

Gen. Math. Notes, Vol. 25, No. 2, December 2014, pp.78-94 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Resonance Problem of a Class of Quasilinear Parabolic Equations

Wang Zhong-Xiang¹, Jia Gao² and Zhang Xiao-Juan³

 ^{1,2,3}College of Science, University of Shanghai for Science and Technology Shanghai, China
 ¹E-mail: wzhx5016674@126.com
 ²E-mail: gaojia89@163.com
 ³E-mail: zhangxiaojuan0609@163.com

(Received: 4-9-14 / Accepted: 21-10-14)

Abstract

In this paper, we study the resonance problem of a class of singular quasilinear parabolic equations with respect to its higher near-eigenvalues. Under a generalized Landesman-Lazer condition, it is proved that the resonance problem admits at least one nontrivial solution in weighted Sobolev spaces. The proof is based upon applying the Galerkin-type technique, the Brouwer's fixedpoint theorem and a compact embedding theorem of weighted Sobolev spaces by Shapiro.

Keywords: Weighted Sobolev Space, Quasilinear Parabolic Equation, Resonance.

1 Introduction

Resonance problems of quasilinear elliptic (or parabolic) partial differential equations have been studied extensively in the usual Sobolev spaces. Since the celebrated paper by Landesman and Lazer [8], many existence results were obtained under various nonlinearity growth conditions and the Landesman-Lazer conditions (see [1-4, 6, 7, 9, 11-15] and references therein). However, there has been very limited existence results for the case of singular quasilinear elliptic (or parabolic) equations in the existing literature.

In 2001, Shapiro published a paper [12] on the resonance problems of singular quasilinear equations. An important element of that paper is the existence of a complete orthonormal basis in the weighted Sobolev space associated with singular coefficients of the differential operator. In that paper, a new concept of near-eigenvalues for singular quasilinear elliptic operators was introduced, a new compact embedding theorem in the weighted Sobolev spaces was established, and some new existence results for the resonance problems were obtained.

In 2002, Chung-Cheng Kuo [7] applied Galerkin-type techniques and Brouwer's fixed point theorem to obtain existence theorems of time-periodic solutions for quasilinear parabolic partial differential equations with respect to its first eigenvalue in which the Landesman-Lazer condition may be excluded.

In 2005, Rumbos and Shapiro [11] introduced a generalized Landesman-Lazer condition and studied the resonance problem of the semilinear elliptic equations with respect to its first eigenvalue by using the linking argument and a deformation theorem in weighted Sobolev spaces.

Inspired by papers [9, 10, 12, 14], we have studied the resonance problem of quasilinear or singular quasilinear elliptic (or parabolic) equations in weighted Sobolev spaces with respect to their first eigenvalues by using the Galerkin-type technique and the Brouwer's fixed-point theorem [2–4].

Motivated by [10–12], in this paper, we show the existence of solutions for a class of singular quasilinear parabolic equations with respect to its higher near-eigenvalue in the Hilbert space $\tilde{H}(\tilde{\Omega}, \Gamma)$:

$$\begin{cases} \rho D_t u + \mathcal{M} u = (\lambda_{j_0} u + b(x, t, u)u^- + f(x, t, u))\rho - G, \quad (x, t) \in \widetilde{\Omega}, \\ u \in \widetilde{H}(\widetilde{\Omega}, \Gamma), \end{cases}$$
(P)

where

$$\mathcal{M}u = -\sum_{i,j=1}^{N} D_i [p_i^{\frac{1}{2}}(x) p_j^{\frac{1}{2}}(x) s_i^{\frac{1}{2}}(u) s_j^{\frac{1}{2}}(u) a_{ij}(x) D_j u] + a_0(x) s_0(u) q u, \quad (1.1)$$

and λ_{i_0} is an eigenvalue of \mathcal{L} .

As in paper [3], we assume the existence of a linear uniformly elliptic operator which is close to the original singular quasilinear operator in a certain sense, and hence the existence of a complete orthonormal basis in the weighted Sobolev space associated with singular coefficients of the differential operator. However, unlike the case of the first near-eigenvalue which is simple and whose eigenfunction is of one-sign, the case of higher near-eigenvalue is challenging to study due to the fact that the multiplicity of higher near-eigenvalue is greater than 1 and their corresponding eigenfunctions are sign-changing. By using a space decomposition technique, we are able to prove that the resonance problem has at least one solution under a generalized Landesman-Lazer condition. The proof method is similar to [12] and [4], which is based also upon applying the Galerkin-type technique, the Brouwer's fixed-point theorem and the compact embedding theorem of weighted Sobolev spaces by Shapiro [12].

This paper is organized as follows. In Section 2, we describe the resonance problem of a class of singular quasilinear parabolic equations to be studied, and state the main result. In Section 3, we prove the main theorem.

2 Statement of the Problem and Main Result

Let $\Omega \subset \mathbb{R}^N (N \geq 1)$, be an open set(possibly unbounded) and let $\rho(x), p_i(x) \in C^0(\Omega)$ be positive functions with the property that

$$\int_{\Omega} \rho(x) dx < \infty, \ \int_{\Omega} q(x) dx < \infty, \ \int_{\Omega} p_i(x) dx < \infty, \ i = 1, 2, \cdots, N.$$
 (2.1)

Let $q(x) \in C^0(\Omega)$ be a nonnegative function and $\Gamma \subset \partial \Omega$ be a fixed closed set. Note that Γ may be an empty set and q(x) may be zero. On the other hand, q(x) will satisfy: there exists K > 0, such that

$$0 \le q(x) \le K\rho(x)$$
, for all $x \in \Omega$. (2.2)

Here \mathcal{A} is a set of real-valued functions defined as

$$\mathcal{A} = \{ u : u \in C^0(\bar{\Omega} \times R), u(x, t+2\pi) = u(x, t), \text{ for all } (x, t) \in \bar{\Omega} \times R \}.$$

