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Abstract
In this paper, we prove some unique coupled fixed point theorem in partially

ordered metric space. Also for the effectiveness of result we have given an
example.

Keywords: Coupled fixed point, Mixed monotone property, Complete met-
ric space.

1 Introduction

The Banach contraction principle is one of the simplest and most applicable
result of fixed point theorem. It has become a very popular tool in solving the
existence problems in many branches of nonlinear analysis. Several mathemati-
cians have extended it and have been interested in fixed point theory in some
metric spaces. One of these is partially ordered metric space, that is, metric
spaces endowed with a partial ordering. The first result in this direction was
given by Turinici, where he extended the Banach contraction principle in par-
tially ordered sets. Ran and Reurings presented some applications of Turinici’s
theorem to matrix equations. The results were then extended by many authors.
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The concept of coupled fixed point was recently introduced by Bhaskar and
Lakshmikantham [2]. They established some coupled fixed point theorem on
ordered metric spaces and give some application in the existence and unique-
ness of a solution for periodic boundary value problem. Several papers have
been devoted to the study of coupled fixed points in partially ordered metric
spaces [1], [3], [4], [5], [6], [7], [8].

The purpose of this paper is to present some unique coupled fixed point the-
orems in ordered metric space. An example is also given in order to illustrate
the effectiveness of our result at the end of this paper.

2 Preliminaries

In this section, we give some definitions which are useful for main result in this
paper.

Definition 2.1. Let X be a non empty set. Then (X, d,≤) is called an
ordered (partial) metric space if

(i) (X,≤) is a partially ordered set and (ii) (X, d) is a metric space.

Definition 2.2. Let (X,≤) be a partial ordered set. Then x, y ∈ X are
called comparable if x ≤ y or y ≤ x holds.

Definition 2.3. [2], [4] An element (x, y) ∈ X × X is said to be coupled
fixed point of the mapping F : X ×X → X if F (x, y) = x, F (y, x) = y.

Definition 2.4. [2] Let (X,≤) be a partially ordered set and F : X ×X →
X. We say that F has the mixed monotone property if F (x, y) is monotone
non-decreasing in x and is monotone non-increasing in y, that is, for any
x, y ∈ X,

x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y) ≤ F (x2, y)

and

y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1) ≥ F (x, y2).

3 Main Theorem

Theorem 3.1. Let ( X,≤) be a partially ordered set endowed with a metric
d such that (X, d) is complete. Let F : X × X → X be a mapping hav-
ing the mixed monotone property on X and there exist x0, y0 ∈ X, such that
x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). Suppose there exist ψ:[0,∞)→[0,∞) is
a continuous and non decreasing function such that it is positive in (0,∞),
ψ(0)=0 and limt→∞ ψ(t) =∞; such that
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d(F (x, y), F (u, v)) ≤ d(x, u) + ψ(d(y, v)) (3.1)

for all x, y, u, v ∈ X with x ≥ u, y ≤ v. Suppose either,

1) F is continuous or

2) X has the following properties,

(a) if a non-decreasing sequence{xn} in X converges to some point
x ∈ X, then xn ≤ x, ∀n,

(b) if a non-increasing sequence {yn} in X converges to some point
y ∈ X, then yn ≥ y, ∀n.

Then F has a coupled fixed point (u∗, v∗) ∈ X ×X.

Proof: Choose x0, y0 ∈ X and set x1 = F (x0, y0) and y1 = F (y0, x0). Repeat-
ing this process, set xn+1 = F (xn, yn) and yn+1 = F (yn, xn). Then by (3.1),
we have

d(xn, xn+1) = d(F (xn−1, yn−1), F (xn, yn)) ≤ d(xn−1, xn)+ψ(d(yn−1, yn)) (3.2)

and similarly,

d(yn, yn+1) = d(F (yn−1, xn−1), F (yn, xn)) ≤ d(yn−1, yn)+ψ(d(xn−1, xn)). (3.3)

By adding, we have

pn ≤ pn−1 + ψ(pn−1). (3.4)

Let

pn = d(xn, xn+1) + d(yn, yn+1).

