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Abstract 

     The nonlinear hydrodynamic Rayleigh-Taylor instability (RTI) bounded above 
by porous layer using Saffman [1] slip condition at the interface and below by a 
rigid surface using no-slip condition has been studied. The nonlinear problem is 
studied numerically in the present paper using Adams-Bashforth predictor and 
Adams-Moulton corrector numerical techniques. In the conclusion, the nonlinear 
problem discussed here is quite different from that of Babchin et al. [2] 
considering plane Couette flow. The present problem is greatly influenced by slip 
velocity at the interface between porous layer and thin film. Also, the effect of 
magnetic field to stabilize the system. It is not amenable to analytical treatment as 
that of Babchin et al.[2]. Therefore, numerical solutions have to be found. Fourth 
order accurate central differences are used for spatial discretization using 
predictor and corrector numerical technique.  
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1 Introduction  
 
The phenomenon of instability of the interface between a heavy fluids supported 
by a lighter fluid known as Rayleigh-Taylor instability (RTI) has been extensively 
studied in a wide range of physical contexts both experimentally and theoretically. 
In spite of a long history of investigations there are many important motivations 
which still attract attention to different branches of physics, namely astrophysics 
(Arons et al. [3], Bernstein and Book [4], Rudraiah [5]), plasma fusion (Finn [6]), 
space (Amatucci et al. [7]; Penano et al. [8]), atmospheric (Sazonov [9]) and 
geophysics (Wilcock and Whitehead [10]), etc. The primary source by which this 
instability is triggered is the gravitational force acting on an inverted density 
gradient (e.g. a heavy fluid supported by a light fluid). The basic mechanism of 
this instability, an interchange of flux tube to tap the gravitational free energy, is 
the same mechanism that drives the Rayleigh-Benard instability in the thermal 
convection of a gravitationally unstable fluid. In this case the mean temperature 
gradient of the fluid plays a similar role as the density gradient and the buoyancy 
force acts similar to the gravity. Apart from fluid dynamics RT mode exists in 
magnetized plasmas in both collisional and collisionless regimes. It plays a crucial 
role in the areas of inertial confinement fusion (ICF) (see Mikelian [11]).  
 
Rayleigh [12] initiated the study of hydrodynamic instability of fluid having a 
vertical density variation. He showed the equilibrium of a horizontal layer of 
incompressible, in viscid (ideal) fluid is stable or unstable according as the density 
increases or decreases anywhere in the vertically upward direction. Under various 
physical effects the Rayleigh-Taylor instability problem of a semi-infinite layer of 
a fluid has been studied by several authors in hydrodynamics and in MHD. The 
detailed account of the various assumptions of hydrodynamics and 
hydromagnetics has been given by Chandrasekhar [13]. Roberts [14] has extended 
the analysis to the case of two fluids of equal kinematic viscosities in the presence 
of a vertical magnetic field, while Gerwin [15] has studied the case of 
compressible streaming fluids. The influence of viscosity on the stability of the 
plane interface separating two incompressible superposed fluids of uniform 
densities, when the whole system is immersed in a uniform horizontal magnetic 
field, has been studied by Bhatia [16]. He carried out the stability analysis for two 
fluids of equal kinematic viscosities and different densities. A generalized theory 
of hydromagnetic stability of the interface between two infinitely conducting 
superposed fluids is given by Shivamoggi [17]. Rudraiah et al. [18] have pointed 
out that a magnetic field applied obliquely to the interface between two kinds of 
electrically conducting viscous fluids exerts a stabilizing influence on the 
configuration. 
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Although copious literature is available on linear RTI, the work on nonlinear RTI 
is very sparse. With the invention of high-speed computers the nonlinear approach 
has changed drastically. If the perturbed quantities are very small in comparison 
with the basic state then the product of the perturbed quantities can be neglected 
leading to linear theory. On the other hand if the perturbations are not small then 
product of the perturbed quantities can’t be neglected leading to nonlinear theory. 
Before we proceed into details of this problem we briefly review the work done 
on nonlinear RTI. McCrory et al. [19]) have given the simulations of the RTI of 
ablatively accelerated thin-shell fusion targets and showed that the nonlinear 
evolution exhibits spike amplitude saturation. A simple model is derived 
heuristically for the nonlinear evolution of the RTI by Baker and Freeman [20]). 
Babchin et al. [2] have studied the nonlinear saturation of RTI in thin films. They 
have found that the combined action of flow shear and surface tension is the 
essence of the saturation mechanism. Shivamoggi [21]) has used the method of 
strained co-ordinates in investigating the nonlinear RTI problem. After 
incorporating the corrections pointed out by Malik and Singh [22] he obtained a 
revised expression for the nonlinear cut-off wave number which separates the 
region of stability from that of instability. Mohamed and Shehawey [23] have 
investigated nonlinear electrohydrodynamic RTI in the absence of surface charges 
and a charge free surface separating two semi infinite dielectric fluids influenced 
by a normal electric field subjected to nonlinear deformations. Allah and Yahia 
[24] have studied the nonlinear RTI in the presence of magnetic field and also 
mass and heat transfer using the simplified formulation. Later, Verma and Shukla 
[25] have studied the linear and nonlinear properties of Rayleigh-Taylor modes.   
 
