

Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 159-164 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

Approach Spaces for Near Families

James F. Peters and Somashekhar (Som) A. Naimpally

Department of Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba R3T 51-V6, Canada Email: jfpeters@ee.umanitoba.ca Department of Mathematics Lakehead University Thunder Bay, Ontario, P7B 5E1, Canada Email: somnaimpally@yahoo.ca

(Received 04.11.2010, Accepted 16.11.2010)

Abstract

This article considers the problem of how to formulate a framework for the study of the nearness of collections of subsets of a set (also more tersely termed families of a set). The solution to the problem stems from recent work on approach spaces, near sets, and a specialised form of gap functional. The collection of all subsets of a set equipped with a distance function is an approach space.

Keywords *Approach space, families, gap functional, merotopy, near sets.* **2000 MSC No:** 54D35, 54A20, 54E99, 18B30

1 Introduction

The problem considered in this paper is how to formulate a framework for the study of the nearness of families of sets. The solution to the problem stems from recent work on near sets [15, 14, 16, 20] and from the realisation that the nearness of collections of subsets of a set X (denoted $\mathcal{P}X$) can be viewed in the context of approach spaces [7, 10, 11, 19]. The basic approach is to consider a nonempty set X equipped with a distance function $\rho : \mathcal{P}X \times \mathcal{P}X :\to [0, \infty)$ satisfying certain conditions. In that case, (X, ρ) is an approach space. A

collection $\mathcal{A} \subset \mathcal{P}X$ is near when $\nu_B(\mathcal{A}) := \inf_{B \subset \mathcal{P}X} \sup_{A \subset \mathcal{A}} \rho(B, A) = 0.$

2 Approach Spaces

The collection of subsets of a nonempty set X is denoted $\mathcal{P}X = 2^X$ (power set). For $A, B \subset \mathcal{P}X, A^{\varepsilon} = \{A \in \mathcal{P}X : \rho(A, B) \leq \varepsilon\}$ for a distance function $\rho : \mathcal{P}X \times \mathcal{P}X :\to [0, \infty)$. An **approach space** [11, 1] is a nonempty set X equipped with a distance function ρ if, and only if, for all nonempty subsets $A, B, C \subset \mathcal{P}X$, conditions (A.1)-(A.4) are satisfied. [(A.1)]

$$\begin{split} & (A.1) \ \rho(A,A) = 0, \\ & (A.2) \ \rho(A,\emptyset) = \infty, \\ & (A.3) \ \rho(A,B\cup C) = \min\{\rho(A,B),\rho(A,C)\}, \\ & (A.4) \ \rho(A,B) \leq \rho(A,C) + \sup_{C\subset \mathcal{P}X} \rho(C,B). \end{split}$$

Example 1 Sample approach space.

For a nonempty subset $A \subset X$ and a nonempty set $B \subset X$, define a norm-based **gap functional** $D_{\rho_{\parallel,\parallel}}(A, B)$, a variation of the gap functional introduced by S. Leader in 1959 [9] (see, also, [5]), where

$$D_{\rho_{\|\cdot\|}}(A,B) = \begin{cases} \inf \{\rho_{\|\cdot\|}(a,b) : a \in A, b \in B\}, & \text{if } A \text{ and } B \text{ are not empty,} \\ \infty, & \text{if } A \text{ or } B \text{ is empty.} \end{cases}$$

Let $\rho_{\|\cdot\|}$ denote $\|\cdot\|$: $X \times X :\to [0,\infty)$ denote the norm on $X \times X$ defined by $\rho_{\|\cdot\|}(\vec{x},\vec{y}) = \|\vec{x} - \vec{y}\|_1 = \sum_{i=1,n} |x_i - y_i|$. A gap functional is finite-valued and symmetric. Hyperspace topologies arise from topologies determined by families of gap functionals [2].