If ∃ n1 ∈ N∗ such that d(xn1 , xn1−1) = 0, d(yn1 , yn1−1) =0, then xn1−1 = xn1 =
F (xn1−1, yn1−1),
yn1−1 = yn1 = F (yn1 , xn1−1) and xn1−1; yn1−1 is fixed point of F and the proof
is finished. In other case d(xn+1, xn) 6= 0; d(yn+1, yn) 6= 0 for all n ∈ N . Then
by using assumption on ψ , we have,

pn ≤ pn−1 + ψ(pn−1) ≤ pn−1 (3.5)

pn is a non - negative sequence and hence posses a limit p∗. Taking limit when
n→∞, we get,

p∗ ≤ p∗ + ψ(p∗)

and consequently ψ(p∗)=0. By our assumption on ψ , we conclude p∗=0, ie.
limn→∞(pn)=0
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limn→∞ d(xn+1, xn) + d(yn+1, yn)=0

=⇒ limn→∞ d(xn+1, xn) = limn→∞ d(yn+1, yn)=0. (3.6)

Next, we prove that {xn}, {yn} are cauchy sequences. Suppose that at least
one {xn} or {yn} be not a cauchy sequence. Then ∃ ε>0 and two subsequence
of integers nk,mk with nk > mk ≥ k, such that

rk = d(xmk
, xnk

) + d(ymk
, ynk

) ≥ ε, ∀k = 1, 2, 3.... (3.7)

Further, corresponding to mk, we can choose nk in such a way that it is smallest
integer with nk > mk ≥ k satisfying equation (3.7), we have

d(xmk
, xnk−1) + d(ymk

, ynk−1) < ε. (3.8)

Using (3.7) and (3.8) and triangle inequality, we get

ε ≤ rk = d(xmk
, xnk

) + d(ymk
, ynk

)

≤ d(xmk
, xnk−1) + d(xnk−1, xnk

) + d(ymk
, ynk−1) + d(ynk−1, ynk

)

= d(xmk
, xnk−1) + d(ymk

, ynk−1) + d(xnk−1, xnk
) + d(ynk−1, ynk

)

< ε+ pnk−1. (3.9)

Letting k →∞ and using (3.6), we have

lim
n,m→∞

rk = ε > 0. (3.10)

Now, we get

d(xmk+1, xnk+1) = d(F (xmk
, ymk

), F (xnk
, ynk

))

= d(F (xnk
, ynk

), F (xmk
, ymk

))

≤ d(xnk
, xmk

) + ψ(p(ynk
, ymk

)). (3.11)

Similarly,

d(ymk+1, ynk+1) = d(F (ymk
, xmk

), F (ynk
, xnk

))

= d(F (ynk
, xnk

), F (ymk
, xmk

))

≤ d(ynk
, ymk

) + ψ(d(xnk
, xmk

)). (3.12)

Using (3.11) and (3.12), we get

rk+1 ≤ rk + ψ(rk) (3.13)

∀k ∈ 1, 2, 3, ..... taking k → ∞ of both sides of equation (3.13) and from
equation(3.10), it follows that

ε = limk→∞ rk+1 ≤ limk→∞ rk + ψ(rk) < ε
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which is a contraction. Therefore {xn} and {yn} are cauchy sequences. We
now prove that F (u∗, v∗) = u∗, F (v∗, u∗) = v∗. We shall distinguish the cases
(1), 2(a) and 2(b) of the Theorem 3.1.

Since X is a complete metric space, ∃ u∗, v∗ ∈ X such that limn→∞ xn =
u∗, limn→∞ yn = v∗. We now show that if the assumption (1) holds, then
(u∗, v∗) is coupled fixed point of F .
As, we have

u∗ = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F ( lim
n→∞

xn, lim
n→∞

yn) = F (u∗, v∗)

and

v∗ = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F ( lim
n→∞

yn, lim
n→∞

xn) = F (v∗, u∗).

Therefore, (u∗, v∗) is coupled fixed point of F .

