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Abstract

This article considers the problem of how to formulate a framework for
the study of the nearness of collections of subsets of a set (also more tersely
termed families of a set). The solution to the problem stems from recent work
on approach spaces, near sets, and a specialised form of gap functional. The
collection of all subsets of a set equipped with a distance function is an approach
space.
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1 Introduction

The problem considered in this paper is how to formulate a framework for the
study of the nearness of families of sets. The solution to the problem stems
from recent work on near sets [15, 14, 16, 20] and from the realisation that the
nearness of collections of subsets of a set X (denoted PX) can be viewed in the
context of approach spaces [7, 10, 11, 19]. The basic approach is to consider
a nonempty set X equipped with a distance function ρ : PX ×PX :→ [0,∞)
satisfying certain conditions. In that case, (X, ρ) is an approach space. A
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collection A ⊂ PX is near when νB(A) := inf
B⊂PX

sup
A⊂A

ρ(B, A) = 0.

2 Approach Spaces

The collection of subsets of a nonempty set X is denoted PX = 2X (power
set). For A, B ⊂ PX, Aε = {A ∈ PX : ρ(A,B) ≤ ε} for a distance function
ρ : PX × PX :→ [0,∞). An approach space [11, 1] is a nonempty set X
equipped with a distance function ρ if, and only if, for all nonempty subsets
A,B,C ⊂ PX, conditions (A.1)-(A.4) are satisfied. [(A.1)]

(A.1) ρ(A,A) = 0,

(A.2) ρ(A, ∅) = ∞,

(A.3) ρ(A,B ∪ C) = min{ρ(A, B), ρ(A, C)},
(A.4) ρ(A,B) ≤ ρ(A,C) + sup

C⊂PX
ρ(C,B).

Example 1 Sample approach space.
For a nonempty subset A ⊂ X and a nonempty set B ⊂ X, define a norm-based
gap functional Dρ‖·‖

(A,B), a variation of the gap functional introduced by

S. Leader in 1959 [9] (see, also, [5]), where

Dρ‖·‖
(A,B) =

{
inf {ρ‖·‖(a, b) : a ∈ A, b ∈ B}, if A and B are not empty,

∞, if A or B is empty.

Let ρ‖·‖ denote ‖ · ‖: X × X :→ [0,∞) denote the norm on X × X defined
by ρ‖·‖(~x, ~y) =‖ ~x − ~y ‖1=

∑
i=1,n |xi − yi|. A gap functional is finite-valued

and symmetric. Hyperspace topologies arise from topologies determined by
families of gap functionals [2].

Lemma 2.1. Suppose X is a metric space with distance function ρ, x ∈ X
and A ⊂ PX. Then

ρ(x,
⋃
A) = inf{ρ(x,A) : A ∈ A}.

Proof. The proof appears in [17, p. 25].

Lemma 2.2. Dρ‖·‖
: PX ×PX → [0,∞) satisfies (A.1)-(A.4).

Proof. (A.1)-(A.2) are immediate from the definition of Dρ‖·‖
. For all A,B, C ⊂

PX, Dρ‖·‖
satisfies (A.3), since, from Lemma 2.1, we have

Dρ‖·‖
(A,B ∪ C) = inf{Dρ‖·‖

(A,B), Dρ‖·‖
(A,C)}.
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Dρ‖·‖
satisfies (A.4), since

Dρ‖·‖
(A,B) ≤ Dρ‖·‖

(A,C) + sup
C⊂PX

Dρ‖·‖
(C,B)}.

Theorem 2.3. (X, Dρ‖·‖
) is an approach space.

3 Descriptively Near Sets

Descriptively near sets are disjoint sets that resemble each other. Feature
vectors (vectors of numbers represent feature values extracted from objects)
provide a basis for set descriptions (see, e.g., [15, 14, 13]). A feature-based gap
functional defined for the norm on a set X is introduced by J.F. Peters in [16].
Let Φn(x) = (φ1(x), . . . , φn(x)) denote a feature vector, where φi :→ <. In
addition, let ΦX = {Φ1(x), . . . , Φ|X|(x)} denote a set of feature vectors for
objects x ∈ X. In this article, a description-based gap functional DΦX ,ρ‖·‖

is

defined in terms of the Hausdorff lower distance [6] of the norm on PΦX×PΦY

for sets X, Y ⊂ PX, i.e.,

DΦX ,ρ‖·‖
(A,B) =

{
inf {ρ(ΦX , ΦY )}, if ΦX and ΦY are not empty,

∞, if ΦX or ΦY is empty.