Lemma 2.1. Suppose X is a metric space with distance function ρ , $x \in X$ and $\mathcal{A} \subset \mathcal{P}X$. Then

$$\rho(x, \bigcup \mathcal{A}) = \inf\{\rho(x, A) : A \in \mathcal{A}\}.$$

Proof. The proof appears in [17, p. 25].

Lemma 2.2.
$$D_{\rho_{\parallel \parallel}} : \mathcal{P}X \times \mathcal{P}X \to [0, \infty)$$
 satisfies (A.1)-(A.4).

Proof. (A.1)-(A.2) are immediate from the definition of $D_{\rho_{\parallel,\parallel}}$. For all $A, B, C \subset \mathcal{P}X, D_{\rho_{\parallel,\parallel}}$ satisfies (A.3), since, from Lemma 2.1, we have

$$D_{\rho_{\parallel \cdot \parallel}}(A, B \cup C) = \inf\{D_{\rho_{\parallel \cdot \parallel}}(A, B), D_{\rho_{\parallel \cdot \parallel}}(A, C)\}.$$

Approach spaces for near families

 $D_{\rho_{\parallel,\parallel}}$ satisfies (A.4), since

$$D_{\rho_{\|\cdot\|}}(A,B) \le D_{\rho_{\|\cdot\|}}(A,C) + \sup_{C \subset \mathcal{P}X} D_{\rho_{\|\cdot\|}}(C,B) \}.$$

Theorem 2.3. $(X, D_{\rho_{\|\cdot\|}})$ is an approach space.

3 Descriptively Near Sets

Descriptively near sets are disjoint sets that resemble each other. Feature vectors (vectors of numbers represent feature values extracted from objects) provide a basis for set descriptions (see, *e.g.*, [15, 14, 13]). A feature-based gap functional defined for the norm on a set X is introduced by J.F. Peters in [16]. Let $\Phi_n(x) = (\phi_1(x), \ldots, \phi_n(x))$ denote a **feature vector**, where $\phi_i :\to \Re$. In addition, let $\Phi_X = \{\Phi_1(x), \ldots, \Phi_{|X|}(x)\}$ denote a set of feature vectors for objects $x \in X$. In this article, a description-based gap functional $D_{\Phi_X, \rho_{\|\cdot\|}}$ is defined in terms of the Hausdorff lower distance [6] of the norm on $\mathcal{P}\Phi_X \times \mathcal{P}\Phi_Y$ for sets $X, Y \subset \mathcal{P}X$, *i.e.*,

$$D_{\Phi_X,\rho_{\|\cdot\|}}(A,B) = \begin{cases} \inf \{\rho(\Phi_X,\Phi_Y)\}, & \text{if } \Phi_X \text{ and } \Phi_Y \text{ are not empty,} \\ \infty, & \text{if } \Phi_X \text{ or } \Phi_Y \text{ is empty.} \end{cases}$$

Theorem 3.1. $(X, D_{\Phi_X, \rho_{\parallel,\parallel}})$ is an approach space.

Proof. Immediate from the definition of $D_{\Phi_X,\rho_{\parallel,\parallel}}$ and Lemma 2.2.

Given an approach space (X, ϕ) , define $\nu : \mathcal{P}(\mathcal{P}X) :\to [0, \infty]$ by

$$\nu(\mathcal{A}) = \inf_{x \in X} \sup_{A \in \mathcal{A}} \rho(x, A).$$

The collection $\mathcal{A} \subset \mathcal{P}X$ is **near** if, and only if $\nu(\mathcal{A}) = 0$ for some $x \in X$ [11]. The function ν is called an **approach merotopy** [19]. In the sequel, rewrite $\nu(\mathcal{A})$, replacing $x \in X$ with $B \subset \mathcal{P}X$ and $\rho_{\parallel,\parallel}$, then, for a selected $B \subset \mathcal{P}X$,

$$\nu_B(\mathcal{A}) = \inf_{B \subset \mathcal{P}X} \sup_{A \in \mathcal{A}} \rho_{\|\cdot\|}(B, A).$$

Then the collection $\mathcal{A} \subset \mathcal{P}X$ is *B*-near if, and only if $\nu_B(\mathcal{A}) = 0$ for some $B \subset \mathcal{P}X$.