Setting $\widetilde{\Omega} = \Omega \times T$, $T = (-\pi, \pi)$, $p = (p_1, \cdots, p_N)$ and $D_i = \frac{\partial u}{\partial x_i}$ $(i = 1, 2, \cdots, N)$, we consider the following pre-Hilbert spaces (see [12]):

$$\widetilde{C}^0_{\rho}(\widetilde{\Omega}) = \left\{ u \in C^0(\widetilde{\Omega}) : \int_{\widetilde{\Omega}} |u(x,t)|^2 \rho(x) dx dt < \infty \right\},\$$

with inner product $\langle u, v \rangle_{\rho}^{\sim} = \int_{\widetilde{\Omega}} u(x, t) v(x, t) \rho(x) dx dt$, and the space

$$\widetilde{C}^{1}_{p,\rho}(\widetilde{\Omega},\Gamma) = \{ u \in \mathcal{A} \cap C^{1}(\Omega \times R) \, \middle| \, u(x,t) = 0, \text{ for all } (x,t) \in \Gamma \times R;$$

$$\int_{\widetilde{\Omega}} \left[\sum_{i=1}^{N} |D_i u|^2 p_i + (u^2 + |D_t u|^2) \rho \right] < \infty \}$$

with inner product

$$\langle u, v \rangle_{\widetilde{H}} = \int_{\widetilde{\Omega}} \left[\sum_{i=1}^{N} p_i D_i u D_i v + (uv + D_t u D_t v) \rho \right] dx dt.$$

Let $\widetilde{L}^2_{\rho} \triangleq L^2_{\rho}(\widetilde{\Omega})$ denote the Hilbert space obtained from the completion of \widetilde{C}^0_{ρ} with the norm $||u||_{\rho} = (\langle u, u \rangle_{\rho}^{\sim})^{\frac{1}{2}}$, and $\widetilde{H} \triangleq \widetilde{H}(\widetilde{\Omega}, \Gamma)$ denote the completion of the space $\widetilde{C}^1_{p,\rho}$ with the norm $||u||_{\widetilde{H}} = \langle u, u \rangle_{\widetilde{H}}^{\frac{1}{2}}$. Similarly, we have $\widetilde{L}^2_{p_i}(i = 1, 2, \dots, N)$ and \widetilde{L}^2_q .

It is assumed throughout the paper that $s_i(u)(i = 0, 1, \dots, N)$ meets:

(S1) $s_i(u): \widetilde{H} \to R$ is weakly sequentially continuous;

(S2) there exist $\eta_0, \eta_1 > 0$ such that $\eta_0 \leq s_i(u) \leq \eta_1$, and $s_i(u)$ is measurable, for $u \in \widetilde{H}$.

The functions $a_{ij}(i, j = 1, 2, \dots, N)$ and $a_0(x)$ satisfy(also $b_{ij}(x)$ and $b_0(x)$): (A1) $a_0(x), a_{ij}(x) \in C^0(\Omega) \bigcap L^{\infty}(\Omega), a_{ij}(x) = a_{ji}(x), \forall x \in \Omega;$ (A2) $a_0(x) \geq \beta_0 > 0, \forall x \in \Omega;$

(A3) there exists $c_0 > 0$, for $x \in \Omega$ and $\xi \in \mathbb{R}^N$, such that $\sum_{i,j=1}^N a_{ij}(x)\xi_i\xi_j \ge |\xi_j|^2$

 $c_0 |\xi|^2$.

Furthermore, we assume both Caratheodory functions b(x, t, s) and f(x, t, s) satisfy the following conditions.

(B1) There exist constants $\delta > 0$ and k > 1 such that

$$|b(x,t,s)| \leq \begin{cases} \delta|s|, & |s| \leq \gamma_1, \\ \frac{\delta\gamma_1}{(|s|+1-\gamma_1)^m}, & |s| > \gamma_1, \end{cases}$$
(2.3)

and $0 < \gamma_1 < 1$, where $\gamma_1 = \frac{\lambda_{j_0+j_1} - \lambda_{j_0}}{k}$ and $m \ge 1$. Conditions on f(x, t, s):

(f1) There exists a nonnegative function $f_0(x,t) \in \widetilde{L}^2_{\rho}$ such that

 $|f(x,t,s)| \le f_0(x,t)$, for a.e. $x \in \Omega$ and $\forall s \in R$;

(f2) $\limsup_{s\to+\infty} f(x,t,s) = f^+(x,t) \in L^{\infty}(\Omega)$, $\liminf_{s\to-\infty} f(x,t,s) = f^-(x,t) \in L^{\infty}(\Omega)$.

It is, in general, difficult to study the eigenvalues and eigenfunctions of \mathcal{M} . Shapiro [12] introduced the concepts of near-related operators and near-eigenvalue of \mathcal{M} .

We first introduce some operators related to this paper.

Definition 2.1. For the quasilinear differential operator \mathcal{M} , the two form is

$$\mathcal{M}(u,v) = \sum_{i,j=1}^{N} \int_{\widetilde{\Omega}} \left[p_i^{\frac{1}{2}} p_j^{\frac{1}{2}} s_i^{\frac{1}{2}}(u) s_j^{\frac{1}{2}}(u) a_{ij} D_j u D_i v \right] + \int_{\widetilde{\Omega}} q s_0(u) a_0 u v, \quad u,v \in \widetilde{H}(\widetilde{\Omega},\Gamma)$$

$$(2.4)$$

Defining

$$\mathcal{L}_{x}u = -\sum_{i,j=1}^{N} D_{i} \left[p_{i}^{\frac{1}{2}} p_{j}^{\frac{1}{2}} b_{ij} D_{j} u \right] + b_{0} q u, \qquad (2.5)$$

for $u \in H_{p,q,\rho} = H_{p,q,\rho}(\Omega, \Gamma)$ (as described in [12]), and

$$\mathcal{L}u = -\sum_{i,j=1}^{N} D_i \left[p_i^{\frac{1}{2}} p_j^{\frac{1}{2}} b_{ij} D_j u \right] + a_0 q u, \ u \in \widetilde{H}(\widetilde{\Omega}, \Gamma),$$
(2.6)