Rudraiah et al. [26] have studied the linear and nonlinear RTI in a viscous fluid 
layer bounded below by a rigid surface and above by a porous layer based on the 
approximations in effect which are similar to lubrication and Stokes 
approximations. The linear problem has been studied analytically, while the 
nonlinear problem is studied numerically. They have shown that the stability 
curve can be controlled by the porous-slip parameter. Mahmoud [27] has 
discussed the theoretical analysis of the nonlinear Rayleigh-Taylor instability of 
two fluids under the influence of a periodic radial magnetic field. A weakly 
nonlinear stability for magnetic fluid has been discussed by El-Dib [28]. The 
research of an interface between two strong viscous homogeneous incompressible 
fluids through porous medium is investigated theoretically and graphically. The 
effect of the vertical magnetic field has been demonstrated in this study. The 
kinematic viscosities play a stabilizing role when the fluid flows through a porous 
media, while a destabilizing influence is recorded when the fluid flows through 
non-porous media. The investigation has shown that the porous permeability plays 
a dual role in the stability behavior. Recently, Anjali Devi and Hemamalini [29] 
have analyzed the effects of rotation and magnetic field on nonlinear RTI of two 
superposed ferrofluids. More recently, Rudraiah et al. [30] has investigated the 
non-linear study of electrohydrodynamic Rayleigh–Taylor instability in a 
composite fluid–porous layer. This problem has greatly influenced by the slip 
velocity at the interface between porous layer and thin film. 
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Nevertheless, much attention has not been given in the literature on the study of 
nonlinear RTI in a poorly conducting fluid bounded above by a porous layer and 
below by a rigid surface in the presence of magnetic field in spite of its 
importance in varied problems. Therefore, in this paper we have investigated 
nonlinear hydrodynamic RTI in a composite fluid–porous layer. The evolution of 
the interface is analyzed numerically by employing fourth order Adams-Bashforth 
predictor and Adams-Moulton corrector methods. The control of instability of the 
interface is analyzed in detail.  
 
To achieve this objective, this paper is planned as follows. The basic equations for 
poorly conducting fluid in the presence of magnetic field called MHD equations 
are given in section 2 with suitable approximations and boundary conditions. The 
dispersion relation of RTI in MHD in the presence of magnetic field in fluid layer 
bounded above by a porous layer is derived in section 3. The importance 
conclusions are drawn in the final section. 
 

2 Mathematical Formulation 
 
The physical configuration in this paper is shown in Fig.1. We consider a two-
dimensional fluid-porous medium composite system with heavy fluid of constant 
density pρ  in the porous region supported by a lighter fluid of density fρ  in a 

region of height H bounded by a rigid surface at y=0. The interface between the 
two fluid –porous medium and the film is described by ( , )x tη . Let u and v denote 
the velocity components in x and y directions respectively. The fluids are assumed 
to be viscous and incompressible. The fluid in the thin film is set in motion by 
acceleration normal to the interface whereas in the porous layer it is assumed to be 
static and small perturbations are amplified when acceleration is directed from the 
lighter fluid in the thin film to the heavier fluid in the porous layer. Between two 
fluids there exists a surface tensionγ . The instability at the interface in the 
presence of magnetic field is known as hydrodynamic Rayleigh-Taylor instability 
(RTI). To investigate this RTI, we consider a rectangular coordinate system (x, y) 
with the x-axis parallel to the film and y-axis normal to it.  
 
