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(communicated by Gunnar Carlsson)

Abstract
We compute the Taylor tower for Hochschild homology as

a functor from augmented commutative simplicial Q-algebras,
to chain complexes over Q. We use this computation to ob-
tain the layers for the Taylor tower of rational algebraic K-
theory. We also show that the Hodge decomposition for ratio-
nal Hochschild homology is the decomposition of the Taylor
tower of the augmentation ideal functor into its homogeneous
layers when evaluated at a suspension.

1. Introduction

The theory of calculus for homotopy functors between pointed spaces, which was
developed by T. Goodwillie in [G1], [G2], [G3], has proved to be a powerful tool in
algebraic topology (e.g. [AM] [CC], [DM] and [M]). The general idea of calculus is
to obtain an insight about hard theories (e.g. algebraic K-theory) by using relatively
easy theories (“degree n” functors). For instance, the linear approximation of the
algebraic K-theory of a ring R is the topological Hochschild homology, TH(R),
of R (cf. [DM]). Thus one can study the algebraic K-theory of R via the more
computable theory of TH(R). Calculus can also be used to determine when two
theories are equivalent by comparing their derivatives. For example, one proof that
relative algebraic K-theory is rationally equal to relative topological cyclic homology
along nilpotent extensions proceeds in this manner [M].

Another use of calculus is to derive interesting homology theories from natural
functors. An example of such homology theory is the André-Quillen homology, which
was described by Quillen as the “correct” homology for commutative rings [Q].
When the base ring k is a commutative ring of characteristic zero, André-Quillen
homology over k can be viewed as the derivative of the augmentation ideal functor
I, from simplicial augmented commutative k-algebras, k\CommAlg/k, to simplicial
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chain complexes over k, after adding a basepoint. This was observed by Schwede [S]
in the world of spectra.

A modification of Goodwillie’s theory to an algebraic setting was constructed by
Johnson and McCarthy [JM2] for functors from a pointed category to an abelian
category. We use this construction to compute the n-th Taylor polynomial of I,
PnI, and the homogeneous degree n layers of the Taylor tower, DnI. The Taylor
tower for I, described in Theorems (4.5)–(4.7), is

• The layers: DnI is the derived functor of In/In+1. In particular, the derivative,
D1I, is the derived functor of I/I2, which recovers the main result in [S], and
DnI computes the higher André-Quillen homology as explained in section 7.

• The degree n Taylor polynomial: PnI is the derived functor of I/In+1.

The aim of this paper is to compute the Taylor tower of the rational alge-
braic K-theory as a functor from simplicial augmented commutative k-algebras,
k\CommAlg/k, where k is a commutative ring containing Q, to simplicial chain
complexes over Q.

Besides simple curiosity, there were two basic reasons for doing this calculation.
The first was to make an approximation to the general Taylor tower of algebraic
K-theory as a functor of commutative rings. The resulting spectral sequence for
approximating the relative algebraic K-theory is expected to be hard (since it will
involve topolological André-Quillen homology) but it may be a good tool for study-
ing the behavior of algebraic K-theory as it deforms through commutative (instead
of arbitrary) rings. Another reason to consider the Taylor tower is computational.
The rational Taylor tower tends to converge only for relative nilpotent ring exten-
sions and for these values one can simply use cyclic homology (see [G]). However, if
one wants to study “boundary values” where the Taylor tower may still give useful
information without necessarily converging (or converging for special reasons) one
should use the Taylor tower itself and not an equivalent theory in the radius of
convergence which may or may not provide the same boundary behavior.

The idea behind our computation is as follows. There is a natural map from
(rational) algebraic K-theory to negative cyclic homology, KQ → HN , called the
Chern character. By a theorem of Goodwillie (cf. Theorem 2.3), this map is an
isomorphism in the relative nilpotent case. We observe that this equivalence implies
that the Chern character induces an equivalence on the derivatives at every point,
D1K ' D1HN . We then can deduce that negative homology and rational K-theory
have the same Taylor towers.

Since HN is constructed from Hochschild homology, HH, by taking homotopy
fixed points under the circle action on HH, we would like to reduce the problem to a
computation of the Taylor tower for Hochschild homology. However, fixed points do
not behave well with respect to the construction of the Taylor polynomials. Instead,
we go through cyclic homology, HC, which is the homotopy orbits of HH under
the circle action.

Finally we reduce the computation of the Taylor tower for Hochschild homol-
ogy to understanding the Taylor tower of the augmentation ideal functor I from
k\CommAlg/k to simplicial k-modules.

In the last section of the paper we show that using this computation and work
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of M. Ronco [R], one can interpret the Hodge decomposition for the rational
Hochschild homology of a commutative ring A over k, as giving the layers of the aug-
mentation ideal functor I from augmented commutative A-algebras to A-modules
evaluated on a suspension of A. Recently, building on ideas developed here, the
second author and K. Baxter have shown that this fact is true more generally. That
is, the Taylor tower for any functor to rational chain complexes decomposes into
a product of its homogeneous layers (Dn’s) when evaluated at a suspension. The
Higher Hochschild homology, as defined by T. Pirashvili [P], for a commutative
ring is, from our point of view, the augmentation ideal functor applied to the n-
fold suspension of A. Hence one immediately not only recovers Pirashvili’s Hodge
decomposition for Higher Hochschild homology but also obtains a description of its
pieces in terms of Quillen’s derived functors of Λk’s when the sphere is odd and
Quillen’s derived functors of Sk’s when the sphere is even.

We now briefly describe the organization of the paper. In section 2 we introduce
the functors in play, namely, the forgetful functor, Hochschild homology, negative
and cyclic homology and the algebraic K-theory. We also discuss a few connectivity
results. In section 3 we review and give references for definitions and results from
Goodwillie calculus that will be used later in the paper. Section 4 is devoted to the
Taylor tower of exponential functors and in particular, we compute the Taylor tower
of the forgetful functor U : k\CommAlg/k → Simp(k-mod). In section 5 we show
how to view Hochschild homology as an exponential functor from k\CommAlg/k to
HH(k)-modules and use that to compute its Taylor polynomials. We also compute
the derivative and the layers of Hochschild homology. In section 6 we compute the
layers of the Taylor tower for rational algebraic K-theory as a functor of augmented
commutative simplicial rings. The main main result of the paper is described in:
Theorem 6.3. DnKQ is the derived functor of

HH(k; 〈Q[Tn−1]⊗ (I/I2)⊗n〉Σn)[1] ' HH(k)⊗k 〈Dn(I)(S1 ⊗ −)〉hS1
.