Theorem 3.2. Given an approach space $(X, D_{\Phi_X, \rho_{\|\cdot\|}})$, a collection $\mathcal{A} \subset \mathcal{P}X$ is B-near if, and only if $D_{\Phi_X, \rho_{\|\cdot\|}}(A, B) = 0$ for some $B \subset \mathcal{P}X$ and for every $A \subset \mathcal{A}$.

Proof.

 \Rightarrow Given that a collection $\mathcal{A} \subset \mathcal{P}X$ is *B*-near, then $\nu_B(\mathcal{A}) = 0$. Hence, for some $B \subset \mathcal{P}X$, $D_{\Phi_X, \rho_{\parallel,\parallel}}(A, B) = 0$.

 \leftarrow Given that $D_{\Phi_X,\rho_{\|\cdot\|}}(A,B) = 0$ for some $B \subset \mathcal{P}X$ and for every $A \subset \mathcal{A}$, it follows from the definition of $\nu_B(\mathcal{A})$ that the collection $\mathcal{A} \subset \mathcal{P}X$ is *B*-near. \Box

4 Clusters and Filters

A collection $C \subset \mathcal{P}X$ is a **cluster** if, and only if C is a maximal near collection, *i.e.*, [(C.1)]

(C.1) $\nu(\mathcal{C}) = 0$,

(C.2) for all $C \subset X$, $\nu(\mathcal{C} \cup \{C\}) = 0 \Rightarrow C \in \mathcal{C}$.

Filters were introduced by H. Cartan in 1937 [3, 4]. A theory of convergence stems from the notion of a filter. A collection $\mathcal{F} \subset \mathcal{P}X$ is a **filter** if, and only if, for all nonempty $A, B \subset \mathcal{F}$, it satisfies conditions (F.1)-(F.3). [(F.1)]

(F.1) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$,

(F.2) $B \supset A \in \mathcal{F}$ implies $B \in \mathcal{F}$,

(F.3) $\emptyset \notin \mathcal{F}$. A set $A \subset \mathcal{A} \in \mathcal{P}X$ is a neighbourhood of a point $x \in X$

(denoted N_x) in an approach space (X, ρ) if, and only if there exists a $G \in A$ such that $x \in G \subset A$. For a neighbourhood N_x for a in an approach space X, point x is called a **limit of a filter** \mathcal{F} . This is a specialisation of the notion of a neighbourhood in a topology [18] in terms of approach spaces. J.L. Kelley [8] observes that a filter \mathcal{F} converges to a point $x \in X$ in an approach space (X, ρ) if, and only if each neighbourhood of x is a member of \mathcal{F} .

Theorem 4.1. Let \mathcal{F} be a filter in an approach space (X, ρ) . A point $x \in X$ is a limit of the filter if, and only if $N_x \supset \mathcal{F}$.

Proof. See proof in [18].

Corollary 4.2. Given an approach space $(X, D_{\Phi_X, \rho_{\|\cdot\|}})$, a filter $\mathcal{F} \subset \mathcal{P}X$ is B-near if, and only if $D_{\Phi_X, \rho_{\|\cdot\|}}(A, B) = 0$ for some $B \subset \mathcal{P}X$ and for every $A \subset \mathcal{F}$.

Proof. Symmetric with the proof of Theorem 3.2.

Corollary 4.3. Given a neighbourhood $N_a \subset \mathcal{A} \in \mathcal{P}X$ an approach space $(X, D_{\Phi_X, \rho_{\|\cdot\|}})$, a filter $\mathcal{F} \subset \mathcal{P}X$ is N_x -near if, and only if $D_{\Phi_X, \rho_{\|\cdot\|}}(\mathcal{A}, N_x) = 0$ for every $\mathcal{A} \subset \mathcal{A}$.