2.1 Basic Equations:   
 
Following are the basic equations for film-porous layer composite system: 
 
The conservation of mass: 
 

0=⋅∇ q
�

                                                             (1) 
The conservation of momentum: 
 

( )2( . ) 0
q

q q p q µ J×H
t

ρ µ∂ + ∇ = −∇ + ∇ + ∂ 

�
� �� � �

         (2) 
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where ( , )q u v=� the fluid velocity, p the pressure, µ  the fluid viscosity, ρ  the 

fluid density and J
�

the current density.  
 
2.2 Boundary and Surface Conditions: 
  
i) The no-slip condition at the rigid surface : 

0at == y0u       (3) 
 

ii)  The Saffman[1] slip condition : 

pu
u at y h

y k

α
=

∂
=∂         (4) 

 
iii)  The kinematic condition :  

v u
t x

η η∂ ∂
= +∂ ∂    at   y =h       (5) 

 
iv) The dynamic condition :  

2

2p
tx

η η
δη γ µ

∂ ∂
= − − + ∂∂

  at   y = h .                   (6) 

 
where µ  is the fluid viscosity , k  the permeability of the porous layer, α  the slip 

parameter at the interface, γ the fluid surface tension and ( )
p f

gδ ρ ρ= −  the 

gravitational force.  
 
In solving Eqs. (1) to (2), following Rudraiah et al. [18], we make use of the 
following approximations: 
 
(i) The film thickness h is much smaller than the thickness H of the dense 

fluid above the film. That is 
h < < H 

(ii)  The surface elevation η is assumed to be small compared to film thickness 
h. That is  

η < < h 
(iii)  The Strauhal number S, a measure of the local acceleration to inertial 

acceleration in Eq.(2.2), is negligibly small.  That is    
  

1
UT

L
S <<=   

 
where /U Lν=  is the characteristic velocity, ν  the kinematic viscosity, 

/L γ δ=  the characteristic length and  3 2/T hµγ δ=  the characteristic time. 
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These approximations are usually called Stokes and lubrication approximations. 
Also we assume that the heavy fluid in the porous layer is almost static because of 
heavy creeping flow approximation in a densely packed porous medium, which is 
needed to use the Saffman [1] slip condition.  
 
To understand the physics of the problem, it is simplified using the following 
dimensionless variables 

2 2
, , , , ,

/ / p
f f

x y u v p h
x y u v p

h h h h h k
σ

δ µ δ µ δ
∗ ∗ ∗ ∗ ∗= = = = = =         (7) 

 
Equations (1) to (6) reduce to the following form: 
 

0
u v

x y
=

∂ ∂
+∂ ∂

               (8) 

 
2

2
2

0
p u

M u
x y

∂ ∂= − + −
∂ ∂

                     (9) 

 

0
p

y

∂
= ∂

 .                 (10) 

 
Subject to the above boundary and surface conditions: 
 
 0at == y0u       (11) 
 

1
p p

u
u at y

y
α σ=

∂
=∂       (12) 

 

1v u at y
t x

η η∂ ∂
= + =∂ ∂       (13) 

 
2

2

1
1p at y

B x

η
η

∂
= − − =

∂
      (14) 

 

where 0 0 /f fM H hµ σ µ=  is the Hartmann number, 2 /B hδ γ= the Bond 

number, ( , , )x y tη η= the elevation of the interface and 
p

h

k
σ =  the porous 

parameter. It may be noted here that the kinematic condition given by Eq. (13) is 
nonlinear.  
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3 Dispersion Relation 
 
To find the dispersion relation, first we have to find the velocity distribution from 
Eq. (9) using the above boundary and surface conditions.  