Finally, in the last section, we give a calculus interpretation of the Hodge decom-
position for the rational Hochschild homology.

Acknowledgments
We thank a referee for useful comments.

2. Preliminaries

Let k be a simplicial commutative ring containing Q. We define k\CommAlg/k
to be the category of simplicial augmented commutative k-algebras. An object A in
k\CommAlg/k is of the form k⊕ I(A), where I(A) is the augmentation ideal of A.
Let Simp(k-mod) be the category of simplicial k-modules and

I : k\CommAlg/k −→ Simp(k-mod) (1)

the augmentation ideal functor. We write In for the functor which takes A ∈
k\CommAlg/k to I(A)n ∈ Simp(k-mod)

There is a sequence of adjoint functors (left arrows are the left adjoint functors):
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(∗) k\CommAlg/k
U

//

U

''

Simp(k-mod)
U

//

S
o o Simp(Sets)

k[ ]
oo

F

gg

where Simp(Sets) is the category of simplicial sets, U is the relevant forgetful functor
and S is the symmetric powers functor,

S(M) =
⊕

n>0

Sn(M),

with S0(M) = k and Sn(M) is the k-module (M⊗kn)Σn , the orbits of the n-fold
tensor product under the symmetric group action.

The functor k[ ] is the free functor, taking a simplicial set X to the free k-module
on X, k[X] =

⊕

x∈X
kx, and F (X) = S ◦ k[X] is the polynomial ring on X.

Remark 2.1. For A ∈ k\CommAlg/k, there is a functorial free resolution A '←− L
in k\CommAlg/k obtained from the adjoint pair (F, U) of diagram (∗), where L is
free in each degree. That is, Ln ∼= S(M), where M is a free k-module, M ∼=

⊕

x∈X
kx,

for some X ∈ Sets.

Notation 2.2. For a functor G from k\CommAlg/k to an abelian category, we

write ˜G for the reduced functor, ˜G(A) := G(A)
/

G(k). Note that ˜U is the augmen-
tation ideal functor I.
In this paper, unless otherwise mentioned or it is clear from the context, all tensor
products are over Q.

We are interested in the following functors from k\CommAlg/k to chain com-
plexes of Q-modules, Ch(Q). We refer the reader to [L] and [G] for a detailed
description of these functors.

• The Hochschild homology, HH : k\CommAlg/k → Ch(Q) which takes A in
k\CommAlg/k to the Hochschild complex

A ← A⊗Q2 ← A⊗Q3 ← . . .

and the reduced Hochschild homology

˜HH(A) ∼= I(A) ← I(A⊗2) ← . . . .

For M a simplicial A-bimodule, set

HH(A, M) = M ← M ⊗A ← M ⊗A⊗Q2 ← M ⊗A⊗Q3 ← . . .

• The negative cyclic homology, HN , and the cyclic homology, HC, as functors
from k\CommAlg/k to Ch(Q). These functors are built out of HH using
the circle action on the bar complex. With S1 acting on the bar complex by
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the cyclic action in each dimension, HN is equivalent to the homotopy fixed
points, HHhS1

, and HC is equivalent to the homotopy orbits HHhS1 .

• The rational algebraic K-theory, KQ, as a functor from k\CommAlg/k to
Ch(Q), as defined in [G].

We will use the following theorem of Goodwillie relating KQ to negative and
cyclic homology. Let f : A → B be a map of simplicial rings and let

K∗(f)Q
αQ(f)−−−−−−→HN∗(f ⊗Q)

βQ(f)←−−−−−−HC∗−1(f ⊗Q)

be the natural transformations between the relative theories as described in [G].

Theorem 2.3. ([G], I.3.3-4) With notation as above, if π0A
π0f−−−−→π0B is a sur-

jection with nilpotent kernel then αQ(f) and βQ(f) are isomorphisms.

2.1. Hochschild homology of square zero extensions
Let A ∈ k\CommAlg/k and M a simplicial A-bimodule. Let A n M be the

new simplicial ring whose underlying simplicial group is A⊕M with multiplication
(a,m)(a′,m′) = (aa′, am′ + ma′). We recall ([G], [M]) that HH(A nM) can be
broken up into cyclic pieces

HH(AnM) ∼= T 0(A,M)⊕ T 1(A, M)⊕ T 2(A,M)⊕ . . . ,

where

T 0(A,M) = A ← A⊗A ← A⊗3 ← . . . = HH(A)

T 1(A,M) = M ←





M ⊗A
⊕

A⊗M



 ←













M ⊗A⊗A
⊕

A⊗M ⊗A
⊕

A⊗A⊗M













← . . . .

That is, in dimension n,

T 1
[n](A,M) =

⊕

τ∈Cn+1

τ ∗ (M ⊗A⊗n)

where Cn+1 ∼= Z/(n+1)Z and τ ∈ Cn+1 acts on (M ⊗A⊗n) by cyclic permutation.
More generally, T `

[n](A, M) is isomorphic to a direct sum of copies of M⊗` ⊗ A⊗n

with action of the cyclic group Cn+`.
Note that HH(A,M) sits in T 1 as a direct summand:

˜HH(A,M) ∼=
⊕

n>1

e ∗ (M ⊗A⊗n),

where e is the trivial element of Cn+1.
We will use the following geometric description of T 1. Let Q[S1] be the chain

complex obtained from the simplicial representation ∆1/∂ of the circle. That is,

Q[S1] = Q ←← Q⊕Q ←←← Q⊕3 . . .
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with homology:

Hi(Q[S1]) =

{

Q i = 0, 1
0 otherwise.

As simplicial Q-modules, Q[S1] is equivalent to

Q ←← Q[C2]
←←← Q[C3] . . . .

