
Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 86-95
ISSN 2219-7184; Copyright c©ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

Application of Sumudu Transform in

Fractional Kinetic Equations

V.B.L. Chaurasia1and Jagdev Singh2

1Department of Mathematics, University of Rajasthan, Jaipur, Rajasthan, India
E-mail:vblchaurasia@gmail.com

2Department of Mathematics, Jagan Nath University, Jaipur, Rajasthan, India
E-mail:jagdevsinghrathore@gmail.com

(Received 10.11.2010, Accepted 02.12.2010)

Abstract
In view of the great importance of fractional kinetic equations, we derive the

solution of a generalized fractional kinetic equation using Sumudu transform.
The fractional kinetic equation discussed here can be used to investigate a wide
class of known (may be new also) fractional kinetic equations, hitherto scat-
tered in the literature. The results presented are in compact forms suitable for
numerical computation. Some special cases, involving the generalized Mittag-
Leffler function and Lorenzo-Hartley function are considered. The obtained
results imply more precisely the known results.
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1 Introduction

Fractional kinetic equations have gained importance during the last decade
due to their occurrence in certain problems in science and engineering. A
spherically symmetric non-rotating, self-gravitating model of star like the Sun
is assumed to be in thermal equilibrium and hydrostatic equilibrium. The
star is characterized by its mass, luminosity, effective surface temperature, ra-
dius, central density and central temperature. The stellar structures and their
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mathematical models are investigated on the basis of above characters and
some additional information related to the equation of state, nuclear energy
generation rate and the opacity. The assumptions of thermal equilibrium and
hydrostatic equilibrium imply that there is no time dependence in the equa-
tions describing the internal structure of the star (Kourganoff [20], Perdang
[26] and Clayton [12]. Energy in such stellar structures is being produced by
the process of chemical reactions (thermonuclear reactions). Computation of
such chemical reactions is of the prime importance as it plays the central role in
the evolution of such stellar structures. Two most important nuclear reactions
(cycles) in stars, during their evolution, are pp chain (proton-proton chain) and
CNO cycle (involves nuclei of carbon, nitrogen and oxygen). The total energy
production and luminosity of the star is based on the pp chain and the composi-
tion of stellar plasma described by CNO cycle. The production and destruction
of nuclei in such chemical reactions can be described by the reaction-type (ki-
netic) equations. Solutions of such reaction-type (linear/nonlinear) equations
determine distribution functions of the dynamical states of a single particle.
The linear reaction-type equation dy

dx
= y can be used to describe the fun-

damental principles of standard Boltzmann-Gibbs statistical mechanics. The
nonlinear generalization of the reaction-type equation dy

dx
= yq,leads to new

insights into generalized Boltzmann-Gibbs statistical mechanics which is also
called nonextensive statistical mechanics. In a recent work Ferro, Lavagro and
Quarati [14] showed that a very small deviation from the Maxwell-Boltzman
particle distribution and the use of nonextensive statistical mechanics can be
applied to describe the modified nuclear reaction rates in stellar plasmas which
is consistent with the need of the modification of the nuclear reaction rates of
stellar plasma and their chemical composition.

If an arbitrary reaction characterized by a time dependent quantity N =N
(t), then it is possible to calculate rate of change dN/dt to a balance between
the destruction rate d and the production rate p of N, that is dN/dt = −d+p.
In general, through feedback or other interaction mechanism, destruction and
production depend on the quantity N itself: d = d(N) or p= p(N). This de-
pendence is complicated since the destruction or production at time t depends
not only on N(t) but also on the past history N(τ), τ < t, of the variable N.
This may be formally represented by (Haubold and Mathai [16])

dN

dt
= − d (Nt) + p(Nt), (1)

where Nt denotes the function defined by Nt(t*) = N(t −t*), t* > 0.

Haubold and Mathai [16] studied a special case of this equation, when spatial
fluctuation or inhomogenities in quantity N(t) are neglected, is given by the
equation
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d Ni

dt
= − ci Ni(t) (2)

with the initial condition that Ni (t = 0) = N0 is the number density of species
i at time t = 0; constant ci > 0, known as standard kinetic equation. A detailed
discussion of the above equation is given in Kourganoff [20]. The solution of
the above standard kinetic equation (2) is given by

Ni(t) = N0 e−cit (3)

An alternative form of the same equation can be obtained on integration:

