ◦ y) = lead(x) • lead(y) for
x, y ∈ T (Ω) \ {0}.

(iv) If < is ◦-compatible, then x < y ⇒ x ◦ z < y ◦ z and z ◦ x < z ◦ y for
x, y, z ∈ T (Ω) \ {0}.

Proof. The first statement follows directly from the definitions. To prove (ii), sup-
pose first that x ∈ T (Ω). Let y = r1y1+r2y2+. . .+rnyn, where ri ∈ R and yi ∈ T (Ω)
for i = 1, . . . , n, r1 6= 0 and y1 > y2 > . . . > yn. Since < is ◦-compatible we have
x ◦ y1 > x ◦ y2 > . . . > x ◦ yn. Hence lead(x ◦ y) = lead(x ◦ y1) = lead(x ◦ lead(y))
and (ii) is proved when x ∈ T (Ω).

Next suppose x = s1x1 + s2x2 + . . . + snxn, where si ∈ R and xi ∈ T (Ω) for
i = 1, . . . , n, s1 6= 0 and x1 > x2 > . . . > xn. Then x1 ◦ y > x2 ◦ y > . . . > xn ◦ y,
since

lead(x1 ◦ y) = lead(x1 ◦ lead(y)) > lead(x2 ◦ lead(y)) = lead(x2 ◦ y),

where the equalities follow from above and the inequality follows from the assump-
tion that < is ◦-compatible. Hence lead(x ◦ y) = lead(x1 ◦ y) and again from above
we get lead(x ◦ y) = lead(x1 ◦ lead(y)) = lead(lead(x) ◦ lead(y)).

(iii) follows from (i) and (ii).
To prove (iv), suppose x, y ∈ T (Ω) and x < y. Then by (ii) and since < is

◦-compatible we have

lead(x ◦ z) = lead(lead(x) ◦ lead(z)) < lead(lead(y) ◦ lead(z)) = lead(y ◦ z).

In the same way it is proven that lead(z ◦ x) < lead(z ◦ y).

To find a •-compatible order on T (Ω) we will use a total order on Mon(X) defined
for each totally ordered set X, which extends the order on X and is functorial in
X. Such an order on Mon(X) is called “natural”. It is called “compatible” if it is
compatible with the monoid operation on Mon(X). A natural order on Mon(X)
satisfies in particular the following,

a <X′ b ⇔ a <X b for all a, b ∈ Mon(X ′)

whenever X ′ ⊂ X as totally ordered sets.

Starting with a well-order on Ω and a compatible natural well-order on Mon(X)
(such as the lexicographic order), we may use equation (1) in section 2 to define
a total order on all elements in T (Ω) of length n, for n = 1, 2, . . . . In this way we
obtain a •-compatible total order on T (Ω). The order might not be a well-order;
e.g., if the number of branches (which corresponds to the degree of a monomial)
is taken before the length (which corresponds to an extra weight that the variables
have), we have the following infinite sequence in T ({a}).

t(a, a, a) > t(a, t(a, a, a)) > t(a, t(a, t(a, a, a))) > . . .

On the other hand, if length is considered as the first criterion, then we obviously
obtain a well-order on T (Ω). To obtain a ◦-compatible order, we also want the order
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to be ◦-leading. We give below the definition of two orders on T (Ω), which have all
desired properties (proved in Proposition 5.4). The proof is easy for the first one,
but the second one will be more useful for us in the applications.

Definition 5.3. Given a well-order on Ω, two orders ≺deglex and ≺revlex on T (Ω)
are defined as follows.

(i) We have

x = t(a, x1, . . . , xn) ≺deglex t(b, y1, . . . , ym) = y if

• |x| < |y|
• |x| = |y| and n < m
• |x| = |y|, n = m and (xn, . . . , x1, a) ≺deglex (yn, . . . , y1, b) in lexicographic

sense, where x1 �deglex . . . �deglex xn and y1 �deglex . . . �deglex yn.
(ii) We have

x = t(a, x1, . . . , xn) ≺revlex t(b, y1, . . . , ym) = y if

• |x| < |y|
• |x| = |y| and t(a, x1, . . . , xn−1) ≺revlex t(b, y1, . . . , ym−1), where

xi �revlex xn for i < n and yi �revlex ym for i < m.
• |x| = |y|, t(a, x1, . . . , xn−1) = t(b, y1, . . . , ym−1) and xn ≺revlex ym, where

xi �revlex xn for i < n and yi �revlex ym for i < m.

Proposition 5.4. Given a well-order on Ω, the orders ≺deglex and ≺revlex defined
above are •-compatible, ◦-compatible and ◦-leading well-orders on T (Ω), and hence
als

Proof. The first order, ≺deglex, is ◦-leading by Proposition 3.2 and the natural
compatible well-order on Mon(X) used in the definition is “weight-degree-lexico-
graphic” (so the order should rather be called “weightdeglex”). Hence, by Proposi-
tion 5.2, the order is ◦-compatible.

The order on Mon(X) used in the definition of ≺revlex may be described in the
following way, which shows that it is a natural compatible well-order. A monomial
m is written as a product of monomials m1m2 · · ·mn, where each monomial mi

is a product of variables of the same weight (i.e., length) and the weight of the
variables in m1 is greater than the weight of the variables in m2 and so on. Now
m = m1m2 · · ·mn > m′

1m
′
2 · · ·m′

k = m′ if |m| > |m′|, or |m| = |m′| and |mi| = |m′
i|

for i = 1, . . . j − 1 and |mj | < |m′
j | for some j, or n = k and |mi| = |m′

i| for
i = 1, . . . , n and m > m′ by the reverse lexicographic principle; i.e., the first variable
which differs, counted from the right, is greater in m. This proves that the order is
•-compatible.