then the bilinear form of \mathcal{L}_x is

$$\mathcal{L}_{x}(u,v) = \sum_{i,j=1}^{N} \int_{\Omega} p_{i}^{\frac{1}{2}} p_{j}^{\frac{1}{2}} b_{ij}(x) D_{j} u D_{i} v + \int_{\Omega} b_{0} u v q, \ u,v \in H_{p,q,\rho}\left(\Omega,\Gamma\right), \quad (2.7)$$

and the bilinear form of \mathcal{L} is

$$\mathcal{L}(u,v) = \sum_{i,j=1}^{N} \int_{\widetilde{\Omega}} p_i^{\frac{1}{2}} p_j^{\frac{1}{2}} b_{ij}(x) D_j u D_i v + \int_{\widetilde{\Omega}} b_0 u v q, \quad u,v \in \widetilde{H}(\widetilde{\Omega},\Gamma).$$
(2.8)

We further assume that domain Ω and operator \mathcal{L}_x satisfy the so-called $V_L(\Omega, \Gamma)$ conditions [12, 14]:

 (V_L-1) There exists a complete orthonormal sequence of functions $\{\varphi_n\}_{n=1}^{\infty}$ in $L^2_{\rho}(\Omega)$, such that $\varphi_n \in H^1_{p,q,\rho}(\Omega,\Gamma) \cap C^2(\Omega)$ for all n. (V_L-2) The uniformly elliptic operator \mathcal{L}_x has a sequence of real eigenvalues

 $\{\lambda_n\}_{n=1}^{\infty}$ corresponding to the orthonormal sequence $\{\varphi_n\}_{n=1}^{\infty}$, satisfying

$$0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \dots \le \lambda_n \to \infty$$
 as $n \to \infty_2$

and

$$\mathcal{L}_x(\varphi_n, v) = \lambda_n \langle \varphi_n, v \rangle_{\rho}, \ \forall v \in H^1_{p,q,\rho}(\Omega, \Gamma) \text{ and } n \ge 1.$$

Also $\varphi_1 > 0$ in Ω .

Here $\langle u, v \rangle_{\rho} = \int_{\widetilde{\Omega}} uv\rho$. For the sake of simplicity, in the following, we will denote $\langle u, v \rangle_{\rho}$ as $\langle u, v \rangle$.

Examples of operators and domains for which the $V_L(\Omega, \Gamma)$ conditions hold can be found in [12](pp. 20-26). The $V_L(\Omega, \Gamma)$ conditions play a key role in our study of the resonance problem of singular quasilinear elliptic equations.

Definition 2.2. Operator \mathcal{M} is said to be near-related to operator $\mathcal{L}(denoted$ as $\mathcal{M} \sim \mathcal{L}$ for convenience), if, for any $v \in H$,

$$\lim_{||u||_{\widetilde{H}} \to \infty} \frac{\mathcal{M}(u,v) - \mathcal{L}(u,v)}{||u||_{\widetilde{H}}} = 0.$$
(2.9)

Definition 2.3. Assume $\mathcal{M} \sim \mathcal{L}$ in \widetilde{H} . λ is called a near-eigenvalue of \mathcal{M} if

(1) λ is an eigenvalue of \mathcal{L}_x ; (2) $\lim_{\|u\|_{\widetilde{H}}\to\infty} \frac{\mathcal{M}(u,P_\lambda u)-\mathcal{L}(u,P_\lambda u)}{\|u\|_{\widetilde{H}}} = 0$, where P_λ is the orthogonal projection from $L^2_\rho(\Omega)$ onto the eigenspace of \mathcal{L}_x corresponding to the eigenvalue λ .

We now state the main result of this paper:

Theorem 2.4. Let $\Omega \subset \mathbb{R}^N (N \geq 1)$, $T = (-\pi, \pi)$, $\widetilde{\Omega} = \Omega \times T$, $p = (p_1, \dots, p_N)$, ρ and $p_i (i = 1, \dots, N)$ be positive functions in $C^0(\Omega)$ satisfying (2.1), $q \in C^0(\Omega)$ be a nonnegative function satisfying (2.2), and $\Gamma \subset \partial \Omega$ be a closed set. Let \mathcal{M} and \mathcal{L} be given by (1.1) and (2.6) satisfying (S1)-(S2), (A1)-(A3) respectively and \mathcal{L}_x satisfies the conditions of $V_L(\Omega, \Gamma)$. If $\mathcal{M} \sim \mathcal{L}$, λ_{j_0} is a near-eigenvalue of \mathcal{M} of multiplicity j_1 , (B1) and (f1)-(f2) hold, and $G \in (\widetilde{H})^*$, then the problem (P) has at least one weak solution; i.e., there exits $u^* \in \widetilde{H}$ such that

$$\langle D_t u^*, v \rangle_{\rho} + \mathcal{M}(u^*, v) = \lambda_{j_0} \langle u^*, v \rangle_{\rho} + \langle f(x, t, u^*) + g(x, t, u^*), v \rangle_{\rho} - G(v), \ \forall v \in \widetilde{H}.$$
(2.10)

Here, we will introduce some lemmas and concepts which will be used later. If (A1)-(A3) and the conditions of $V_L(\Omega, \Gamma)$ hold, we have

$$\{\widetilde{\varphi}_{jk}^c\}_{j=1,k=0}^{\infty,\infty} \cup \{\widetilde{\varphi}_{jk}^s\}_{j=1,k=1}^{\infty,\infty} \text{ is a CONS for } \widetilde{L}_{\rho}^2, \qquad (2.11)$$

where

$$\widetilde{\varphi}_{jk}^{c}(x,t) = \begin{cases} \frac{\varphi_{j}(x)}{\sqrt{2\pi}}, & k = 0, j = 1, 2, \cdots, \\ \frac{\varphi_{j}(x)\cos(kt)}{\sqrt{\pi}}, & k, j = 1, 2, \cdots, \end{cases}$$
(2.12)

and

$$\widetilde{\varphi}_{jk}^s(x,t) = \frac{\varphi_j(x)\sin(kt)}{\sqrt{\pi}}, \ k, j = 1, 2, \cdots.$$
(2.13)

Obviously, both $\widetilde{\varphi}_{jk}^c$ and $\widetilde{\varphi}_{jk}^s$ are in $\widetilde{H}(\widetilde{\Omega}, \Gamma)$.