Using this notation, we can write

T 1
[n](A,M) ∼= Q[Cn+1]⊗

(

M ⊗A⊗n) ∼= Q[S1][n] ⊗HH(A,M)[n]

and hence

T 1(A,M) ' Q[S1]⊗HH(A,M) .

Definition 2.4. Let θ : Q[S1] ⊗ HH(k,M) → ˜HH(k nM) be the map induced
by sending T 1(k,M) ∼= Q[S1]⊗HH(k, M) to the T 1(k, M) piece of ˜HH(knM) ∼=
⊕

`>1
T `(k, M).

2.2. Connectivity results
Let R be a (simplicial) commutative ring and M a simplicial R-module. Recall

(e.g. [We]) that there is a chain complex, C(M), associated to M with C(M)n = Mn

and differential ∂n =
∑n

i=0(−1)idi, where di is the appropriate face map of M .
The homotopy groups of M can be defined by

π∗(M) = H∗(C(M)).

Definition 2.5. A simplicial R-module M is n-connected if πi(M) = 0 for i =
0, . . . n.
A morphism f : M → N of simplicial R-modules is n-connected if it induces an
isomorphism in the first (n− 1)-homotopy groups and a surjection in πn.
Note that f is ∞-connected means that f is a quasi-isomorphism.

We use the Dold-Kan correspondence to go back and forth between the categories
Simp(k-mod) and Ch>0(R) and often we will not make a distinction between the
two.

Terminology 2.6. Let F : Simp(k-mod) → Simp(k-mod) be a functor and M an
n-connected simplicial R-module. We are interested in the connectivity of F (M) as
a function of n. We will use the phrase “F (M) is about φ(n)-connected” to mean
that the connectivity of F (M) is φ(n) + c, where c is some constant.

A standard spectral sequence argument yields the following.

Lemma 2.7. Let M be a simplicial free R-module which is m-connected. Let N be
an n-connected simplicial R-module. Then M ⊗R N is (m + n + 1)-connected.

Corollary 2.8. If M is an m-connected simplicial free A-bimodule, then T `(A,M)
is at least `m connected.
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Corollary 2.9. If M is an m-connected simplicial free A-bimodule then the map

θ : Q[S1]⊗HH(k, M) → ˜HH(k nM)

is about 2m connected.

Theorem 2.10. ([W], Proposition 1.1) If f : A → B is an n-connected map of sim-
plicial rings, n>1, then the map K(A) → K(B) is (n + 1)-connected. In particular,
K preserves equivalences.

Theorem 2.11. ([G], I.3) If f : A → B is an n-connected map of simplicial rings,
both flat over Z, then HH∗(f), HN∗(f) and HC∗(f) vanish for ∗6n.

Lemma 2.12. Let M be an m-connected simplicial free R-module, where R contains
Q, then Sn

R(M) is (nm + n− 1)-connected.

Proof. Since R contains Q, the quotient map

⊗n
RM → ⊗n

RM
/

Σn ∼= Sn
R(M)

splits functorially via the norm map, 1
n!

∑

σ∈Σn

σ. Hence, Sn(M) is a direct summand

of ⊗n
RM (as simplicial R-modules). Therefore, since ⊗n

RM is (nm+n−1)-connected,
by Lemma 2.7, so is Sn

R(M).

Definition 2.13. For A ∈ k\CommAlg/k, we say that A is i–connected if the
map A → k is i–connected as a map of simplicial abelian groups, that is, I(A) is
i–connected.

Lemma 2.14. Let L be a simplicial algebra in k\CommAlg/k which is free in each
dimension.
If L is i-connected then the map I(L) → I/I2(L) is about 2i-connected.

Proof. We first note that L is a direct summand of a free simplicial algebra of
the form S(M) ∼=

⊕

n>0
Sn(M), for some free k-module M as in 2.1. Hence, we can

assume that L itself is free of this form.
We have

I(L) = I ◦ S(M) ∼= M ⊕
⊕

n>2

Sn(M) and

I2(L) = I2 ◦ S(M) ∼=
⊕

n>2

Sn(M).

Note that since L is i-connected, the connectivity of M must be at least i. Hence,
the map I(L) → I/I2(L) ∼= M has fiber isomorphic to

⊕

n>2
Sn(M) which is at least

(2i + 1)-connected by Lemma 2.12.

Corollary 2.15. Let L be a simplicial free algebra in k\CommAlg/k. Let
F : k\CommAlg/k → Ch(Q) be the functor HH, HN , HC, or KQ. Then F (L) →
F

(

L/I2(L)
)

is about 2i-connected where i is the connectivity of I(L).
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Proof. L ∼= k⊕I(L) → L/I2(L) ∼= k⊕I/I2(L) is about 2i-connected by Lemma 2.14.
Now apply Theorems 2.10 and 2.11.

We note that from the proof of Lemma 2.14 one also has the following

Lemma 2.16. If M is a simplicial free module with connectivity m then I◦S(M) →
I/I2 ◦ S(M) is about 2m-connected.

3. Goodwillie calculus

Goodwillie calculus is calculus on functors. In this section we give a brief summary
of definitions and results from Goodwillie calculus in an algebraic setting which are
needed for this paper. We do not attempt to give an introduction to the subject.
We refer the reader to [G1], [G2] and [G3] for background and motivation, and
to [JM1], [JM2] and [JM3] for further details.

3.1. Overview
Let C be a pointed category, that is, C has an object ∗ which is both initial and

final, and assume C has finite coproducts,
∐

, and enough projective objects. For
us, C is k\CommAlg/k with coproduct ⊗k and basepoint k. Let F : C → Ab be a
functor from C to an abelian category Ab.

Following Tom Goodwillie’s work on calculus for homotopy functors from spaces
to spaces, B. Johnson and R. McCarthy ([JM1] [JM2]) defined an algebraic version
of calculus on the category of functors from C to Ab. A Taylor tower for F (at ∗) is
defined as an inverse limit of functors:

. . .
qn+1−−−→ PnF

qn−→ Pn−1F
qn−1−−−→ . . .

q2−→ P1F
q1−→ P0F = F (∗)

where, for n > 0, PnF is a functor from C to (bounded below) chain complexes
over Ab, Ch>0(Ab), and with natural transformations F

pn−→ PnF such that the
following diagram commutes

...
qn+1

� �

F

==

z

z

z

z

z

z

z

z

z

z pn
/ /

pn−1

""

F

F

F

F

F

F

F

F

F

��

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

PnF

qn

��

Pn−1F

��

...