By Proposition 5.2 it is enough to prove that it is also ◦-leading; i.e., given a ∈ Ω
and x1 6 . . . 6 xn, y ∈ T (Ω), we must prove that

t(a, x1, . . . , x̂i, . . . , xn) • (xi ◦ y) < t(a, x1, . . . , xn, y)

for all i. We do this by induction over |t(a, x1, . . . , xn, y)|. By the induction hypoth-
esis we get that lead(xi ◦ y) = xi • y. Since < is •-compatible, we get

lead(t(a, x1, . . . , x̂i, . . . , xn) • (xi ◦ y)) = t(a, x1, . . . , x̂i, . . . , xn) • (xi • y)
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and hence the claim to be proven is

t(a, x1, . . . , x̂i, . . . , xn) • (xi • y) < t(a, x1, . . . , xn, y).

Suppose i < n. By induction we get

t(a, x1, . . . , x̂i, . . . , xn−1) • (xi • y) < t(a, x1, . . . , xn−1, y)

and the claim follows by multiplying this to the right with xn, using that < is
•-compatible (and that • is right-commutative).

Suppose i = n. We have to prove that

t(a, x1, . . . , xn−1, xn • y) < t(a, x1, . . . , xn−1, xn, y).

But this follows from the definition of the order, since |xn • y| > |xn| and |xn • y| >
|y|.

6. Free algebras

The free magma on a set Ω, M(Ω), is recursively defined as a set of parenthesized
strings in the alphabet Ω in the following way.

• a ∈ Ω ⇒ a ∈ M(Ω)

• x, y ∈ M(Ω) ⇒ (xy) ∈ M(Ω)

Any element in M(Ω) \Ω may be uniquely written as ((. . . ((ax1)x2) . . .)xn), where
a ∈ Ω and x1, . . . , xn ∈ M(Ω). This expression will be written as r(a, x1, . . . , xn),
where x1, . . . , xn are supposed to be of the same form (or belong to Ω) and we
say in this case that r(a, x1, . . . , xn) is written in normal form. To be able to make
substitutions, we also allow general expressions r(x1, . . . , xn) (which is equal to
((. . . ((x1x2)x3) . . .)xn)). The rule for normalizing a general expression is

r(r(x1, . . . , xn), y1, . . . , ym) = r(x1, . . . , xn, y1, . . . , ym).

The length of an element is defined in the same way as for T (Ω). The multipli-
cation ∗ on M(Ω) (defined by x ∗ y = (xy)) satisfies the rule r(a, x1, . . . , xn) ∗ y =
r(a, x1, . . . , xn, y) (and a ∗ y = r(a, y) if a ∈ Ω). The free R-module on M(Ω) with
multiplication defined as the linear extension of ∗ is called the free (non-associative)
algebra on Ω and is denoted M(Ω). Observe that M(Ω) has no unit.

The free right-symmetric R-algebra on Ω, denoted RS(Ω), is defined as the
quotient of M(Ω) with the twosided ideal generated by all elements of the form
(x ∗ y) ∗ z − (x ∗ z) ∗ y − x ∗ (y ∗ z) + x ∗ (z ∗ y).

The free right-commutative R-algebra on Ω, denoted RC(Ω), is defined as the
quotient of M(Ω) by the twosided ideal generated by all elements of the form
(x ∗ y) ∗ z − (x ∗ z) ∗ y. In the same way the free right-commutative magma on
Ω, denoted RC(Ω), is defined as the quotient of M(Ω) by the congruence relation
generated by (x ∗ y) ∗ z ≡ (x ∗ z) ∗ y.

Suppose Ω is well-ordered by < . The order may be extended to all of M(Ω) by
taking length first and then for two elements of the same length, (xy) < (x′y′) if
x < x′ or x = x′ and y < y′.
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Definition 6.1. An element in M(Ω) is called right-symmetric normal if it is of
the form a ∈ Ω or r(a, x1, . . . , xn), where x1 6 x2 6 . . . 6 xn and x1, . . . , xn are
right-symmetric normal.

Proposition 6.2. The R-algebras RS(Ω) and RC(Ω) are generated as R-modules
by elements represented by right-symmetric normal elements in M(Ω). Also any
element in RC(Ω) may be written in right-symmetric normal form.

Proof. We prove the statement by induction over the well-order < defined above.
Suppose the statement is true for all elements less than r(a, x1, . . . , xn). Then
the statement is true for r(a, x1, . . . , xn−1) and for xn. We may therefore assume
that x1, . . . , xn are of the right form and x1 6 x2 6 . . . 6 xn−1. Put x =
r(a, x1, . . . , xn−2), y = xn−1 and z = xn. If y > z, we may replace r(a, x1, . . . , xn) =
(x∗y)∗z by (x∗z)∗y +x∗ (y ∗z)−x∗ (z ∗y) in the case of RS(Ω) and by (x∗z)∗y
in the case of RC(Ω) or RC(Ω). The new elements are less than (x ∗ y) ∗ z and we
may use the induction hypothesis to get the result.

Theorem 6.3. There exist unique isomorphisms of free R-algebras over Ω extend-
ing the identity on Ω,

RS(Ω) ∼= (T (Ω), ◦)
RC(Ω) ∼= (T (Ω), •)

and a unique isomorphism of free magmas over Ω extending the identity on Ω,

RC(Ω) ∼= (T (Ω), •).
Proof. Since obviously T (Ω) is generated by Ω under •, we get a surjective homo-
morphism y 7→ yt from M(Ω) to T (Ω). The element yt is obtained by replacing
all the prefixes r by t in y. Since (T (Ω), •) is right-commutative, the map factors
through RC(Ω). To prove injectivity, assume we have two elements x, y ∈ RC(Ω)
such that xt = yt in T (Ω). By Proposition 6.2 we may assume that x and y are
represented by elements where all branches are in linear order. But then x and y
have to be identical, since xt = yt. This proves the last two statements.