Lemma 2.5. If $\{\widetilde{\varphi}_{jk}^c\}_{j=1,k=0}^{\infty,\infty} \cup \{\widetilde{\varphi}_{jk}^s\}_{j=1,k=1}^{\infty,\infty}$ is a CONS for $L^2_{\rho}(\widetilde{\Omega})$ defined by (2.11), setting

$$\tau_n(v) = \sum_{j=1}^n \widehat{v}^c(j,0) \widetilde{\varphi}_{j0}^c + \sum_{j=1}^n \sum_{k=1}^n \left[\widehat{v}^c(j,k) \widetilde{\varphi}_{jk}^c + \widehat{v}^s(j,k) \widetilde{\varphi}_{jk}^s \right],$$
(2.14)

we have

$$\lim_{n \to \infty} ||\tau_n(v) - v||_{\widetilde{H}} = 0, \text{ for all } v \in \widetilde{H}.$$
(2.15)

Lemma 2.6. (i) If $v \in \widetilde{H}$, then

$$\mathcal{L}_{1}(v,v) + ||D_{t}v||_{\rho}^{2} = \sum_{j=1}^{\infty} |\widehat{v}^{c}(j,0)|^{2} (\lambda_{j}+1) + \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \left[|\widehat{v}^{c}(j,k)|^{2} + |\widehat{v}^{s}(j,k)|^{2} \right] (\lambda_{j}+1+k^{2}).$$
(2.16)

(ii) If $v \in L^2_{\rho}(\widetilde{\Omega})$ and $\mathcal{L}_1(v,v) + ||D_t v||^2_{\rho} < \infty$, then $v \in \widetilde{H}$. Here $\mathcal{L}_1(v,v) = \mathcal{L}(v,v) + \langle v,v \rangle$.

Lemma 2.7. Let $\widetilde{\Omega}, \rho, p, q$, and \mathcal{L} be as in the hypothesis of Theorem 2.1 and assume that (Ω, Γ) is a $V_L(\Omega, \Gamma)$. Then \widetilde{H} is compactly imbedded in $L^2_{\rho}(\widetilde{\Omega})$.

The proofs of Lemmas 2.1-2.3 can be found in [12]. We define the set

$$S_n = \left\{ v \in \widetilde{H} : v = \sum_{j=1}^n \eta_{j0}^c \widetilde{\varphi}_{j0}^c + \sum_{j=1}^n \sum_{k=1}^n \eta_{jk}^c \widetilde{\varphi}_{jk}^c + \eta_{jk}^s \widetilde{\varphi}_{jk}^s, \ \eta_{jk}^c, \eta_{jk}^s \in R \right\}.$$
(2.17)

Remark 2.8. (1) If $u_n \in S_n$, then $\mathcal{M}(u_n, D_t u_n) = 0$; (2) $\langle D_t(\alpha \widetilde{\varphi}_{jk}^c + \beta \widetilde{\varphi}_{jk}^s), \alpha \widetilde{\varphi}_{jk}^c + \beta \widetilde{\varphi}_{jk}^s \rangle = 0, \ j, k \ge 1, \alpha, \beta \in R.$

3 Proof of Theorem 2.1

The proof of Theorem 2.1 can be divided into three steps. The first step is to construct a set of approximate solutions $\{u_n\}$ of (2.10) in \widetilde{H} , where $u_n \in S_n$ and S_n is defined as in (2.17). Then we show in the second step that $\{u_n\}$ is bounded in \widetilde{H} . Finally, we show $\{u_n\}$ converges to a weak solution $u^* \in \widetilde{H}$ of (2.10).

Lemma 3.1. Assume that all the conditions in the hypothesis of Theorem 2.1 hold. Let S_n be the subspace of \widetilde{H} defined by (2.17). Taking $n_0 = j_0 + j_1$ and $\gamma_0 = \frac{1}{2}(\lambda_{j_0+j_1} - \lambda_{j_0})$, then for $n \ge n_0$, there is a function $u_n \in S_n$ with the property that

$$\langle D_t u_n, v \rangle + \mathcal{M}(u_n, v) = (\lambda_{j_0} + \gamma_0 n^{-1}) \langle u_n, v \rangle + \langle b(x, t, u_n)(u_n)^-, v \rangle + (1 - n^{-1}) \langle f(x, t, u_n), v \rangle - G(v), \ \forall v \in S_n.$$

$$(3.1)$$

Proof. Let $\{\psi_i\}_{i=1}^{2n^2+n}$ be an enumeration of $\{\widetilde{\varphi}_{jk}^c\}_{j=1,k=0}^{n,n} \cup \{\widetilde{\varphi}_{jk}^s\}_{j=1,k=1}^{n,n}$, and set

$$n^* = (j_0 + j_1 - 1)(2n + 1). \tag{3.2}$$

So $\{\psi_i\}_{i=1}^{n^*}$ is an enumeration of $\{\widetilde{\varphi}_{jk}^c\}_{j=1,k=0}^{j_0+j_1-1,n} \cup \{\widetilde{\varphi}_{jk}^s\}_{j=1,k=1}^{j_0+j_1-1,n}$, where $n \ge n_0$.