Suppose now that the condition 2(a) and 2(b) of the theorem holds.
The sequence {xn}→ u∗, {yn}→ v∗

d(F (u∗, v∗), u∗) ≤ d(F (u∗, v∗), xn+1) + d(xn+1, u
∗)

= d(F (u∗, v∗), F (xn, yn)) + d(xn+1, u
∗)

≤ d(u∗, xn) + ψ(d(v∗, yn)) + d(xn+1, u
∗).

Letting n→∞, we have

d(F (u∗, v∗), u∗) ≤ 0 + ψ(0) = 0.

This implies that F (u∗, v∗) = u∗, similarly, we can show that F (v∗, u∗) = v∗.
This completes the theorem.

Theorem 3.2. Let the hypotheses of Theorem 3.1 hold. In addition, suppose
that there exists z ∈ X which is comparable to u and v for all u, v ∈ X. Then
F has a unique coupled fixed point.

Proof: Suppose that there exists (u′, v′), (u∗, v∗) ∈ X × X are coupled
fixed points of F .
Consider the following two cases:

Case 1: (u′, v′) and (u∗, v∗) are compareable. We have

d(u′, u∗) = d(F (u′, v′), F (u∗, v∗)) ≤ d(u′, u∗) + ψ(d(v′, v∗))

similarly,

d(v′, v∗) = d(F (v′, u′), F (v∗, u∗)) ≤ d(v′, v∗) + ψ(d(u′, u∗)).

It follows that
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d(u′, u∗) + d(v′, v∗) ≤ d(u′, u∗) + d(v′, v∗) + ψ[d(v′, v∗) + d(u′, u∗)]

=⇒ d(u′, u∗) + d(v′, v∗) = 0.

So, u∗ = u′, v∗ = v′ . The proof is complete.

Case 2: Suppose now that (u′, v′) and (u∗, v∗) are not compareable.
Choose an element (w, z) ∈ X compareable with both of them.

Monotonicity =⇒ (F n(w, z), F n(z, w))

d

(
(u∗, v∗)

(u′, v′)

)
= d

((F n(u∗, v∗)

F n(v∗, u∗)

)
,

(
F n(u′, v′)

F n(v′, u′)

))
≤ d

((F n(u∗, v∗)

F n(v∗, u∗)

)
,

(
F n(w, z)

F n(z, w)

))
+ d

((F n(w, z)

F n(z, w)

)
,

(
F n(u′, v′)

F n(v′, u′)

))
≤ d(u∗, w) + ψ(d(v∗, z))) + (d(v∗, z) + ψ(d(u∗, w)))

+ (d(w, u′) + ψ(d(z, v′))) + (d(z, v′) + ψ(d(w, u′)))

= 0

so u∗ = u′, v∗ = v′ . The proof is complete.

Example 3.3. Let X = [0,∞) be endowed with the standard metric d(x, y) =
|x− y|,∀x, y ∈ X. Then (X, d) is complete metric space.

Consider the mapping F : X ×X → X defined by F (x, y) = x−2y
3

; x≥2y.

Let us take ψ : [0,∞)→ [0,∞) such that ψ(t) = 2t
3

.

Clearly F is continous and has the mixed monotone property. Also there are
x0 = 0; y0 = 0 in X such that
x0 = 0 ≤ F (0, 0) = F (x0, y0) and y0 = 0 ≥ F (0, 0) = F (y0, x0).
Then it is obvious that (0, 0) is the coupled fixed point of F .
Now, we have following possibility for values of (x, y) and (u, v) such that x≥u,
y≤v,

d(F (x, y), F (u, v)) = d(x−2y
3
, u−2v

3
)

= 1
3
|(x− 2y)− (u− 2v)|

= 1
3
|(x− u)− 2(y − v)|

≤ 1
3
|(x− u)|+ 2

3
|(y − v)|

≤ |(x− u)|+ 2
3
|(y − v)|

= d(x, u) + ψ(d(y, v)).

Thus all the conditions of theorem 3.1 are satisfied.
Therefore F has a coupled fixed point in X.
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