Theorem 3.1. (X, DΦX ,ρ‖·‖
) is an approach space.

Proof. Immediate from the definition of DΦX ,ρ‖·‖
and Lemma 2.2.

Given an approach space (X, φ), define ν : P(PX) :→ [0,∞] by

ν(A) = inf
x∈X

sup
A∈A

ρ(x,A).

The collection A ⊂ PX is near if, and only if ν(A) = 0 for some x ∈ X [11].
The function ν is called an approach merotopy [19]. In the sequel, rewrite
ν(A), replacing x ∈ X with B ⊂ PX and ρ‖·‖ , then, for a selected B ⊂ PX,

νB(A) = inf
B⊂PX

sup
A∈A

ρ‖·‖(B, A).

Then the collection A ⊂ PX is B-near if, and only if νB(A) = 0 for some
B ⊂ PX.

Theorem 3.2. Given an approach space (X,DΦX ,ρ‖·‖
), a collection A ⊂ PX

is B-near if, and only if DΦX ,ρ‖·‖
(A,B) = 0 for some B ⊂ PX and for every

A ⊂ A.



162 James F. Peters et al.

Proof.
⇒ Given that a collection A ⊂ PX is B-near, then νB(A) = 0. Hence, for
some B ⊂ PX, DΦX ,ρ‖·‖

(A,B) = 0.

⇐ Given that DΦX ,ρ‖·‖
(A,B) = 0 for some B ⊂ PX and for every A ⊂ A, it

follows from the definition of νB(A) that the collection A ⊂ PX is B-near.

4 Clusters and Filters

A collection C ⊂ PX is a cluster if, and only if C is a maximal near collection,
i.e., [(C.1)]

(C.1) ν(C) = 0,

(C.2) for all C ⊂ X, ν(C ∪ {C}) = 0 ⇒ C ∈ C.
Filters were introduced by H. Cartan in 1937 [3, 4]. A theory of convergence

stems from the notion of a filter. A collection F ⊂ PX is a filter if, and only
if, for all nonempty A,B ⊂ F , it satisfies conditions (F.1)-(F.3). [(F.1)]

(F.1) A,B ∈ F implies A ∩B ∈ F ,

(F.2) B ⊃ A ∈ F implies B ∈ F ,

(F.3) ∅ 6∈ F . A set A ⊂ A ∈ PX is a neighbourhood of a point x ∈ X

(denoted Nx) in an approach space (X, ρ) if, and only if there exists a G ∈ A
such that x ∈ G ⊂ A. For a neighbourhood Nx for a in an approach space X,
point x is called a limit of a filter F . This is a specialisation of the notion of
a neighbourhood in a topology [18] in terms of approach spaces. J.L. Kelley [8]
observes that a filter F converges to a point x ∈ X in an approach space (X, ρ)
if, and only if each neighbourhood of x is a member of F .

Theorem 4.1. Let F be a filter in an approach space (X, ρ). A point x ∈ X
is a limit of the filter if, and only if Nx ⊃ F .

Proof. See proof in [18].

Corollary 4.2. Given an approach space (X,DΦX ,ρ‖·‖
), a filter F ⊂ PX

is B-near if, and only if DΦX ,ρ‖·‖
(A,B) = 0 for some B ⊂ PX and for every

A ⊂ F .

Proof. Symmetric with the proof of Theorem 3.2.

Corollary 4.3. Given a neighbourhood Na ⊂ A ∈ PX an approach space
(X,DΦX ,ρ‖·‖

), a filter F ⊂ PX is Nx-near if, and only if DΦX ,ρ‖·‖
(A,Nx) = 0

for every A ⊂ A.
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5 Grills and Stacks

A collection A ∈ PX is a stack if, and only if

for all A,B ⊂ X : (A ∈ A and B ⊃ A) ⇒ B ∈ A.

There is a particular form of stack called a grill. A grill G ⊂ PX on a set X
is nonempty stack satisfying

for all G, H ⊂ X : G ∪H ∈ G ⇒ (G ∈ G or H ∈ G).

The correspondence between grills and filters relies on the sec operator [11]
such that

for A ⊂ PX, sec(A) = {B ⊂ X : ∀A ∈ A, A ∩B 6= ∅}.

Theorem 5.1.

(1) A collection F is a filter if, and only if sec(F) is a grill.

(2) A collection G is a grill if, and only if sec(G) is a filter.

Lemma 5.2. Every cluster is a grill.

The proof appears in [11].

Corollary 5.3. Every cluster is a near grill.
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