With this enumeration defined, for $\alpha = (\alpha_1, \cdots, \alpha_{2n^2+n})$, we set

$$u = \sum_{i=1}^{2n^2+n} \alpha_i \psi_i, \quad \widetilde{u} = \sum_{i=1}^{2n^2+n} \delta_i \alpha_i \psi_i, \quad (3.3)$$

where $\delta_i = -1$, if $1 \le i \le n^*$; $\delta_i = 1$, if $n^* + 1 \le i \le 2n^2 + n$, and define

$$F_i(\alpha) = \langle D_t u, \delta_i \psi_i \rangle + \mathcal{M}(u, \delta_i \psi_i) - (\lambda_{j_0} + \gamma_0 n^{-1}) \langle u, \delta_i \psi_i \rangle - \langle b(x, t, u) u^-, \delta_i \psi_i \rangle - (1 - n^{-1}) \langle f(x, t, u), \delta_i \psi_i \rangle + G(\delta_i \psi_i).$$
(3.4)

It is clear from orthogonality that $\langle D_t u, \tilde{u} \rangle = 0$. From (3.3) and (3.4) we get

$$\sum_{i=1}^{2n^2+n} F_i(\alpha)\alpha_i = \mathcal{M}(u,\widetilde{u}) - (\lambda_{j_0} + \gamma_0)\langle u,\widetilde{u}\rangle -\langle b(x,t,u)u^-,\widetilde{u}\rangle - (1 - n^{-1})\langle f(x,t,u) - \gamma_0 u,\widetilde{u}\rangle + G(\widetilde{u}).$$
(3.5)

Then

$$\sum_{i=1}^{2n^2+n} F_i(\alpha)\alpha_i = I(\alpha) + II(\alpha), \qquad (3.6)$$

where

$$I(\alpha) = \mathcal{L}(u, \widetilde{u}) - (\lambda_{j_0} + \gamma_0) \langle u, \widetilde{u} \rangle - \langle b(x, t, u)u^-, \widetilde{u} \rangle - (1 - n^{-1}) \langle f(x, t, u) - \gamma_0 u, \widetilde{u} \rangle + G(\widetilde{u}),$$

$$II(\alpha) = \mathcal{M}(u, \widetilde{u}) - \mathcal{L}(u, \widetilde{u}).$$

Consider $I(\alpha)$ in (3.6) first. Note that $\gamma_0 = \frac{1}{2}(\lambda_{j_0+j_1} - \lambda_{j_0})$ and $\delta_j(\lambda_j - \lambda_{j_0} - \gamma_0) \ge \gamma_0(j = 1, 2, \cdots, n)$, then

$$\mathcal{L}(u,\widetilde{u}) - (\lambda_{j_0} + \gamma_0) \langle u, \widetilde{u} \rangle > \gamma_0 |\alpha|^2.$$
(3.7)

By condition (B1), we have

$$\begin{aligned} |\langle b(x,t,u)u^{-},\tilde{u}\rangle_{\rho}| &\leq \int_{\tilde{\Omega}\cap\{|u|\leq\gamma_{1}\}} |u|^{2}|\tilde{u}|\rho + \delta\gamma_{1} \int_{\tilde{\Omega}\cap\{|u|>\gamma_{1}\}} \frac{|u||\tilde{u}|\rho}{(|u|+1-\gamma_{1})^{m}} \\ &\leq c|\alpha|. \end{aligned}$$

$$(3.8)$$

From (f1), Hölder inequality and Minkowski inequality, we have

$$|\langle f(x,t,u) - \gamma_0 u, \ \tilde{u} \rangle| \le \gamma_0 |\alpha|^2 + ||f_0||_{\rho} |\alpha|.$$
(3.9)

Note that $G \in (\widetilde{H})^*$. It follows from Lemma 2.3 that, for each given $n \geq j_0 + j_1$,

$$|G(\tilde{u})| \le c|\alpha|. \tag{3.10}$$

Thus, it follows from (3.7)-(3.10) that

$$I(\alpha) > \frac{1}{n}\gamma_0|\alpha|^2 - c|\alpha|.$$
(3.11)

By $\mathcal{M} \sim \mathcal{L}$ and $||u||_{\rho}^2 = ||\widetilde{u}||_{\rho}^2 = |\alpha|^2$, we have

$$\lim_{|\alpha| \to \infty} \frac{II(\alpha)}{|\alpha|^2} = \lim_{|\alpha| \to \infty} \frac{\mathcal{M}(u, \tilde{u}) - \mathcal{L}(u, \tilde{u})}{|\alpha|^2} = 0.$$
(3.12)

Thus it follows from (3.6), (3.11) and (3.12) that, for any given $n \geq j_0 + j_1$, there exists $A_0 > 0$ such that $\sum_{i=1}^n F_i(\alpha)\alpha_i > 0$ for $|\alpha| \geq A_0$. Under the assumptions of Theorem 2.1, it is straightforward to verify that $F_i : \mathbb{R}^n \to \mathbb{R}$ is continuous for $1 \leq i \leq n$. By applying the Brouwer's fixed-point theorem [5], there exists $\alpha^* = (\alpha_1^*, \alpha_2^*, \cdots, \alpha_n^*) \in \mathbb{R}^n$ such that $F_i(\alpha^*) = 0$ for $1 \leq i \leq n$. Let $u_n^* = \sum_{i=1}^n \alpha_i^* \varphi_i \in S_n$. It follows from (3.4) that u_n^* is a solution of (3.1). \Box

In next step, we will prove that $\{u_n^*\}_{n=j_0+j_1}^{\infty}$ is bounded in \tilde{H} .

Lemma 3.2. Assume the conditions in Lemma 3.1 hold, and $\{u_n^*\}_{n=j_0+j_1}^{\infty} \subset \widetilde{H}$ is the sequence of solutions obtained in Lemma 3.1. Assume further $G \in (\widetilde{H})^*$ satisfies the following generalized Landesman-Lazer condition:

$$G(w) < \int_{\widetilde{\Omega}_1} f^+(x,t)w(x)\rho + \int_{\widetilde{\Omega}_2} f^-(x,t)w(x)\rho(x), \qquad (3.13)$$

for every nontrivial λ_{j_0} -eigenfunction w of \mathcal{L}_x , where $\widetilde{\Omega}_i = \Omega_i \times (-\pi, \pi)(i = 1, 2)$, $\Omega_1 = \{x \in \Omega; w(x) > 0\}$ and $\Omega_2 = \{x \in \Omega; w(x) < 0\}$. Then $\{u_n^*\}$ is bounded in \widetilde{H} .