The functors PnF are functors of degree n in the sense explained below and the pair
(PnF, pn) is universal with respect to degree n approximation of F .
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PnF is called the degree n Taylor polynomial for F . The layers of the Taylor
series are the fibers DnF = fiber(PnF → Pn−1F ). The first layer, D1F , is called
the derivative of F .

Remark 3.1. If the pointed category C in question is the sub-category of a model
category then one often wants to work up to weak equivalence of the ambient model
category. However, coproducts do not necessarily preserve weak equivalences and
hence, even if ones functor preserves weak equivalences, its associated n-th cross
effect functors may not. If one is working with cofibrant objects, though, the weak
equivalences are closed under coproducts and hence one would prefer to consider
the Taylor tower only on cofibrant objects so that it remains homotopy invariant.
When one can functorially replace objects by weakly equivalent cofibrant ones it
is customary to do so first before applying the Taylor tower construction outlined
above which we will also do in this paper.

3.2. Cross effects and degree n functors
The definition of degree n functor uses the notion of cross effects. The motivation

comes from classical cross effects which were defined to study the degree of an
analytic real function.

For a function f : R → R, the n-th cross effect is a function of n variables
crnf : Rn → R defined inductively as follows.

cr0f = f(0)

cr1f(x) = f(x)− f(0)

crnf(x1, . . . , xn) = crn−1f(x1 + x2, x3, . . . , xn)

− crn−1f(x1, x3, . . . , xn)− crn−1f(x2, x3, . . . , xn).

An analytic function f is of degree n if crn+1f = 0. In particular, f is linear if
cr2f = 0.

The notion of cross effect was extended to functors of additive categories by
Eilenberg and Mac Lane [EM].

Definition 3.2. For a functor F : C → Ab, the n-th cross effect is a functor
crnF : C×n → Ab defined via

cr0F = F (∗)

cr1F (X)⊕ F (∗) ∼= F (X), that is, cr1F = ˜F

cr2F (X, Y ) ∼=
˜F (X

∐

Y )
˜F (X)⊕ ˜F (Y )

crnF (X1, . . . , Xn) ∼=
crn−1F (X1

∐

X2, . . . Xn)
crn−1F (X1, X3, . . . , Xn)⊕ crn−1F (X2, X3, . . . , Xn)

.

Motivated by the relationship between degree and cross effects for real functions,
the following definition was made.

Definition 3.3. A functor F : C → Ab is (strictly) degree n if crn+1F ∼= 0.
If a functor is degree n then it is also degree k for k > n.
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Example 3.4. Let R-mod be the category of modules over a commutative ring
R. The n-fold tensor product,

⊗n, the n-th exterior product,
∧n and the n-th

symmetric power, Sn, are (strictly) degree n functors from R-mod to R-mod.

Definition 3.5. A functor F : C → Ch(Ab) is degree n if crn+1F is quasi-
isomorphic to zero. We say that F is linear if cr2F ' 0 and additive if F is linear
and reduced (i.e. F (∗) = 0). In particular, if F preserves coproducts up to quasi-
isomorphism then F is additive.

3.3. Cotriples
The construction of PnF relies on the use of a cotriple arising from the adjoint

pair of (3). We review some basic facts about cotriples here and refer the reader
to [We] for further details.

Definition 3.6. A cotriple (or comonad) (⊥, ε, δ) in a category A is a functor
⊥: A → A together with natural transformations ε :⊥→ idA and δ :⊥→⊥⊥ such
that the following diagrams commute:

⊥ δ
//

δ
��

⊥ (⊥)

δ⊥
��

⊥
=

}}z

z

z

z

z

z

z

z

z

δ
��

=

""

E

E

E

E

E

E

E

E

E

⊥ (⊥) ⊥δ
// ⊥ (⊥⊥) =⊥⊥ (⊥) ⊥ ⊥ (⊥)⊥ε

oo

ε⊥
// ⊥ .

Cotriples often arise from adjoint pairs.

Example 3.7. Let (F,U) be a pair of adjoint functors and ⊥= FU . Let ε be a
counit and η be a unit for the adjoint pair. Let ηU be the natural transformation
that for an object B is given by ηU(B) : U(B) → UF (U(B)). Then (⊥, ε, F (ηU )) is
a cotriple.

Cotriples yield simplicial objects in the following manner.

Definition 3.8. Let (⊥, ε, δ) be a cotriple in A and let A be an object in A. Then
⊥∗+1 A is the following simplicial object in A:

[n] 7→⊥(n+1) A =

n+1 times
︷ ︸︸ ︷

⊥ · · · ⊥ A

di =⊥(i) ε ⊥(n−i) : ⊥(n+1) A →⊥(n) A

si =⊥(i) δ ⊥(n−i) : ⊥(n+1) A →⊥(n+2) A.

Observe that⊥∗+1 is augmented over idA by ε. In particular, if we consider (idA, id, id)
as the trivial cotriple, then ε gives a natural simplicial map from ⊥∗+1 to id∗+1 where
id∗+1 is the trivial simplicial A-object.

When A is an abelian category, the following chain complex is associated to
⊥∗+1 A.
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Definition 3.9. Let (⊥, ε, δ) be a cotriple on an abelian category A and let A be
an object in A. Then C⊥∗ (A) is the chain complex with

C⊥∗ (A) =

{

A if n = 0,
⊥n A if n > 0

and ∂n : C⊥n (A) → C⊥n−1(A) is defined by

∂n =
n

∑

i=0

(−1)idi.

Note that the chain complex C⊥∗ (A) is the mapping cone of the composition

C(⊥∗+1 A) ε−→C(id∗+1A) '−→N(id∗+1A) = A, (2)

where C(⊥∗+1 A) and C(id∗+1A) are the chain complexes associated to ⊥∗+1 A and
id∗+1A, respectively, and N(id∗+1A) is the normalized chain complex associated to
id∗+1A.