By Proposition 3.3 we have a surjective homomorphism ϕ : M(Ω) → (T (Ω), ◦),
and by Proposition 3.1 the map factors throughRS(Ω). To prove injectivity, suppose
ϕ(x) = 0. Then there is a finite subset Ω0 of Ω such that x ∈ M(Ω0). Hence we
may assume that Ω is finite.

Let N be the number of normal right-symmetric elements in M(Ω) of length
n. By Proposition 6.2 these elements generate the elements of length n in M(Ω)
modulo the right-symmetric axiom. Obviously we also have that N is the number
of elements in T (Ω) of length n. Hence we get a surjective R-linear map RN → RN

and we may apply the well-known Lemma 6.4 below.

Lemma 6.4. Let R be a commutative ring with unit and f : RN → RN an R-linear
surjective map. Then f is an isomorphism.

Proof. Let A be the matrix of f. Since f is surjective, there is a solution to the
matrix equation AX = I. Taking determinants gives det(A) · det(X) = 1. Hence
det(A) is a unit in R and A is invertible (the standard formula for A−1 given in
linear algebra is valid).
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Remark 6.5. The lemma is true even when RN is replaced by a finitely generated
R-module M (consider M as an R[x]-module).

It is possible to tell more about the isomorphisms in the theorem above.

Proposition 6.6. Let f : M(Ω) → (T (Ω), ◦) and g : M(Ω) → (T (Ω), •) be the
unique homomorphisms extending the identity on Ω. Given a ◦-compatible, ◦-leading
well-order, ≺, on T (Ω) we have lead(f(x)) = g(x) and the compatible order on
RS(Ω) which is defined through the isomorphism RS(Ω) ∼= (T (Ω), ◦) (Theorem 6.3)
has the same definition on normal right-symmetric elements as ≺ has on T (Ω).

Proof. Let x = r(a, x1, . . . , xn) ∈ M(Ω). We have that g(x) = xt where xt is
obtained from x by replacing all the prefixes r by t. We prove that lead(f(x)) = xt

by induction on the length of x. Indeed, by induction and by Proposition 5.2 (ii), we
get that lead(f(x)) = lead(t(a, xt

1, . . . , x
t
n−1)◦xt

n). Since the order is ◦-leading, this
equals t(a, xt

1, . . . , x
t
n) = xt. The second statement is now a direct consequence.

Remark 6.7. The injectivity of the map ϕ in the proof of Theorem 6.3 may also be
deduced from Proposition 6.6.

7. Free Novikov algebras

A right-symmetric R-algebra is called Novikov if it is also left symmetric; i.e., it
satisfies the axiom x(yz) = y(xz). The free Novikov algebra on a set Ω is denoted
N (Ω) and is defined as the quotient of M(Ω) by the two-sided ideal generated by
all expressions

x(yz)− y(xz) and (xy)z − (xz)y − x(yz) + x(zy) .

We want to find a minimal generating set for N (Ω) as an R-module. A step in this
direction will be the “ordered nests”.

A subexpression of x = r(a, x1 . . . , xn) is either x itself or a or a subexpression
of some of x1, . . . , xn.

Definition 7.1. An r-expression x in M(Ω) is called a nest if each subexpression
has at most one branch which is not in Ω. This means that either x ∈ Ω or it has
the form x = r(a0, a1 . . . , an, y), where ai ∈ Ω, n > 0 and y is a nest. Let in the
first case d1(x) = 0 and root(x) be undefined and in the second case d1(x) = n and
root(x) = a0. A nest x is called ordered (given a total order on Ω) if either x ∈ Ω or,
in the second case, y ∈ Ω or y is ordered and either d1(x) < d1(y) or d1(x) = d1(y)
and root(x) 6 root(y).

In any r-expression the atoms are divided into two groups, the roots and the
leaves. A root of x is an element in Ω which occurs in x directly after a left paren-
thesis. The other atoms are called leaves. An element in Ω has by definition no
root and one leaf, so any expression has at least one leaf and the expressions with
exactly one leaf are the nests r(a1, r(a2, . . . , r(an−1, an)) . . .), while the expressions
with exactly one root are the (ordered) nests r(a0, a1, . . . , an). Given a total order
on Ω, we now define the notion of a Novikov element.
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Definition 7.2. An r-expression x ∈ M(Ω) is called a Novikov element if it is an
ordered nest and the sequence of all leaves in x, read from the left, is ordered.

Example 7.3. If a < b < c < d, then r(a, r(b, b, r(b, c, r(a, c, d, d)))) is a Novikov
element, while r(a, r(b, b, r(b, c, r(a, b, d, d)))) is not. The sequence of leaves is bccdd
in the first case and bcbdd in the second case.

Proposition 7.4. The residue classes in N (Ω) of all Novikov elements constitute
a generating set for N (Ω) as an R-module.

Let A be the submodule of M(Ω) generated by the Novikov elements and B
be the submodule generated by the ordered nests. Let I be the two-sided ideal in
M(Ω) generated by the left-commutative and right-symmetric axioms. Proposition
7.4 may be reformulated as M(Ω) = A + I. We begin the proof by proving the
weaker statement that M(Ω) = B + I.

Lemma 7.5. If x ∈M(Ω) has length N and L leaves, then x ∈ BN,6L + I, where
BN,6L is the submodule of M(Ω) generated by ordered nests of length N and with
at most L leaves.