Proof. For simplicity of notation, we denote $\{u_n^*\}_{n=j_0+j_1}^{\infty}$ by $\{u_n\}_{n=j_0+j_1}^{\infty}$. It follows from Lemma 3.1 that $u_n \in S_n$ and u_n satisfies

$$\langle D_t u_n, v \rangle + \mathcal{M}(u_n, v) = (\lambda_{j_0} + \gamma_0 n^{-1}) \langle u_n, v \rangle + \langle b(x, t, u_n)(u_n)^-, v \rangle + (1 - n^{-1}) \langle f(x, t, u_n), v \rangle - G(v), \quad \forall v \in S_n,$$

$$(3.14)$$

where $\gamma_0 = (\lambda_{j_0+j_1} - \lambda_{j_0})/2$, and $n \ge n_0 = j_0 + j_1$.

In order to prove Lemma 3.2, we only need to prove that there exists a constant such that $\{u_n\}$ obtained by Lemma 3.1 satisfies

$$\|u_n\|_{\widetilde{H}} \le K. \tag{3.15}$$

Assume that (3.15) dose not hold. Then there exists a subsequence of $\{u_n\}$, denoted again by $\{u_n\}$, such that

$$\lim_{n \to \infty} \|u_n\|_{\widetilde{H}} = \infty.$$
(3.16)

Letting $v = D_t u_n$ in (3.14), by (f2), $\langle D_t u_n, u_n \rangle = 0$ and $\mathcal{M}(D_t u_n, u_n) = 0$, we have

$$\begin{aligned} |\langle b(x,t,u_n)u_n^-, D_t u_n\rangle| &\leq \int_{\widetilde{\Omega}\cap\{|u_n|\leq\gamma_1\}} |u_n|^2 |D_t u_n|\rho \\ +\delta\gamma_1 \int_{\widetilde{\Omega}\cap\{|u_n|>\gamma_1\}} \frac{|u_n|\cdot |D_t u_n|\rho}{(|u_n|+1-\gamma_1)^m} \\ &\leq c(\delta,\gamma_1,|\widetilde{\Omega}|) \|D_t u_n\|\rho , \end{aligned}$$

and we can conclude that there exists K > 0 such that

$$\|D_t u_n\| \rho \le K. \tag{3.17}$$

Under conditions (B1) and (S2), it follows from (1.1) that

$$\mathcal{M}(u_n, u_n) \ge c_0(\sum_{i=1}^N \|D_i u_n\|_{p_i}^2 + \|u_n\|_q^2),$$

where c_0 is a positive constant. Then we have

$$c_1 \|u_n\|_{\widetilde{H}}^2 \le \mathcal{M}(u_n, u_n) + c_2(\|u_n\|_{\rho}^2 + \|D_t u_n\|_{\rho}^2).$$
(3.18)

Now by letting $v = u_n$ in (3.14), and the proof of (3.9), we have

$$|\langle f(x,t,u_n) - \gamma_0 u_n, u_n \rangle| \le \gamma_0 ||u_n||_{\rho}^2 + K ||u_n||_{\rho}.$$
(3.19)

From (B1) and Hölder inequality, we have

$$|\langle b(x,t,u_n)u_n^-,u_n\rangle| \le \int_{\widetilde{\Omega}\cap\{|u_n|\le\gamma_1\}} \delta|u_n|^3\rho + \delta\gamma_1 \int_{\widetilde{\Omega}\cap\{|u_n|>\gamma_1\}} \frac{|u_n|^2\rho}{(|u_n|+1-\gamma_1)^m}$$

$$\leq c_{2}^{*}(\delta,\gamma_{1},|\hat{\Omega}|) \|u_{n}\|_{\rho}^{2-m} + c_{3}^{*}(\delta,\gamma_{1},|\hat{\Omega}|).$$
(3.20)

Then by (3.19), (3.20) and $\langle D_t u_n, u_n \rangle = 0$, we have

$$c_{1} \|u_{n}\|_{\widetilde{H}}^{2} \leq (\lambda_{j_{0}} + \gamma_{0}) \langle u_{n}, u_{n} \rangle + \langle b(x, t, u_{n})u_{n}^{-}, u_{n} \rangle + (1 - n^{-1}) \langle f(x, t, u_{n}) - \gamma_{0}u_{n}, u_{n} \rangle - G(u_{n}) + c_{1}(\|u_{n}\|_{\rho}^{2} + \|D_{t}u_{n}\|_{\rho}^{2}) \leq K_{4} \|u_{n}\|_{\rho}^{2} + K \|u_{n}\|_{\widetilde{H}} + c_{2}^{*}(\delta, \gamma_{1}, |\widetilde{\Omega}|) \|u_{n}\|_{\rho}^{2-m} + c_{3}^{*}(\delta, \gamma_{0}, |\widetilde{\Omega}|),$$

where $K_4 = \lambda_{j_0} + 2\gamma_0 + c_1$, and m > 1. Dividing both sides of the above inequalities by $||u_n||^2_{\tilde{H}}$ and then by (3.16), we know that there exists $n_1(n_1 \ge n_0)$ such that

$$0 < \frac{c_1}{K_4} \le \frac{\|u_n\|_{\rho}^2}{\|u_n\|_{\widetilde{H}}^2} \le 1, \quad \forall n \ge n_1.$$

Noticing (3.16), the above inequalities establish if and only if

$$\lim_{n \to \infty} \|u_n\|_{\rho} = \infty, \tag{3.21}$$

that is, there exists K > 0 such that

$$||u_n||_{\widetilde{H}} \le K ||u_n||_{\rho}, \quad \forall n \ge n_1.$$
 (3.22)