3.4. Cotriple construction of universal degree n approximation
Let Func∗(C, Ab) be the category of reduced functors from C to Ab with natural

transformations as morphisms and let Func∗(C×n+1, Ab) be the category of functors
of n + 1 variables from C to Ab that are reduced in each variable separately. Let

∆∗ : Func∗(C×n+1,Ab) → Func∗(C,Ab)

be the functor obtained by composing a functor with the diagonal functor ∆ : C →
C×n+1. That is, for G ∈ Func∗(C×n+1,Ab),

(∆∗G)(X) = G(

n+1 times
︷ ︸︸ ︷

X, . . . ,X).

We have an adjoint pair

Func∗(C×n+1,Ab)
crn+1

�
∆∗

Func∗(C, Ab), (3)

where crn+1 is right adjoint to ∆∗.

Definition 3.10. Let F : C → Ab be a reduced functor, where C is a pointed
category with finite coproducts and with enough projectives. Let ⊥n+1= ∆∗ ◦crn+1

be the cotriple on Func∗(C,Ab) obtained, as in Example 3.7 from the adjoint pair
(∆∗, crn+1) of (3). With the notation of Definition 3.9, the n-th Taylor polynomial
of F at ∗, PnF , is defined to be the derived functor of C⊥n+1

∗ (F ). We define the
layers of the Taylor series to be DnF = fiber(PnF → Pn−1F ) (which is algebraically
naturally quasi-isomorphic to a shift of the mapping cone). The first layer, D1F =
P1F , is called the derivative of F .

For functors that are not reduced, we have:
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Definition 3.11. Let F : C → Ab be any functor and C is as in 3.10. Then, with
notation as in (2),

PnF = Mapping Cone [N(⊥∗+1
n+1

˜F ) → N(id∗+1
˜F ) = ˜F ↪→ F

and

D1F = P1( ˜F ).

For C = k\CommAlg/k, F a reduced functor and A ∈ k\CommAlg/k, let L∗
'→

A be a simplicial free resolution of A as in Remark 2.1. Then we think of PnF (A)
as the total complex of the bi-complex

...

� �

cr(2)n+1F (∆(2)L0)

��

· · ·oo

� �

crn+1F (∆L0)

� �

crn+1F (∆L1)

��

oo · · ·oo

��

F (L0) F (L1)o o F (L2)oo · · ·oo

(4)

Theorem 3.12. Let F : C → Ab be a functor as in Definition 3.11. Then

1. PnF is degree n.

2. If F is degree n then pn : F → PnF is a quasi-isomorphism.

3. The pair (Pn, pn) is universal up to natural quasi-isomorphism with respect to
degree n functors with natural transformations from F .

3.5. Results
We will also use the following form for the derivative.

Theorem 3.13. ([JM1]) For F : C → Ch(k),

D1F (A) ' lim−→
n

Ωncr1F (ΣnA)

where Σ is the suspension functor in C. When C is k\CommAlg/k, Σ is the bar
construction. The loop functor Ω: Ch(k) → Ch(k) is a left shift: Ω(X∗) = X∗[−1].

As in the classical calculus, the layers of the Taylor tower can be described in
terms of the derivative. The classical formula for the n-th term of the Taylor series at
zero , f(n)(0)

n! xn, translates into a similar formula in Goodwillie calculus as described
in the following theorem. Notice that the n! is being replaced by homotopy orbits
under the action of the n-th symmetric group Σn, and xn is replaced by the n-tuple
∆X = (X, . . . , X).
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Theorem 3.14. ([JM2], 3.10) For X ∈ k\CommAlg/k, DnF (X) is naturally
equivalent to the homotopy orbits (D(n)

1 crnF )hΣn(∆X) where D(n)
1 indicates taking

the derivative in each of the n-variables of crnF separately.

The derivative determines the Taylor tower in the following sense. For each fixed
object X ∈ C, we let FX be the new functor from the category of objects over and
under X in C to Ch(A b) defined by: FX(Y ) = ker(F (Y ) → F (X)).

Theorem 3.15. ([JM2], 4.12) Let η : F → G be a natural transformation of re-
duced functors from C to Ch(A b). If D1ηX : D1FX → D1GX is an equivalence for
all X ∈ C then PnF ' PnG for all n.

Corollary 3.16. Let F and G be two functors from simplicial commutative algebras
to Ch(Ab) and η : F → G a natural transformation. Suppose that there exists some
fixed N and c such that for each commutative simplicial ring k and m-connected
X in k\CommAlg/k (the map X → k is m-connected) with m > N , the map
η̃k(X) : F̃k(X) → G̃k(X) is at least 2m− c connected. Then Pnη̃k : PnF̃k → PnG̃k

is an equivalence for all n and k.

Remark 3.17. We note that in corollary 3.16 we could have assumed that F and
G were defined on (or restricted to) the subcategory of simplicial commutative
algebras containing Q. Also, if the functors Fk and Gk preserve quasi-isomorphisms
between highly connected algebras augmented over k then it suffices to consider free
k–algebras X which are highly connected.

To compute the Taylor polynomial of a composite of a functor with an addi-
tive functor, we use the following property. It follows from a “chain rule” for the
derivative (cf. [JM2]).

Lemma 3.18. ([JM2], 6.6) If G : C′ → C is a reduced coproduct preserving functor
and F : C → Ch(k) is a functor, then

Pn(F ◦G) ∼= (PnF ) ◦G.

4. Taylor tower of the forgetful functor

As a functor from k\CommAlg/k to Ch(Q), Hochschild homology satisfies a
functional equation which allows its Taylor tower to be completely determined. In
this section we give the general solution for the Taylor tower of such functors, which
are called exponential functors in [JM2]. In the next section we compute the result
explicitly for Hochschild homology. Let C be a pointed category as in Section 3.

Definition 4.1. ( [JM2]) A reduced functor F : C → Ch(k) is exponential if there
is a natural isomorphism

cr2F (A,B) ∼= F (A)⊗k F (B).