Proof. Suppose x = r(a0, x1, . . . , xn) is of length N and has L leaves. We prove
that x ∈ BN,6L + I by induction firstly over N and secondly over n, the number
of branches in x. First we use the right-symmetric rule to re-order x1, . . . , xn. The
extra terms which are introduced in this process will have fewer branches and at
most L leaves (and length N). Hence, by induction, we may assume that either
xi ∈ Ω for all i, and then x is an ordered nest, or xn 6∈ Ω. By induction xn ∈ B + I
and we may assume that xn = r(b0, b1, . . . , bm, y) is an ordered nest, such that x
has length N and has at most L leaves. Now we use the left-commutative axiom
to get that x is equivalent modulo I to r(b0, b1, . . . , bm, r(a0, x1, . . . , xn−1, y)). By
induction r(a0, x1, . . . , xn−1, y) ∈ BN−m−1,6L−m + I and hence we may assume
that x is a nest of length N and with at most L leaves. Using the left-commutative
axiom again, we easily get that x ∈ BN,6L + I.

Proof. Proof of Proposition 7.4 We will prove that any ordered nest x of length N,
with L leaves and with d1(x) = d belongs to AN,6(L,d) + I, where AN,6(L,d) is the
submodule of M(Ω) generated by all Novikov elements x of length N, with < L
leaves or with L leaves and with d1(x) 6 d. We prove this by induction, firstly over
N, secondly over L and thirdly over P = d1(x)+d1(y), where x = r(a0, a1, . . . , an, y)
and ai ∈ Ω for i = 0, . . . , n.

First suppose x = r(a0, a1, . . . , an) where ai ∈ Ω. We may re-order the elements
a1, . . . , an using the right-symmetric rule. The extra terms that appear will have
< L leaves. Hence by lemma 7.5 they belong to BN,<L + I and hence by induction
they belong to AN,<(L,d) + I.

Next suppose x = r(a0, . . . , ad, r(b0, . . . , bm, y)) is an ordered nest of length N,
with L leaves and d+m = P. By induction r(b0, . . . , bm, y) ∈ AN ′,6(L′,m) +I, where
N ′+d+1 = N and L′+d = L. By induction, we do not have to consider terms with
< L′ leaves. Hence we may assume that r(b0, . . . , bm, y)) is a Novikov element with
L′ leaves. Also, modulo terms with fewer leaves, we may assume that a1 6 . . . 6 ad.
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Suppose ad > b1. The proof is finished if we can prove that ad and b1 may be
interchanged. Indeed, the process may be repeated a finite number of steps, until the
set of leaves a1, . . . , ad is minimal (of course there are only finitely many elements
in Ω involved). This is in fact a fourth level of induction.

As before we may move b1 to the right of bm, but to pass y an extra term with
L leaves will appear if y 6∈ Ω, namely

r(a0, . . . , ad, r(b0, b2 . . . , bm, r(y, b1))) .

By induction r(b0, b2 . . . , bm, r(y, b1)) may be replaced by a Novikov element with
d1 6 m − 1 (modulo terms with fewer leaves). Hence we get an ordered nest with
d1 6 d and d1 + d2 < P and hence by induction this term ∈ AN,6(L,d) + I. We may
now continue with the term

r(a0, . . . , ad, r(b0, b2 . . . , bm, y, b1)) ,

which modulo I is equal to r(b0, b2 . . . , bm, y, r(a0, . . . , ad, b1)). Now interchange ad
and b1 (which is possible as before) and shift back to

r(a0, . . . , ad−1, b1, r(b0, b2 . . . , bm, y, ad)) .

Finally, by the same argument as above, ad may be moved to the left of y. By
induction r(b0, b2 . . . , bm, ad, y) may be replaced by a Novikov element with d1 6 m
and as was remarked above, we are done.

The Novikov elements may be coded in the following way. Associate to any root
in a Novikov element a “weight”, which is n− 1, where n is the number of branches
in the subexpression determined by the root. A Novikov element is given by an
ordered sequence of roots with weights and an ordered sequence of leaves, such that
the total weight of the roots is one less than the number of leaves. Giving the leaves
the weight −1, we may hence consider a Novikov element as an ordered sequence
of variables a[i], where a ∈ Ω and i = −1, 0, 1, 2, . . . , such that the total weight of
the sequence is −1.

Example 7.6. The Novikov element r(a, r(b, b, r(b, c, r(a, c, d, d)))) is coded by the
sequence b[−1]c[−1]c[−1]d[−1]d[−1]a[0]b[1]b[1]a[2].

Hence, it is natural to consider the following R-algebra.

Definition 7.7. NP(Ω)= the (associative) commutative polynomial ring over R
with the set of variables equal to {a[i]; a ∈ Ω, i > −1}. Let ∂ : NP(Ω) → NP(Ω)
be the R-derivation defined by ∂(a[i]) = a[i + 1] and let ◦ be the binary operation
on NP(Ω) defined by p ◦ q = ∂(p)q.

The elements of degree −1 in NP(Ω) is a free R-module with basis in one-to-one
correspondence with the set of Novikov elements. Let NPi(Ω) denote the set of
elements in NP(Ω) of weight i − 1. Then p ◦ q ∈ NPi+j(Ω) if p ∈ NPi(Ω) and
q ∈ NPj(Ω) and hence (NP(Ω), ◦) is a graded R-algebra and (NP0(Ω), ◦) is a
subalgebra. It is a general fact, mentioned in the introduction, that these algebras
are Novikov.
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Theorem 7.8. The set of residue classes of Novikov elements is a basis for the
free Novikov algebra N (Ω) as an R-module. We have that N (Ω) is isomorphic to
(NP0(Ω), ◦), where NP0(Ω) consists of the elements of weight −1 in NP(Ω). If
Ω has k elements the generating function for the R-basis of NP(Ω) consisting of
monomials is

y
∞
∏

j=−1

1
(1− yjz)k ,

where the coefficient of ymzn is the number of elements in the basis of weight m and
length n. The generating function for a basis of N (Ω) is the formal power series in
z obtained as the constant term of the series above considered as a series in y.