N(t) − N0 = c 0D
−1
t N(t), (4)

where 0D
−1
t is the standard integral operator. Haubold and Mathai [16] have

given the fractional generalization of the standard kinetic equation (2) as

N(t) − N0 = cv
0D

−ν
t N(t), (5)

where 0D
−ν
t is the well known Riemann-Liouville fractional integral operator

(Oldham and Spanier [25]; Samko, Kilbas and Marichev [29]; Miller and Ross
[23]) defined by

0D
−ν
t =

1

Γ(ν)

∫ t

0

(t− u)ν−1 f(u) du, R(ν) > 0. (6)

The solution of the fractional kinetic equation (6) is given by (see Haubold
and Mathai [16] )

N(t) = N0

∞∑

k=0

(−1)k

Γ(νk + 1)
(ct)νk. (7)

Fractional kinetic equations are studied by many authors notably Hille and
Tamarkin [17], Glöckle and Nonnenmacher [15], Saichev and Zaslavsky [28],
Saxena et al. [31-33], Zaslavsky [41], Saxena and Kalla [30], Chaurasia and
Pandey [9-10], Chaurasia and Kumar[8] among others, for their importance in
the solution of certain physical problems.

Recently, Saxena et al. [34] investigated the solutions of the fractional
reaction equation and the fractional diffusion equation. Laplace transform
technique is used.

In a recent paper, Watugala [39] introduced a new integral transform, called
the Sumudu transform defined for functions of exponential order. Over the set
of functions,

A = {f(t) | ∃M, τ1, τ2 > 0 | f(t) | < M e| t |/τj , if t ∈ (− 1)j [0,∞)}, (8)
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the Sumudu transform is defined by

G(u) = S [f(t)] =
∫ ∞

0

f (ut) e−t dt, u ∈ (− τ1, τ2) . (9)

For further detail and properties of this transform (see [2], [4], [5] and [11]).
The Riemann-Liouville fractional integral of order ν is defined by (Miller and
Ross [23], p.45; Kilbas et al. [18])

0D
−ν

t N(x, t) =
1

Γ(ν)

∫ t

0

(t− u)ν−1 N(x, u) du, (10)

where Re(ν) > 0.
From Saxena et al. ([31], eqn. (16)) and Belgacem, Karaballi and Kalla

([5], p.106, eqn (2.1)) it follows that the Sumudu transform of the Riemann-
Liouville fractional integral is given by

S {0D
−ν

t f(t) ; u} = uν f̄(u). (11)

In view of the results Kilbas et al. ([18], eq.(12)) and Belgacem, Karaballi and
Kalla ([5], p.106, eq.(2.1)), we can easily obtain

S−1[uγ−1(1− ωuβ)−δ] = tγ−1 E
δ

β,γ(ωtβ). (12)

2 Generalized Fractional Kinetic Equations

In this section, we solve a generalized fractional kinetic equation by using
Sumudu transform.
Theorem 1. If Re(νi) > 0, ai > 0, i ∈ N and, f(t) be a given function defined
on R+, then the equation

N(t) − N0 f(t) = −
n∑

i=1

ai 0D
−νi
t N(t), (13)

is solvable and its solution is given by

N(t) = N0

∞∑

`=0

(−1)`
∑

r1+...+rn−1=`

(`) !

(r1) !... (rn−1) !

n−1∏

µ=1

(aµ+1)
rµ

×
∫ t

0

f(ξ) (t− ξ)
∑n−1

µ=1
rµνµ+1 E

(`+1)

ν1,
∑n−1

µ=1
rµνµ+1

[−a1(t− ξ)ν1 ] dξ, (14)

where the summation (14) is taken over all non-negative integers r1,. . . ,rn−1

such that r1 + ... + rn−1 = `,and provided that the series and integral in (14)
are convergent.
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Proof. Applying the Sumudu transform both the sides of equation (13), we
get

N̄(u)− N0 f̄(u) = − [a1u
ν1 + a2u

ν2 + ... + anu
νn ] N̄(u) . (15)

Solving for N̄(u),it gives

N̄(u) =
N0 f̄(u)

[1 + a1uν1 + a2 uν2 + ... + anuνn ]

= N0 f̄(u)
∞∑

`=0

(−1)`

(∑n−1
i=1 ai+1 uνi+1

)`

(1 + a1 uν1)`+1
. (16)

If we employ the identity (Abramowitz and Stegun, [1], p.823)

(x1 + ... + xm)` =
∑

r1+...+rm=`

(`) !

(r1) ! ... (rm) !

m∏

µ=1

xrµ
µ , (17)

where the summation is taken over all non-negative integers r1,. . . ,rm, such
that r1 + ... + rm = `,then for | a1 uν1|< 1, (16) transform into the form

N̄(u) = N0u f̄(u)
∞∑

`=0

(−1)`
∑

r1+...+rn−1=`

(`) !