 
The solution of (9) subject to the above conditions is 
  

21 2

1
u A oshMy A inhMy

p
c s

xM
= + −

∂
∂         (15) 

 

where   1 2

1 p
A

M x

∂=
∂

 

  1
2 2

K p
A

M x

∂=
∂

 

 1

[ (1 ) ]

[ ]

coshM MsinhM
K

M coshM sinhM

β
β

− −=
+

  

p pβ α σ= .  

 
After integrating Eq.(8) with respect to y between y = 0 and 1 and using Eq.(15), 
we get    

 
2

2

1

1 1
0

v(1) =v
x

pu
dy

x
=

∂
∂∂= − ∆

∂∫  .     (16)  

 

1
1 3

(1 )M sinhM K coshM

M

− − −∆ =   

 
To find the expression for the interface evolutionη , using Eqs. (16) and (13), we 
get  

2 4

2 4

3

32 1

1 1
.

t x B Bx x xx

η η η η ηη∂ ∂ ∂ ∂ ∂
+ +∂ ∂ ∂ ∂ ∂

   ∂
= ∆ + ∆   ∂   

  (17) 

 

where 1
2 2

1coshM K sinhM

M

+ −∆ = . 

 
Let us analyze the interface evolution by this equation.  
 
Equation (17) in the limit of 0M →  reduces to the one given by Rudraiah et al., 
(1998), where the effect of porous lining on the nonlinear evolution of the 
interface is studied. In this paper we study the combined effect of porous layer 
and applied magnetic field on the nonlinear evolution of the interface. The process 
described here is quite different from a process in which the film is bounded by a 
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fluid with moving boundaries, instead of porous layer, discussed by Babchin et al. 
[2]. Therefore, we use Eq. (3.3) to study the nonlinear interface evolution. Eq. 
(17) is not amenable to analytical treatment and hence we solve it numerically 
using a 4th order central differences in space and time as explained below. For 
time-integration of Eq.(17), Adams-Bashforth predictor and Adams-Moulton 
corrector steps of fourth order are used, as described in Chapra and Canale [31]. 
Spatial derivatives are described by the following central difference formulae of 
fourth order accuracy:  

 

( ) ( ) ( ) ( )1
2 8 1 8 1 2

12
i i i i

x x

η η η η η∂
 → − − − + + − + ∂ ∆

    (18) 

 

( ) ( ) ( ) ( ) ( )
2

2 2

1
2 16 1 30 16 1 2

12
i i i i i

u x

η η η η η∂
 → − − + − − + + − + ∂ ∆

 (19) 

 

( ) ( ) ( ) ( ) ( ) ( )
3

3 3

1
3 8 2 13 1 13 1 8 2 3

8
i i i i i i

x x

η η η η η η∂
 → − − − − + − − + + + − + ∂ ∆

      

(20) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

4

4 4

1

6

3 12 2 39 1 56 39 1 12 2 3 .

x x

i i i i i i i

η

η η η η η η η

∂ →
∂ ∆
 − − + − − − + − + + + − + 

 

                 (21) 
 
Here ( )2iη −  stands for the value of η  at the position 2x x− ∆ . The integer i 

indicates the i th grid point. 
 
The initial condition used in the numerical integration is a sine-wave with wave 
number ℓ  and is of the form 

( ) ( )0,0 sinx xη η= ℓ         0
2

 < ≤ 
 

ℓx
π

.    (22) 

 
Here the amplitude 0η  is assumed to be small. In our numerical computation we 

use 4
0 10η −=  in non-dimensional form and periodic boundary conditions have 

been applied in the x-direction.   
 

4 Results and Discussion 
       
The nonlinear hydrodynamic RTI (ERTI) in a fluid layer bounded above by a 
thick porous layer and below by rigid surface in the presence of magnetic field is 
investigated. This equation is solved numerically using fourth order differences in 
space and time and the results are depicted in Figs. 2-9.  
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In Figs 2-9, we discuss the spatial structure of growth rate of the interface in terms 
of 1 1

N L N L,m ax
m ax

m ax

n -n
t t

ηη
η η

∂∂= −
∂ ∂

 at an early stage (initial time) before 

instability occurs for two wave number 0.75=ℓ and 2.0=ℓ  and other parameters 
defined earlier. In Figs. 2 and 3 six waves are contained in the interval16π  the 
case of small wave numbers. The peaks reflect the position of the wave modes. 
The case of large wave numbers 2.0=ℓ  is presented in Figs. 4 and 5 and it 
contains 16 complete waves in the interval16π . Figures 6 and 7 represent whether 
the full numerical solutions deviate from a simple harmonic behaviour of η , 

namely 0 ( )sin xη η= ℓ  for 0.75=ℓ  where only part of the wave is shown and 

similarly in Figs. 8 and 9 discussion is on large wave number 2.0=ℓ .  
 