Proof. Since (NP0(Ω), ◦) is Novikov, we have a homomorphism f : N (Ω) →
(NP0(Ω), ◦), which extends the map a 7→ a[−1], a ∈ Ω. Since a[−1] ∈ NP0(Ω),
a ∈ Ω, we have im(f) ⊆ NP0(Ω). We claim that equality holds. Suppose p =
a1[−1] · · · an[−1]x1 · · ·xm is a monomial in NP0(Ω), where xi has weight > 0.
If n = 1 and m = 0, then p = a[−1] and hence p ∈ im(f). We prove by in-
duction firstly on n and secondly on m, that p ∈ im(f). If x1 = a[0], then p =
a[−1] ◦ (a1[−1] · · · an[−1]x2 · · ·xm) and hence p ∈ im(f) by induction. If x1 = a[k],
where k > 0, then n > k and

p = (a1[−1] · · · ak[−1]a[k − 1]) ◦ (ak+1[−1] · · · an[−1]x2 · · ·xm)−
k

∑

i=1

a1[−1] · · · âi[−1] · · · an[−1]ai[0]a[k − 1]x2 · · ·xm,

and hence again, p ∈ im(f) by induction.
Now the injectivity follows in the same way as in the proof of Theorem 6.3. We

may assume that Ω is finite. Let N be the number of Novikov elements of length n.
By Proposition 7.4 their residue classes generate the set of elements of length n in
N (Ω). Also N is the number of monomials of length n and weight −1 in NP(Ω).
Hence, by the above, we get a surjective R-linear map RN → RN and we may apply
Lemma 6.4.

The algebra N (Ω) may also be described in terms of the tree algebra defined in
section 3.

Proposition 7.9. Let T (Ω)/ ∼ be defined by the equalities

t(a, x1, . . . , xn, t(b, y1, . . . , ym, z)) = t(b, y1, . . . , ym, t(a, x1, . . . , xn, z)) .

and let T N (Ω) denote the free R-module on T (Ω)/ ∼ . The operation ◦ on T (Ω)
induces an operation on T N (Ω) which makes T N (Ω) isomorphic to N (Ω).

Proof. We just sketch the proof, since it consists of a number of lengthy but rather
straight-forward computations. Firstly one proves that the operation ◦ on T (Ω)
induces an operation on T N (Ω), secondly that this right-symmetric algebra is also
left-commutative. Thirdly one proves that the set of classes of Novikov elements
(defined in the same way as for the r-expressions) generate T N (Ω). Then as before
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we get the isomorphism with N (Ω). Observe that the proof of the last step is easier
than the proof of Proposition 7.4, since the branches in t-expressions commute.

8. Lie algebras

The free Lie algebra on a set Ω, denoted L(Ω), is the quotient of M(Ω) by the
ideal generated by all expressions

xx and (xy)z − x(yz)− (xz)y.

The first identity implies that xy = −yx in L(Ω). In general a Lie algebra is an
R-algebra, which satisfies the two identities above. A simple computation shows
that any right-symmetric algebra is a Lie algebra under the product [a, b] = ab−ba.
We will consider the Lie subalgebra generated by Ω in RS(Ω) and we will prove
that it is free. To do this we will define the set of Hall elements in M(Ω) as follows,
given the total order on M(Ω) defined before Definition 6.1 .

Definition 8.1. An r-expression r(a, x1, . . . , xn) is called a Hall element if x1 6
. . . 6 xn, a > x1 and r(a, x1, . . . , xi) > xi+1 for i = 1, . . . , n− 1 and x1, . . . , xn are
Hall elements. Also, an element in Ω is a Hall element.

It is well-known that the set of Hall elements represents a basis for the free Lie
algebra but we will not use this. In fact, this result will be a consequence of the
theorem below.

Proposition 8.2. The residue classes of the set of Hall elements generate L(Ω) as
an R-module.

Proof. Using the axiom xx = 0 in L(Ω), it is enough to consider elements in M(Ω)
of the form (xy), where x > y. We will prove by induction over < that any element
p ∈ M(Ω) of this form may be written as a linear combination of Hall elements
6 p modulo the Lie identities. Suppose p = (uv), where u > v. By induction we
may assume that u, v are Hall elements. If u ∈ Ω then p is a Hall element. Suppose
u = (xy), where x > y. Then p is a Hall element if also y 6 v. If y > v we may
replace p by (xv)y +x(yv). Since x > y, we have |xv| > |y| and since v < y we have
xv < xy. Hence (xv)y < (xy)v and by induction (xv)y may be replaced by a linear
combination of Hall elements < (xy)v.

We have x(yv) < (xy)v and (yv)x < (xy)v and hence, by induction, x(yv) may
also be replaced by a linear combination of Hall elements < (xy)v modulo the Lie
identities and we are done.

Theorem 8.3. For any set Ω, the Lie subalgebra of RS(Ω) generated by Ω is
isomorphic to L(Ω).

Proof. We use Proposition 6.3 and consider RS(Ω) as (T (Ω), ◦). We have a Lie
homomorphism ϕ : L(Ω) → T (Ω) whose image is the Lie subalgebra of T (Ω)
generated by Ω under the product [x, y] = x ◦ y − y ◦ x. We will now use the well-
order ≺revlex (written < in this proof) on T (Ω) defined in Definition 5.3. Consider
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the map x 7→ xt from M(Ω) to T (Ω), where xt is obtained from x by replacing all
r by t. Then if x, y are Hall elements in M(Ω), we have x < y ⇔ xt < yt.

We prove the following two statements.

1. lead([x, y]) = lead(x) • lead(y), where x > y

2. lead(ϕ(x)) = xt if x is a Hall element

Since < is ◦-leading, we have for x, y ∈ T (Ω) that lead([x, y]) = max(x • y, y • x)
if x • y 6= y • x. Suppose

y < x and x = t(a, x1, . . . , xn), y = t(b, y1, . . . , ym), where

x1 6 . . . 6 xn and y1 6 . . . 6 ym.