Rewrite u_n as $u_n = u_{n1} + u_{n2} + u_{n3}$, and let $\tilde{u}_n = -u_{n1} - u_{n2} + u_{n3}$, where

$$\begin{cases} u_{n1} = \sum_{j=1}^{j_0-1} \widehat{u}_n^c(j,0) \widetilde{\varphi}_{j0}^c + \sum_{j=1}^{j_0-1} \sum_{k=1}^n (\widehat{u}_n^c(j,k) \widetilde{\varphi}_{jk}^c + \widehat{u}_n^s(j,k) \widetilde{\varphi}_{jk}^s), \\ u_{n2} = \sum_{j=j_0}^{j_0+j_1-1} \widehat{u}_n^c(j,0) \widetilde{\varphi}_{j0}^c + \sum_{j=j_0}^{j_0+j_1-1} \sum_{k=1}^n (\widehat{u}_n^c(j,k) \widetilde{\varphi}_{jk}^c + \widehat{u}_n^s(j,k) \widetilde{\varphi}_{jk}^s), \\ u_{n3} = \sum_{j=j_0+j_1}^n \widehat{u}_n^c(j,0) \widetilde{\varphi}_{j0}^c + \sum_{j=j_0+j_1}^n \sum_{k=1}^n (\widehat{u}_n^c(j,k) \widetilde{\varphi}_{jk}^c + \widehat{u}_n^s(j,k) \widetilde{\varphi}_{jk}^s). \end{cases}$$
(3.23)

First, for given any $n \ge n_1$, we can prove the following conclusion

$$\lim_{n \to \infty} \frac{\|u_{n1}\|_{\tilde{H}} + \|u_{n3}\|_{\tilde{H}}}{\|u_n\|_{\rho}} = 0.$$
(3.24)

As a result, from (3.14) with $v = \tilde{u}_n$, we have

$$\langle b(x,t,u_n)(u_n)^-, \tilde{u}_n \rangle + (1-n^{-1}) \langle f(x,t,u_n) - \gamma_0 u_n, \tilde{u}_n \rangle - G(\tilde{u}_n) + \mathcal{L}(u_n, \tilde{u}_n) - \mathcal{M}(u_n, \tilde{u}_n) = \sum_{j=1}^n \delta_j (\lambda_j - \lambda_{j_0} - \gamma_0) |\hat{u}_n^c(j,0)|^2 + \sum_{j,k=1}^n \delta_j (\lambda_j - \lambda_{j_0}) [|\hat{u}_n^c(j,k)|^2 + |\hat{u}_n^s(j,k)|^2].$$
(3.25)

Since

$$(3.25)_{R} = \gamma_{0} ||u_{n}||_{\rho}^{2} + \sum_{j=1}^{j_{0}+j_{1}-1} (\lambda_{j_{0}} - \lambda_{j}) |\hat{u}_{n}^{c}(j,0)|^{2} + \sum_{j=j_{0}+j_{1}}^{n} (\lambda_{j} - \lambda_{j_{0}} - 2\gamma_{0}) |\hat{u}_{n}^{c}(j,0)|^{2} + \sum_{j=1}^{j_{0}+j_{1}-1} \sum_{k=1}^{n} (\lambda_{j_{0}} - \lambda_{j}) [|\hat{u}_{n}^{c}(j,k)|^{2} + |\hat{u}_{n}^{s}(j,k)|^{2}] + \sum_{j=j_{0}+j_{1}}^{n} \sum_{k=1}^{n} (\lambda_{j} - \lambda_{j_{0}} - 2\gamma_{0}) [|\hat{u}_{n}^{c}(j,k)|^{2} + |\hat{u}_{n}^{s}(j,k)|^{2}],$$

by (3.8) and the proof of (3.9), we get

$$(3.25)_{L} \leq \gamma_{0} \|u_{n}\|_{\rho}^{2} + c^{*}(\delta, \gamma_{1}, |\tilde{\Omega}|, K) \|u_{n}\|_{\rho} + \mathcal{L}(u_{n}, \tilde{u}_{n}) - \mathcal{M}(u_{n}, \tilde{u}_{n}).$$

In this way, it follows from (3.25) that

$$(3.25)_R \le \gamma_0 \|u_n\|_{\rho}^2 + c^*(\delta, \gamma_1, |\widetilde{\Omega}|, K) \|u_n\|_{\rho} + \mathcal{L}(u_n, \tilde{u}_n) - \mathcal{M}(u_n, \tilde{u}_n).$$
(3.26)

For fixed n, there exists a constant $\gamma' > 0$ such that

$$\gamma'(1+\lambda_k) \le \lambda_{j_0} - \lambda_k, \ k = 1, 2, \cdots j_0 - 1,$$
$$\gamma'(1+\lambda_k) \le \lambda_k - \lambda_{j_0} - 2\gamma_0, \ k \ge j_0 + j_1.$$

Since

$$\mathcal{L}_{1}(u_{n}, u_{n}) = \sum_{j=1}^{n} (1+\lambda_{j}) \hat{u}_{n}^{c}(j, 0) \widetilde{\varphi}_{j0}^{c} + \sum_{j=1}^{n} \sum_{k=1}^{n} (1+\lambda_{j}) [\hat{u}_{n}^{c}(j, k) \widetilde{\varphi}_{jk}^{c} + \hat{u}_{n}^{s}(j, k) \widetilde{\varphi}_{jk}^{s}],$$

by (3.26) and the above inequalities, there exists $\gamma^* > 0$ such that

$$\gamma^*(\|u_{n1}\|_{\widetilde{H}^2} + \|u_{n3}\|_{\widetilde{H}^2}) \le c^* \|u_n\|_{\rho} + \mathcal{L}(u_n, \tilde{u}_n) - \mathcal{M}(u_n, \tilde{u}_n) + K.$$

Dividing both sides of the above inequality by $||u_n||_{\rho}^2$ and taking the limit as $n \to \infty$, it follows from (3.21) and $\mathcal{M} \sim \mathcal{L}$ that (3.23) establishes.