162

5 Grills and Stacks

A collection $\mathcal{A} \in \mathcal{P}X$ is a **stack** if, and only if

for all
$$A, B \subset X : (A \in \mathcal{A} \text{ and } B \supset A) \Rightarrow B \in \mathcal{A}$$
.

There is a particular form of stack called a grill. A grill $\mathcal{G} \subset \mathcal{P}X$ on a set X is nonempty stack satisfying

for all $G, H \subset X : G \cup H \in \mathcal{G} \Rightarrow (G \in \mathcal{G} \text{ or } H \in \mathcal{G}).$

The correspondence between grills and filters relies on the sec operator [11] such that

for $\mathcal{A} \subset \mathcal{P}X$, $sec(\mathcal{A}) = \{B \subset X : \forall A \in \mathcal{A}, A \cap B \neq \emptyset\}.$

Theorem 5.1.

(1) A collection \$\mathcal{F}\$ is a filter if, and only if sec(\$\mathcal{F}\$) is a grill.
(2) A collection \$\mathcal{G}\$ is a grill if, and only if sec(\$\mathcal{G}\$) is a filter.

Lemma 5.2. Every cluster is a grill.

The proof appears in [11].

Corollary 5.3. Every cluster is a near grill.

References

- B. Banaschewski, R. Lowen and C. Van Olmen, Regularity in approach theory, 115 (3)(2007), 183–196.
- [2] G. Beer, Topologies on Closed and Closed Convex Sets, *Kluwer Academic Pub.*, Dordrecht, (1993).
- [3] H. Cartan, Théorie des filtres, Compt. Rend., 205(1937), 595–598.
- [4] H. Cartan, Théorie et ultafiltres, Compt. Rend., 205(1937), 777–779.
- [5] G. DiMaio, R. Lowen and S.A. Naimpally, Gap functionals, proximities and hyperspace compactification, *Topology Appl.*, 153(2005), 756–766.
- [6] F. Hausdorff, Grundzüge der Mengenlehre, Veit and Company, Leipzig, (1914), viii + 476 pp.
- [7] H. Herrlich, A concept of nearness, Gen. Top. & Appl., 4(1974), 191–212.

- [8] J.L. Kelley, *General Topology*, Springer, Berlin, (1955).
- [9] S. Leader, On clusters in proximity spaces, Fundamenta Mathematicae, 47(1959), 205-213.
- [10] R. Lowen, Approach spaces: The missing link in the Topology-Uniformity-Metric triad, Oxford Univ., Press, (1997).
- [11] R. Lowen, M. Sioen and D. Vaughan, Competing quasi-metric spaces. An alternative approach, *Houston J. Math.*, 29(1)(20030, 113–136.
- [12] S. Marcus, Tolerance rough sets, Cech topologies, learning processes, Bull. Polish Academy of Sciences, Technical Sciences, 42(3)(1994), 471–487.
- [13] S.A. Naimpally, Near and far. A centennial tribute to Frigyes Riesz, Siberian Electronic Mathematical Reports, 2(2009), 144-153.
- [14] J. F. Peters and P. Wasilewski, Foundations of near sets, Inf. Sci., 179 (18)(2009), 3091-3109.
- [15] J.F. Peters, Near sets. General theory about nearness of objects, Applied Mathematical Sciences, 1 (53)(2007), 2609-2029.
- [16] J.F. Peters, Metric spaces for near sets, Applied Mathematical Sciences, 5(2)(2011), 73–78.
- [17] M.O. Searóid, Metric Spaces, Springer, Berlin, (2007).
- [18] W.J. Thron, Topological Structures, Holt, Rinehart and Winston, NY, (1966).
- [19] S. Tiwari, Some Aspects of General Topology and Applications. Approach Merotopic Structures and Applications, Supervisor: M. Khare, Ph.D. thesis, *Mathematics Dept.*, Allahabad Univ., (2010), vii + 112 pp.
- [20] M. Wolski, Perception and classification. A note on near sets and rough sets, *Fundamenta Informaticae*, 101(2010), 143-155, doi: 10.3233/FI-2010-281.