We have y • x = t(b, y1, . . . , ym, x) and hence by definition y • x < x • y if |y| < |x|,
since |x| > max(|xn|, |y|). If y < x and |y| = |x|, then x • y = t(a, x1, . . . , xn, y) and
again by definition y • x < x • y. Hence we have proved that lead([x, y]) = x • y if
x, y ∈ T (Ω) and y < x. By Proposition 5.2, we get

lead([x, y]) = lead(x) • lead(y) if x, y ∈ T (Ω) \ {0} and y < x

and hence the first claim is proved. The second claim is proved by induction on the
length of x, where x = r(a, x1, . . . , xn). By the induction hypothesis we have

lead(ϕ(r(a, x1, . . . , xn−1))) = t(a, xt
1, . . . , x

t
n−1)

and lead(ϕ(xn)) = xt
n. Since the map x → xt is order-preserving on Hall elements,

we have xt
n < t(a, xt

1, . . . , x
t
n−1). Hence from above we get

lead(ϕ(x)) = lead([ϕ(r(a, x1, . . . , xn−1)), ϕ(xn)])

= lead(ϕ(r(a, x1, . . . , xn−1))) • lead(ϕ(xn))

= t(a, xt
1, . . . , x

t
n−1) • xt

n = t(a, xt
1, . . . , x

t
n) = xt.

Now the injectivity of ϕ easily follows, since the set of all xt, where x is a Hall
element, is linearly independent by construction of T (Ω). We may also use Lemma
6.4 and argue as in the proof of Proposition 6.3.

9. A non-archimedian norm
Let Ω be a set. Consider the compatible order ≺revlex on T (Ω). By Proposition

6.6 this transforms to a compatible order on RS(Ω), which we will write as < .
Let RS(Ω) be the corresponding basis of RS(Ω); i.e., the set of right-symmetric
r-elements x = r(a, x1, . . . , xk) ∈ M(Ω), such that a ∈ Ω, x1 6 x2 6 . . . 6 xk and
x1, . . . , xk ∈ RS(Ω). Furthermore, for x ∈ RS(Ω), let |x| denote the length of x.

Definition 9.1. Define maps m+, l+ : RS(Ω) → N ∪ {∞} by

• m+(0) = l+(0) = ∞
• m+(a) = 0, l+(a) = 1, if a ∈ Ω
• m+(x) = |xk|, l+(x) = |x|, if x = r(a, x1, . . . , xk) ∈ RS(Ω)
• m+(x) = minλx′ 6=0 m+(x′), l+(x) = minλx′ 6=0 l+(x′),

if x =
∑

x′∈RS(Ω) λx′x′ ∈ RS(Ω)
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In terms of trees m+(t) is the number of vertices in the maximal branch of t, if
t ∈ T (Ω).

Proposition 9.2. For any x, y ∈ RS(Ω),

m+(x + y) > min{m+(x),m+(y)}
l+(x + y) > min{l+(x), l+(y)}
m+(λx) > m+(x)

l+(λx) > l+(x)
l+(x) > m+(x)

Proof. Evident.

Let ηi ∈ RS(Ω), i = 1, 2, . . . . Any element of RS(Ω) can be viewed as a right-
symmetric polynomial on variables a1, a2, . . . . For f(a1, a2, . . .) ∈ RS(Ω) denote by
ηf ∈ RS(Ω) the polynomial obtained from f by the substitution ai 7→ ηi.

Proposition 9.3. Any endomorphism η of RS(Ω) (i.e., a homomorhism of RS(Ω)
to itself as an algebra) is uniquely defined by a substitution a 7→ η(a) ∈ RS(Ω),
a ∈ Ω.

Proof. Since RS(Ω) is free right-symmetric, any map Ω → RS(Ω) can be prolon-
gated in a unique way to a homomorphism of right-symmetric algebras RS(Ω) →
RS(Ω). Inversely, any endomorphsim η : RS(Ω) → RS(Ω) is induced by its restric-
tion Ω →RS(Ω).

Definition 9.4. An ideal in a free algebra (such as M(Ω) or RS(Ω)) is called a
T-ideal if it is invariant under all endomorphisms of the algebra.

Example 9.5. The ideal in M(Ω) which defines RS(Ω)) is a T -ideal. More gener-
ally, if f1, . . . fk ∈M(Ω), then the free algebra on Ω with axioms f1 = 0, . . . , fk = 0
is equal to M(Ω) modulo the T -ideal generated by f1, . . . fk. If A is any right-
symmetric algebra, then {f ∈ RS(Ω); f = 0 is an identity on A} is a T -ideal in
RS(Ω).

It follows from Proposition 9.2 that {x ∈ RS(Ω); m+(x) > q} and {x ∈
RS(Ω); l+(x) > q} are ideals in RS(Ω). We will now prove that they are also
T -ideals.

Lemma 9.6. For any x, y, x1, . . . xk ∈ RS(Ω) and a ∈ Ω, we have

(i) m+(r(a, x1, . . . , xk)) = max
16i6k

|xi|

(ii) m+(x ∗ y) = max(m+(x), |y|)

For any x, y ∈ RS(Ω) and for any endomorphism η of RS(Ω), we have

(iii) m+(x ∗ y) > max(m+(x), l+(y))

(iv) l+(η(x)) > l+(x)
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Proof. By Proposition 5.4 and 6.6 we have

r(a, x1, . . . , xk) = r(a, xi1 , . . . , xik) +
∑

yi

where xi1 6 . . . 6 xik , yi ≺revlex r(a, xi1 , . . . , xik) and |yi| = |r(a, x1, . . . , xk)|. But,
by definition of ≺revlex, we have that m+(y) > m+(x) if |x| = |y| and y ≺revlex x.
Hence,

m+(r(a, x1, . . . , xk)) = m+(r(a, xi1 , . . . , xik)) = |xik | = max
16i6k

|xi| ,

which proves (i). Now (ii) follows directly, since

r(a, x1, . . . , xk) ∗ y = r(a, x1, . . . , xk, y) .