The motivation for defining exponential functors this way comes from normalized
exponential functions f(x) = eax − ea·0 = eax − 1. Since for such f we have

cr2f(x, y) = f(x + y)− f(x)− f(y) = f(x) · f(y).
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Exponential functors have the following form.

Lemma 4.2. ([JM2], 6.4) Every exponential functor F : C → Ch(k) is of the form
I ◦G where G is a reduced coproduct preserving functor from C to k\CommAlg/k.

Thus, by Lemma 3.18, to compute the Taylor tower an exponential functors,
it suffices to compute the Taylor tower for the augmentation ideal functor I :
k\CommAlg/k → Simp(k − mod). We begin by computing the cross effects of
I.

Lemma 4.3. crnI ' I⊗kn.

Proof. By induction on n. When n = 1, cr1I = I since I is reduced. For n = 2:

cr2I(A1, A2) ∼=
I(A1 ⊗k A2)

I(A1)⊕ I(A2)
.

Note that since Ai ∼= k ⊕ I(Ai), we have

I(A1 ⊗k A2) ∼= I(A1)⊕ I(A2)⊕ (I(A1)⊗k I(A2)). (5)

Hence, cr2I(A1, A2) ∼= I(A1)⊗k I(A2).
Let n > 2, then

crnI(A1, . . . , An) ∼=
crn−1I(A1 ⊗k A2, A3, . . . , An)

crn−1I(A1, A3, . . . , An)⊕ crn−1I(A2, A3, . . . , An)
, by definition

∼=
I(A1 ⊗k A2)⊗k I(A3)⊗k . . .⊗k I(An)

(I(A1)⊗k I(A3)⊗k . . .⊗k I(An))⊕ (I(A2)⊗k . . .⊗k I(An))
, by induction

∼= I(A1)⊗k I(A2)⊗k . . .⊗k I(An), by (5)

Remark 4.4. The augmentation ideal functor I preserves weak equivalences and
so we would prefer to work with the associate Taylor tower which also preserves
weak equivalences (see Remark 3.1) by first replacing our simplicial ring by a weakly
equivalent simplicial free one. In this way one may not actually be obtaining the
Taylor tower of the original composite functor F = I ◦ G but one related to it.
However, for the examples we will be using below, our exponential functors F have
the additional property of preserving weak equivalences and taking cofibrant objects
to cofibrant objects and hence no loss of information (up to weak equivalence) will
occur if we use the Taylor tower of I applied to an equivalent cofibrant object.

Theorem 4.5. P1I is the derived functor of I/I2.

Proof. By Lemma 4.3, I/I2 = Coker(cr2I
µ−→ I) where µ is the multiplication map.

Hence, by definition 3.10 of Pn, we have a natural transformation from P1I to I/I2.
Let A ∈ k\CommAlg/k and A '←− L a simplicial free resolution of A as in Re-
mark 2.1. Since I preserves quasi-isomorphisms, P1I does also and hence it suffices
to show that P1I(L) ' I/I2(L). Moreover, by a standard spectral sequence argu-
ment it suffices to show that P1I(L[n]) ' I/I2(L[n]) for each simplicial dimension
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[n]. Recall from Section 2 that L[n] = S(M) for some simplicial free k-module M .
Hence, it is enough to show that P1(I ◦S) ' I/I2 ◦S. As S is a left adjoint, S pre-
serves coproducts and hence, by Lemma 3.18, P1(I/I2 ◦ S) ' I/I2 ◦ S. By Lemma
2.16 we have that if M is m-connected then (I ◦ S)(M) → (I/I2 ◦ S)(M) is about
2m-connected. Hence, by Theorem 3.13,

P1(I ◦ S)(M) ' P1(I/I2 ◦ S)(M) ' I/I2 ◦ S(M)

Theorem 4.6. The n-th layer of the Taylor tower for I, DnI, is the derived functor
of In/In+1.

Proof. Let A ∈ k\CommAlg/k and A '←− L a simplicial free resolution of A as in
Remark 2.1. Then

DnI(A) ' DnI(L)

' (D(n)
1 crnI(L))hΣn ' (D(n)

1 crnI(L))Σn , since Q ⊂ k

' (D(n)
1 I⊗kn(L))Σn , by Lemma 4.3

' (D1I(L)⊗kn)Σn , by freeness of L

' ((I/I2(L))⊗kn)Σn , by Theorem 4.5

' Sn(I/I2(L)) ' In/In+1(L), since L is levelwise free.

Theorem 4.7. PnI is the derived functor of I/In+1.

Proof. The proof follows by induction using Theorems 4.5 and 4.6 and the com-
muting diagram of exact sequences of functors:

0 −−−−→ DnI −−−−→ PnI −−−−→ Pn−1I −−−−→ 0




y





y





y





y





y

0 −−−−→ In/In+1 −−−−→ I/In+1 −−−−→ I/In −−−−→ 0.

5. Taylor tower for Hochschild homology

We compute the Taylor tower of Hochschild homology by first viewing it as an
exponential functor. To see this, note that for A ∈ k\CommAlg/k, the Hochschild
homology, HH(A), is an augmented commutative HH(k)-algebra. Hence the re-
duced Hochschild homology factors as

k\CommAlg/k HH→ HH(k)\CommAlg/HH(k) I→ Simp(HH(k)-mod).

Lemma 5.1. The functor

HH : k\CommAlg/k → HH(k)\CommAlg/HH(k)
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is an additive functor and hence (by Lemma 4.2) the composite ˜HH = I ◦ HH :
k\CommAlg/k → Simp(HH(k)-mod) is an exponential functor.

Proof. Let A,B ∈ k\CommAlg/k. To show that HH is additive, we want to show
that the natural map

HH(A)⊗HH(k) HH(B) → HH(A⊗k B)

is an isomorphism. For this, it suffices to observe that the map from

A⊗n ⊗k⊗n B⊗n → (A⊗k B)⊗n

(a0 ⊗ · · · ⊗ an)⊗k⊗n (b0 ⊗ · · · ⊗ bn) → (a0 ⊗k b0)⊗ · · · ⊗ (an ⊗k bn)

is an isomorphism for all n.