(r1) ! ... (rn−1) !

×




n−1∏

µ=1

(aµ+1)
rµ





u
∑n−1

µ=1
rµνµ+1−1

(1 + a1 uν1)`+1
. (18)

Now, taking inverse Sumudu transform both the sides of (18) and making
use of the formula (12) and applying the convolution theorem of the Sumudu
transform, we obtain the desired result (14).

3 Special Cases

When νi = i ν, ai =

(
n
i

)
ciν (i ∈ N), we obtain the following result given

by Saxena et al. [34]
Corollary 1. If Re (ν) > 0, c > 0 and f(x) ∈ R+, then for the solution of
the equation

N(t) − N0 f(t) = −
n∑

r=1

(
n
r

)
cνrD−νr

t N(t), (19)

there holds the formula
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N(t) = N0
d

dt

∫ t

0

f(u) E
n

ν,1[−cν(t− u)ν ] du. (20)

If we set νi = i ν, ai =

(
n
i

)
ciν and f(t) = Gν,µ,δ(−cν , b, t), we arrive at the

following result recently obtained by Chaurasia and Pandey [10].
Corollary 2. If c > 0, b ≥ 0, δ > 0, ν > 0, µ > 0, (δν − µ) > 0, then for
the solution of

N(t) − N0 Gν,µ,δ(−cν , b, t) = −
n∑

r=1

(
n
r

)
crν

0D
−rν
t N(t), (21)

there holds the formula

N(t) = N0 Gν,(µ+νn),(δ+n) (−cν , b, t). (22)

If we take n = 1, a1 = cν , ν1 = ν and f(t) = Gν,µ,δ(−cν , b, t),we obtain the
result derived by Chaurasia and Pandey [9].
Corollary 3. If c > 0, b ≥ 0, δ > 0, ν > 0, µ > 0, (δν − µ) > 0, then for
the solution of

N(t) − N0 Gν,µ,δ(−cν , b, t) = − cν
0D

−ν
t N(t), (23)

there holds the formula

N(t) = N0 Gν,(µ+ν),(δ+1) (−cν , b, t). (24)

If we set n = 1, a1 = cν , ν1 = ν and f(t) = tγ−1E
δ

ν,γ[−(ct)ν ],it yields the
results obtained by Saxena et al. [34].
Corollary 4. If Re (ν) > 0, Re (γ) > 0, c > 0,then for the solution of the
equation

N(t) − N0 tγ−1 E
δ

ν,γ[(−ct)ν ] = −
n∑

r=1

(
n
r

)
crν

0D
−rν
t , n ∈ N, (25)

holds the relation

N(t) = N0 tγ−1 E
δ+n

ν,γ [−(ct)ν ], n ∈ N. (26)

For n = 1, equation (25) reduces to a result given by Saxena et al. [32].
Finally, on taking n = 1, a1 = cν , ν1 = ν and f(t) = tρ−1,we arrive at

the following result given by Saxena et al. [31].
Corollary 5. If ν > 0, ρ > 0, c > 0, then the solution of the integral equation

N(t) − N0 tρ−1 = − cν
0D

−ν
t N(t), (27)
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is given by

N(t) = N0 tρ−1Γ(ρ) Eν,ρ[−(ct)ν ]. (28)

4 Conclusion

In this paper, we have presented a solution of generalized fractional kinetic
equation. The solution has been developed in terms of the Mittag-Leffler func-
tion in a compact and elegant form with the help of Sumudu transform and
it’s inverse. Most of the results obtained are in a form suitable for numerical
computation. Fractional kinetic equation can be used to compute the parti-
cle reaction rate and describes the statistical mechanics associated with the
particle distribution function. The generalized fractional kinetic equation dis-
cussed in this article, contains a number of known (may be new also) fractional
kinetic equations involving various special functions (Mittag-Leffler function
and Lorenzo-Hartley function). The result obtained in the present paper pro-
vides an extension of the results given by Haubold and Mathai [16], Saxena,
Mathai and Haubold ([31],[32] and [33]) Chaurasia and Pandey ([9] and [10])
and Chaurasia and Kumar [8].
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[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G.Tricomi, Higher Tran-
scendental Functions, Vol.1, McGraw-Hill, New York, and London ,(1953).

[14] F. Ferro, A. Lavago and P. Quarati, Temperature dependence of mod-
ified CNO nuclear reaction rates in dense stellar plasmas, arXiv:nucl-
th/0312106v1, (2003).
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