To prove (iii), suppose x =
∑

λixi and y =
∑

λ′jyj , where λi, λ′j 6= 0 for all i, j.
Then

m+(x ∗ y) = min
i,j

(m+(xi ∗ yj)) > min
i,j

(max(m+(xi), l+(yj)))

> max(min
i

(m+(xi)), min
j

(l+(yj))) = max(m+(x), l+(y)) .

By Proposition 9.2, it is enough to prove (iv) when x ∈ RS(Ω). Consider x as a
polynomial, x = f(a0, a1, . . .), where ai ∈ Ω. Then η(x) is a linear combination of
terms y = f(x0, x1, . . .), where xi ∈ RS(Ω), and hence |y| > |x| for all nonzero
terms y. Hence

l+(η(x)) > |x| = l+(x) .

Theorem 9.7. For any x, y ∈ RS(Ω) and for any endomorphism η of RS(Ω), we
have

(i) m+(x ∗ y) > max(m+(x),m+(y))

(ii) m+(η(x)) > m+(x) .

Proof. The first claim follows from Lemma 9.6 (iii) and Proposition 9.2. It is enough
to prove the second claim when x ∈ RS(Ω). We prove the inequality by induction
over the length of x. If x ∈ Ω, we have m+(η(x)) > 0 = m+(x). Suppose x, y ∈
RS(Ω) and that the claim is true for x. We have

m+(η(x ∗ y)) = m+(η(x) ∗ η(y)) > max(m+(η(x)), l+(η(y)))
> max(m+(x), l+(y)) = max(m+(x), |y|) = m+(x ∗ y) ,

where the first inequality follows from Lemma 9.6 (iii), the second inequality follows
by induction and Lemma 9.6 (iv) and the last equality follows from Lemma 9.6
(ii).

Corollary 9.8. For any q ∈ N, the set RSq(Ω) = {x ∈ RS(Ω); m+(x) > q} and
the set {x ∈ RS(Ω); l+(x) > q} are T -ideals in RS(Ω).

Proof. This follows from Proosition 9.2 and Theorem 9.7.
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So, the system of T -ideals {RSq(Ω)}, q > 0, endows RS(Ω) with a filtration,

RS(Ω) = RS0(Ω) ⊃ RS1(Ω) ⊃ RS2(Ω) ⊃ · · ·

RSp(Ω) ∗ RSq(Ω) ⊆ RSmax(p,q)(Ω) ,

which defines a topology onRS(Ω), such that ∗ is continuous. As usual this topology
is metrizable with a non-archimedean metric, which may be defined in the following
way.

Definition 9.9. Let ‖ ‖ : RS(Ω) → Q be the map defined by

• ‖0‖ = 0
• ‖x‖ = 1/(m+(x) + 1), if x 6= 0

The map ‖ ‖ : RS(Ω) → Q has the following properties.

Theorem 9.10. For any x, y ∈ RS(Ω), λ ∈ k and any endomorphism η of RS(Ω),
we have

0 6 ‖x‖ 6 1 and ‖x‖ = 0 ⇔ x = 0

‖λx‖ = ‖x‖, if λ 6= 0

‖x + y‖ 6 max(‖x‖, ‖y‖)
‖x ∗ y‖ 6 min(‖x‖, ‖y‖)
‖η(x)‖ 6 ‖x‖.

Proof. It follows from Theorem 9.7 and Proposition 9.2.

Let Bq(Ω) = {x ∈ RS(Ω) : ‖x‖ 6 q} be the ball of radius q in RS(Ω). We have

Bp(Ω) ∗Bq(Ω) ⊆ Bmin(p,q)

and from Theorem 9.10 we obtain the following statement.

Corollary 9.11. For any q 6 1, the ball Bq is a T -ideal of RS(Ω) and hence, for
any T -ideal J generated by elements s1, . . . , sk ∈ Bq we have J ⊆ Bq.

10. On the T -ideal generated by right-bracketed polynomials
Let f and g be right-symmetric polynomials in RS(Ω). We say that the identity

g = 0 follows from the identity f = 0, and write

f = 0 ⇒ g = 0,

if any right-symmetric algebra A that satisfies the identity f = 0 also satisfies the
identity g = 0. The condition f = 0 ⇒ g = 0 is equivalent to the condition that the
T -ideal generated by f contains g. In other words, the element g of the free algebra
RS(Ω) can be obtained from f(a1, . . . , ak) using the following operations:

• substitution of ai by any element in the free algebra RS(Ω)
• multiplying f with any element of RS(Ω) from right or left side (or both)
• taking linear combinations of obtained elements.
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Details about general facts on polynomial identities, see for example, [14].
Let sl

q+1 be the left standard polynomial of degree q + 1 in RS(Ω). It is a skew-
symmetric polynomial in the last q arguments and defined by

sl
q+1(a0, a1, . . . , aq) =

∑

σ∈Symq

sign(σ)r(aσ(1), r(aσ(2), . . . , r(aσ(q), a0) · · · ).

Let sr
q be the right standard polynomial of degree q inRS(Ω). It is a skew-symmetric

polynomial and defined by

sr
q(a1, . . . , aq) =

∑

σ∈Symq

sign(σ)r(aσ(1), aσ(2), . . . , aσ(q)).