By the general results of Section 4 and Theorem 4.7 we can now give the following
results for the Taylor polynomials of Hochschild homology

Theorem 5.2. Pn ˜HH is the derived functor of I/In+1(HH(−)), where HH(−) is
considered as a simplicial augmented HH(k)-algebra. In addition,

crn ˜HH ∼= ˜HH
⊗HH(k)n

Dn ˜HH ' 〈(D1 ˜HH)⊗HH(k)n〉Σn .

We now wish to also compute the layers of the Taylor tower more explicitly. To
do so, we express the derivate of HH more concretely.

Theorem 5.3. D1 ˜HH is the derived functor of Q[S1]⊗HH(k, I/I2).

Proof. We first note that Q[S1] ⊗ HH(k, I/I2) is already additive since it is the
composite of the following additive functors.

I/I2 : k\CommAlg/k → Simp(k-mod)

HH(k, ) : Simp(k-mod) → Simp(HH(k)-mod)

Q[S1]⊗ : Simp(HH(k)-mod) → Simp(HH(k)-mod)

Let A ∈ k\CommAlg/k and A ← L a simplicial free resolution of A as in 2.1. Let i
be the connectivity of I(L). Then, by Lemma 2.14

L ∼= k ⊕ I(L) → L/I2(L) ∼= k ⊕ I/I2(L)

is about 2i-connected. Thus, by Theorem 2.11, ˜HH(L) → ˜HH(L/I2(L)) is also
about 2i-connected. Note that L/I2(L) ∼= kn I/I2(L) as simplicial rings and hence
˜HH(L/I2(L))
∼= ˜HH(k n I/I2(L)). Since I/I2(L) is at least i-connected (by Lemma 2.14), then
by Corollary 2.9, the map

θ : Q[S1]⊗ ˜HH(k, I/I2(L)) → ˜HH(k n I/I2(L))

is at least 2i-connected. Finally, by Corollary 3.16 we are done.
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Theorem 5.4. Dn ˜HH is the derived functor of

HH(k, (Q[Tn]⊗ (I/I2)⊗n)Σn)

where Q[Tn] ∼= Q[S1]⊗n is a simplicial Q-module which computes the homology of
the n-torus, Tn, with coefficients in Q and Σn acts on the diagonal via

σ(t1 ⊗ . . .⊗ tn ⊗ x1 ⊗ x2 ⊗ . . .⊗ xn) = tσ(1) ⊗ . . .⊗ tσ(n) ⊗ xσ(1) ⊗ . . .⊗ xσ(n)

Proof.

Dn ˜HH ' (D(n)
1

˜HH
⊗n

HH(k))Σn by Theorem 5.2

'
(

(

Q[S1]⊗HH(k, I/I2)
)⊗n

HH(k)
)

Σn

by Theorem 5.3

'
(

(

HH(k,Q[S1]⊗ I/I2)
)⊗n

HH(k))
)

Σn

by linearity

'
(

HH(k,
(

Q[S1]⊗ (I/I2))
)⊗n

)
)

Σn

by the proof of 5.1

' HH(k,
(

Q[Tn]⊗ (I/I2)⊗n)

Σn
).

6. The Taylor tower for KQ

Theorem 6.1. The natural transformations KQ
αQ−→HN

βQ←− HC[1] produce iso-
morphisms of the Taylor towers for the associated reduced functors from
k\CommAlg/k to Ch(Q).

Proof. We will do only the case for the Chern character KQ
αQ−→HN as the other

case is done completely analogously.
Let A ∈ k\CommAlg/k be i–connected, i > 0, and let A '←− L be a simplicial

free resolution of A as in 2.1 (so i is also the connectivity of I(L)). We have

˜KQ(A)
αQ−−−−→ ˜HN(A)

x




'

x




'

˜KQ(L)
αQ−−−−→ ˜HN(L)





y
2i−conn





y
2i−conn

˜KQ(L/I2(L)) '−−−−→ ˜HN(L/I2(L)),

where the bottom map is an isomorphism by Theorem 2.3 and the two maps going
down are about 2i-connected by Corollary 2.15. Using Theorem 3.13 we get D1 ˜KQ '
D1 ˜HN . Hence, as k was an arbitrary commutative simplicial ring containing Q, by
Corollary 3.16, the Taylor towers of ˜KQ and ˜HN are equivalent by the Chern
character.
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The following theorem gives an alternative proof for the rational case of the main
theorem in [DM], which says that D1K is the topological Hochschild homology.

Theorem 6.2. D1KQ is the derived functor of HH(k, I/I2)[1].

Proof. Let A ∈ k\CommAlg/k and let A '←− L be a simplicial free resolution of A
as in 2.1. Then

D1KQ(A) ' D1KQ(L)

' D1HC[1](L) by Theorem 6.1

' D1(HHS1 [1])(L) ' (D1HH(L))hS1 [1] since colimits commute

' (Q[hS1]⊗HH(k, I/I2))hS1(L)[1] by Theorem 5.3

' Q[S1]S1 ⊗HH(k, I/I2)(L)[1]

' Q⊗HH(k, I/I2)(L)[1] ' HH(k, I/I2)(L)[1]

Theorem 6.3. DnKQ is the derived functor of

HH(k; 〈Q[Tn−1]⊗ (I/I2)⊗n〉Σn)[1]

Proof. Let A ∈ k\CommAlg/k and let A '←− L be a simplicial free resolution of A
as in 2.1. Then

DnKQ(A) ' DnKQ(L)

' DnHC[1](L) by Theorem 6.1

' Dn(HHS1 [1])(L) ' (DnHH)S1 [1](L) since colimits commute

'
(

HH(k; 〈Q[Tn]⊗ (I/I2)⊗n〉Σn

)

S1 [1] by Theorem 5.4

' HH
(

k;
(

〈Q[Tn]⊗ (I/I2)⊗n〉Σn

)

S1

)

[1]

' HH
(

k; 〈Q[Tn]S1 ⊗ (I/I2)⊗n〉Σn

)

[1] by switching the order of the

actions

' HH
(

k; 〈Q[Tn−1]⊗ (I/I2)⊗n〉Σn

)

[1].