Figures 6(a)-(d) shows that the spatial structures of the interface for t>0  and 
Figs.2 describes the interface at t=0 . Initial interface profile is symmetric in the 
interval0 16x π≤ ≤ . But for t>0 every point of the interface moves in the x 
direction with velocity proportional to that point evolution η .Thus the points 
where 0η =  do not move, while the points of maximal elevation move faster than 
all other points. In the subsequent evolution the symmetry is lost, since the 
maximum moves farther from one of the zeros and closer to the other one. 
However, this process of steepening of the forward faces of the profile doesn’t 
result in the breakup of the interface, because of the effects of surface tension, slip 
and magnetic field. Initially these parameters may have negligible effects, but as 
time progresses those parameters play an important role in the stabilization. In 
Figs.6(a)-(d) only one part of the wave is shown( i.e., only one period 2π ) as we 
move from top to bottom and clearly notice that the symmetry can obtained with 
the effect of slip due to porous layer and hence reduced the growth rate of RTI at 
the interface considerably for t>0 .  
 
From Figs. 3 it is clear that the interface profile is symmetric in the interval 
0 16x π≤ ≤  for initial time t=0 . As we move from top to bottom in Figs. 7(a)-
(d), we observe that the symmetry can be recovered for increasing the magnetic 
field M.  Therefore, the effect of magnetic field is to reduce the asymmetry of the 
system and hence stabilize the system. 
 
Figures 8 and 9 are similar to Figs. 6 and 7 but they differ in the value of  ℓ , that 
is 2.0=ℓ . In each of these cases we notice that the shape of the curve remain the 
same but they vary in magnitude. The effect of these parameters is also to reduce 
the growth rate as in the earlier cases.  
 
It may also be noted that the full numerical solution for all cases is not possible 
because of the limitation of the numerical scheme. In this problem computation of 
the influence for larger values of Hartmann number M is not possible because of 
the above limitation (when M>20). Also similar behaviour happens when β  is 
very large. In addition to this full numerical solution becomes unstable for such 
cases. 
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5 Figures 
 

 

Fig. 1: Physical configuration 

 

 

Fig. 2(a)        Fig. 6(a) 
 

 
Fig. 2(b)     Fig. 6(b) 
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Fig. 2(c)           Fig.6 (c) 
 

 
 
Fig. 2(d): for t=0             Fig. 6(d): for t >0 
 

Shape of the interface for 0.75=ℓ  with different values of 
0.0,1.0,10.0,100.0β = .  

 

 
                              Fig. 3(a)       Fig. 7(a)  
 

 
                            Fig. 3(b)       Fig. 7(b)  
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                            Fig. 3(c)       Fig.7(c)  
 

 
 
Fig. 3(d): For t=0    Fig.7(d): For t > 0.  

 
Shape of the interface for 0.75=ℓ  with different values of 

0.0001,1.0,10.0,20.0.M =  
 

 
                                Fig. 4(a)               Fig. 8(a)  
 

 
                              Fig. 4(b)                Fig. 8(b)  
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                               Fig. 4(c)               Fig. 8(c) 
  

 
                       Fig. 4(d): For  t=0    Fig. 8(d): For t>0 
 
Shape of the interface for  2.0=ℓ  with different values of 

0.0001,1.0,10.0,20.0M = . 
 

 
Fig. 5(a)       Fig. 9(a) 

 

 
                               Fig. 5(b)      Fig. 9(b) 
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                                 Fig.5(c)      Fig. 9(c) 
 

 
 
                    Fig. 5(d): For t=0    Fig. 9(d): For t>0 
 
Shape of the interface for 2.0=ℓ  with different values of 

0.0,1.0,10.0,100.0.β =  
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