Lemma 10.1. For any q > 0, we have the following identities,

sr
q(a1, . . . , aq) =

∑

i

(−1)i+qsr
q(a1, . . . , âi, . . . , aq) ∗ ai

sr
q+2(a1, . . . , aq+2) =

∑

i<j

(−1)i+j+1sr
q(a1, . . . , âi, . . . , âj , . . . , aq+2) ∗ sr

2(ai, aj)

Proof. The first equality is obvious and the second follows easily from the right-
symmetric identity.

Let Lq ∈ RS(Ω) be defined by the following pictures of the corresponding ele-
ments in T (Ω).

Lq = s@
@

@

�
�

�
r rr rrraq−2

a2

aq−1

a1

ak+1

ak · · ·

· · ·

aq

if q = 2k + 1 is odd, where k > 0, and

−Lq = s@
@

@

�
�

�r
r r rrr r r

aq−1

aq−3

a2

aq−2

a1

ak+1

ak · · ·

· · ·

aq

if q = 2(k + 1) is even, where k > 0. E.g., L6 = −r(a6, a5, r(a3, a2), r(a4, a1)). For
n ∈ Z, let bn/2c denote the greatest integer no more than n/2. Consider, as in
section 9, the compatible order ≺revlex on RS(Ω), which we will write as < .

Lemma 10.2. If a1, . . . , aq ∈ Ω and a1 6 . . . 6 aq, then the leading term of
sr

q(a1, . . . , aq) is equal to (−1)kk!Lq, where k = b(q − 1)/2c.
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Proof. We use induction on k. The statement is trivial for k = 0 (i.e., for q = 1 and
q = 2).

Suppose q > 3 and that our statement is true for k − 1. Then, by lemma 10.1,

X = sr
q(a1, . . . , aq) =

∑

i<j

Xi,j ,

where

Xi,j = (−1)i+j+1sr
q(a1, . . . , âi, . . . , âj , . . . , aq) ∗ (ai ∗ aj − aj ∗ ai).

To obtain the leading term of X, we should find the maximum of the leading
term of Xi,j and add these maxima for i < j. If the result is non-zero, this gives the
leading term of X. Since the order is compatible and lead(x◦y) = x•y, the leading
term of Xi,j is equal to the •-product of the leading term of

(−1)i+j+1sr
q(a1, . . . , âi, . . . , âj , . . . , aq)

and −r(aj , ai). Therefore, by the induction hypothesis, the leading term of Xi,j as
an unlabeled tree (up to a scalar multiple) has the following form

s@
@

@

�
�

�
r rr rrr if q = 2k + 1, and

s@
@

@

�
�

�r
r r rrr r r

if q = 2(k + 1).

Note that Lq is the maximal element among all normal form elements, such that
the underlying unlabeled tree has the form above. Thus, the leading term of Xi,j

is Lq up to a scalar multiple, if and only if i + j = q, in case of q = 2k + 1 and
i + j = q− 1, in case of q = 2(k + 1). Also, the scalar multiple is (−1)q(−1)k−1(k−
1)! = (−1)k(k−1)!, in case of q = 2k+1 and (−1)q−1(−1)k−1(k−1)! = (−1)k(k−1)!,
in case of q = 2(k + 1). There are exactly k such pairs (i, j), and hence we get that
the sum of these terms is (−1)kk!Lq (in both cases). Since this is non-zero, it must
be the leading term of X, which completes the induction step.

Theorem 10.3. i) The T -ideal of the free right-symmetric algebra RS(Ω) generated
by sl

3 contains sr
q for all q > 3.

ii) The T -ideal of the free right-symmetric algebra RS(Ω) generated by all the
polynomials sl

k for k > 3 does not contain sr
q for any q.

Corollary 10.4. The polynomial sl
2n+1, where n > 1, generates a T -ideal which

does not contain sr
q for any q. Hence sl

2n+1 = 0 6⇒ sr
q = 0 for any q.
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Corollary 10.5. The Witt algebra W rsym
n has at least two independent polynomial

identities when n > 1.

Proof. Proof of Theorem 10.3.

i) Let J be T -ideal generated by sl
3. Then by the right-symmetric identity the

computation below proves that sr
3 ∈ J.

sr
3(a1, a2, a3) = (a1 ∗ a2) ∗ a3 − (a1 ∗ a3) ∗ a2 + (a2 ∗ a3) ∗ a1

− (a2 ∗ a1) ∗ a3 + (a3 ∗ a1) ∗ a2 − (a3 ∗ a2) ∗ a1

= a1 ∗ (a2 ∗ a3)− a1 ∗ (a3 ∗ a2) + a2 ∗ (a3 ∗ a1)

−a2 ∗ (a1 ∗ a3) + a3 ∗ (a1 ∗ a2)− a3 ∗ (a2 ∗ a1)

= a1 ∗ (a2 ∗ a3)− a2 ∗ (a1 ∗ a3)− (a1 ∗ (a3 ∗ a2)

−a3 ∗ (a1 ∗ a2)) + (a2 ∗ (a3 ∗ a1)− a3 ∗ (a2 ∗ a1)) ∈ J.

By lemma 10.1, we have sr
3 ∈ J ⇒ sr

q ∈ J, for any q > 3.

ii) As an element of RS(Ω), sl
k(a1, . . . , ak) is a sum of r-elements of the form

r(b1, r(b2, . . . , r(bk−1, bk) · · · )), where bi ∈ Ω. Therefore,

‖sl
k(a1, . . . , ak)‖ = 1/k 6 1/4,

if k > 3. By corollary 9.11, the T -ideal generated by all sl
k for k > 3 lies in

the ball of radius 1/4 :

J ⊆ B1/4.

According to lemma 10.2, the leading term of sr
q(a1, . . . , aq) has a maximal

branch with at most 2 vertices. Therefore,

||sr
q(a1, . . . , aq)|| > 1/3.

Hence,

sr
q(a1, . . . , aq) 6∈ B1/4

and we get,

sr
q(a1, . . . , aq) 6∈ J

for any q.
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