7. André-Quillen homology, Hodge decomposition and Cal-
culus

In order to compute the Taylor tower of Hochschild homology it was natural to
first consider the Taylor tower of the forgetful functor from simplicial commutative
augmented k-algebras. The derivative of this was seen to be the derived functor (in
the sense of Quillen) of I/I2 which is known to be closely related to André-Quillen
homology. We first recall this relationship and then use it to show that the Hodge
decomposition for rational Hochschild homology is also its Taylor tower.

In this section our setup is as follows. Let k be a commutative ring. For a commu-
tative k-algebra A, let k\C/A be the category of simplicial commutative k-algebras
over A, and let A '←− P∗ be a simplicial cofibrant resolution of A in k\C/A.



Homology, Homotopy and Applications, vol. 4(1), 2002 209

We write HH(A/k) for the Hochschild complex

HH(A/k) = A ← A⊗k2 ← A⊗k3 ← . . .

7.1. André-Quillen homology and Calculus
Recall (e.g. [Q]), that the André-Quillen homology, AQ∗(A/k), is defined as the

homology of the cotangent complex,

LA/k = A⊗P∗ ΩP∗/k,

where ΩP/k is the module of Kähler differentials of P over k. Note that A ⊗k A is
augmented over A via the multiplication map µ : A⊗k A → A. The augmentation
ideal I(A⊗k A) is isomorphic to Kerµ and ΩA/k

∼= I/I2(A⊗k A). When P is a free
k-algebra, P = k[X], then by the fundamental properties of the module of Kähler
differentials, ΩP/k⊗P A ∼= I/I2(A⊗k P ). Hence, for A '←− P∗, a simplicial cofibrant
resolution of A, LA/k ' I/I2(A⊗k P∗) To understand the André-Quillen homology
from calculus point of view, consider the following composition of functors.

k\C/A
A⊗k−

//

''

N

N

N

N

N

N

N

N

N

N

N

A\C/A

U
��

Simp(A-mod),

(6)

where U is the forgetful functor. To be able to apply the calculus machine, we need
a category with a basepoint. The functor A⊗k − : k\C/A → A\C/A can be viewed
as a process of “adding a basepoint” to the category k\C/A. After applying the
functor A⊗k−, we have A as the designated basepoint in the category A\C/A, and
calculus can be applied to the augmentation ideal functor I = ˜U .

When k contains Q, then by Theorem 4.6 and the discussion above,

LA/k ' D1I(A⊗k −)(P∗). (7)

Equation (7) says that the André-Quillen homology, AQ(A/k), can be viewed as
the derivative of the augmentation ideal functor, I : A\C/A → Simp(A − mod),
evaluated at A, after adding the basepoint A. In this case, P∗ is the simplicial
cofibrant replacement of A in the category k\C/A.

This observation, together with Theorem 3.13 recovers the main result in [S].

Remark 7.1. It follows from work of Basterra, McCarthy and Mandell [BMa],
[BMc], that D1I(A⊗k −)(P∗) computes the Topological André-Quillen homology
of A over k, TAQ(A/k), and it coincides with E∞ homology of A. When k does not
contain Q, TAQ(A/k) 6= AQ(A/k).

Remark 7.2. For the purpose of analogy for the Hochschild homology, we think
of A⊗k A as “tensoring A with the zero sphere” as we explain below. Think of the
zero sphere S0 as the coproduct of two points.

S0 : •
∐

•.
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We write S0 ⊗ A for the assignment of A for each point and taking the coproduct
A

∐

A in the category of k-algebras. That is

S0 ⊗A := A
∐

A = A⊗k A.

7.2. Hochschild homology revisited
Following the analogy in Remark 7.2, and using the simplicial representation

of the circle ∆1/∂, write S1 ⊗ A for the suspension of A, which is the simplicial
k-algebra

S1 ⊗A = A ←← A⊗k A
←←← A⊗k3 . . . .

Observe that S1 ⊗ A is augmented over A with augmentation ideal I(S1 ⊗ A) =
(S1 ⊗ A)∗>0. The Hochschild homology complex of A over k, HH(A/k) is the
composite

k-alg S1⊗A−→ A\C/A U−→ Simp(A-mod) ' Ch(A). (8)

Hodge decomposition for Hochschild homology
Let k be a commutative ring containing Q. The Hodge decomposition of the
Hochschild homology is defined via the Eulerian idempotents by Gerstenhaber and
Schack [GS]. The Eulerian idempotents, e(i)

n , i = 1, . . . n, are mutually orthogo-
nal idempotents in the symmetric group algebra Q[Σn] with Σn

i=1e
(i)
n = 1. Their

action on the Hochschild complex commutes with the boundary operation, so the
Hochschild complex HH(A/k) naturally split into a direct sum of sub-complexes,

HH(A/k) =
⊕

i>0

HH(i)(A/k),

where HH(i)(A/k) = e(i)
n HH(A/k) for n > 1.

This decomposition is called the Hodge (or the λ-) decomposition for Hochschild
homology.

When A is flat over k, the pieces of Hodge decomposition compute the (higher)
André-Quillen homology.

Theorem 7.3. (cf. [L] or [R]) Let A be a flat k-algebra then

HH(i)(A/k) ' Ii/Ii+1(HH(A/k)).

The n-th homology group, HH(i)
n (A/k) is isomorphic to the (higher ) André-Quillen

homology group AQ(i)
n−i(A/k), where AQ(i)

q (A/k) is defined by

AQ(i)
q (A/k) = Hq(Ωi

P∗/k ⊗P∗ A)

and Ωi
P/k is the module of differential i-forms, ∧iΩP/k.

Together with Theorem 4.6 we obtain

Corollary 7.4. When A is a flat k algebra then

˜HH(A/k) '
⊕

i>0

DiI(S1 ⊗A).
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The meaning of this corollary is that when A is flat over k, the Taylor tower
for I, evaluated at the suspension of A, splits into its homogeneous layers and this
decomposition coincides with the Hodge decomposition for ˜HH(A/k) ' I(S1⊗A).
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