Next, taking use of the notation of (3.23) and letting

$$w_n = \frac{u_n}{\|u_n\|_{\rho}}, \quad w_{ni} = \frac{u_{ni}}{\|u_n\|_{\rho}}, \ i = 1, 2, 3,$$
 (3.27)

thus by (3.22), there exists K > 0 such that

$$||w_n||_{\widetilde{H}} \le K \text{ and } ||w_{ni}||_{\widetilde{H}} \le K, \ i = 1, 2, 3, \ \forall n \ge n_1,$$
 (3.28)

that is, $||w_n||_{\widetilde{H}}$ is a bounded sequence in \widetilde{H} . As \widetilde{H} is a separable Hilbert space, by Lemma 2.3 and (3.28), there exists a subsequence of w_n (denoted again by w_n) and $w \in \widetilde{H}$ such that

$$\begin{cases} (1) \lim_{n \to \infty} ||w_n - w||_{\widetilde{H}} = 0; \\ (2) \ \exists w^* \in \widetilde{L}^2_{\rho}, \ s.t. |w_n(x,t)| \le w^*(x,t), \ a.e. \ (x,t) \in \widetilde{\Omega}; \\ (3) \lim_{n \to \infty} w_n(x,t) = w(x,t), \ a.e. \ (x,t) \in \overline{\widetilde{\Omega}}. \end{cases}$$
(3.29)

Since $\mathcal{M} \sim \mathcal{L}$, we get from (3.28) that

$$\lim_{n \to \infty} \frac{\mathcal{M}(u_n, w_{ni}) - \mathcal{L}(u_n, w_{ni})}{\|u_n\|_{\rho}} = 0, \ i = 1, 2, 3.$$

We observe from (3.24) that $\lim_{n\to\infty} ||w_{n3}||_{\rho} = 0$. Hence, if $n \to \infty$, then

$$\langle w_n, \widetilde{\varphi}_{jk}^c \rangle = \langle w_{n3}, \widetilde{\varphi}_{jk}^c \rangle \to 0, \ j \ge j_0 + j_1.$$

Now by (3.29), we get $\hat{w}^c(j,k) = 0$, for $j \ge j_0 + j_1$ and all k. Similarly, we have $\hat{w}^s(j,k) = 0$, for $j \ge j_0 + j_1$ and all k. By (3.24), we gain $\lim_{n \to \infty} ||w_{n1}||_{\rho} = 0$, similarly, we can obtain $\hat{w}^c(j,k) = 0$ and $\hat{w}^s(j,k) = 0$, for $1 \le j \le j_0 - 1$ and all k. Thus, we get

$$\begin{cases} \hat{w}^c(j,k) = 0 \text{ and } \hat{w}^s(j,k) = 0, \text{ for } j \ge j_0 + j_1 \text{ and all } k; \\ \hat{w}^c(j,k) = 0 \text{ and } \hat{w}^s(j,k) = 0, \text{ for } 1 \le j \le j_0 - 1 \text{ and all } k. \end{cases}$$
(3.30)

Hence, letting $v = D_t u_n$ in (3.14), and by $\mathcal{M}(u_n, D_t u_n) = 0$, Schwarz inequality and $G \in (\widetilde{H})^*$, we get

$$||D_t u_n||_{\rho} \le ||f(x, t, u_n)||_{\rho} + c(\delta, \gamma_1, |\tilde{\Omega}|).$$

Therefore, we have

$$\lim_{n \to \infty} \frac{\|D_t u_n\|_{\rho}^2}{\|u_n\|_{\rho}^2} = 0,$$

that is,

$$\lim_{n \to \infty} \|D_t w_n\|_{\rho}^2 = 0.$$
(3.31)

On the other hand, for $k \ge 1$ and $j_0 \le j \le j_0 + j_1 - 1$, from (2.12), (2.13) and (3.31), we know

$$k\hat{w}^{c}(j,k) = -\lim_{n \to \infty} \int_{\widetilde{\Omega}} D_{t}w_{n}(x,t)\varphi_{jk}^{s}(x,t)\rho(x)dxdt = 0.$$

A similar situation prevails for $k\hat{w}^s(j,k) = 0$. So we have

 $\hat{w}^{c}(j,k) = 0 \text{ and } \hat{w}^{s}(j,k) = 0,$

for $k \ge 1$ and $j_0 \le j \le j_0 + j_1 - 1$. Hence, we know that w(x, t) is a function unrelated to t; i.e.,

$$w(x,t) \equiv w(x) = \sum_{j=j_0}^{j_0+j_1-1} \widehat{w}^c(j,0) \widetilde{\varphi}^c_{j0}(x).$$
(3.32)

Replacing v by u_{n2} in (3.14), and by $(V_L - 2)$, for $\forall n \ge n_1$, we have

$$(1 - n^{-1})\langle f(x, t, u_n), u_{n2} \rangle - G(u_{n2}) + \mathcal{L}(u_n, u_{n2}) - \mathcal{M}(u_n, u_{n2}) \\ \leq -\gamma_0 n^{-1} ||u_{n2}||_{\rho}^2 + |\langle b(x, t, u_n)(u_n)^-, u_{n2} \rangle| \leq \langle |b(x, t, u_n)(u_n)^-, u_{n2} \rangle|.$$

$$(3.33)$$

On the other hand, we have

$$\begin{aligned} |\langle b(x,t,u_n)(u_n)^-, u_{n2}\rangle| &\leq int_{\widetilde{\Omega}} |b(x,t,u_n)| \cdot |u_n|^2 \rho \\ &+ \int_{\widetilde{\Omega}} |b(x,t,u_n)u_n(u_{n1}+u_{n3})|\rho. \end{aligned}$$
(3.34)

By (B1) and the computing method of (3.20), we can get

$$\int_{\widetilde{\Omega}} |b(x,t,u_n)| \cdot |u_n|^2 \rho \le \delta \gamma_1^4 |\widetilde{\Omega}| + (\delta \gamma_1)^2 \int_{\widetilde{\Omega} \cap \{|u_n| > \gamma_1\}} \rho = c_4(\delta,\gamma_1,|\widetilde{\Omega}|). \quad (3.35)$$

So, by (3.35), we can obtain

$$\int_{\widetilde{\Omega}} |b(x,t,u_n)u_n(u_{n1}+u_{n3})|\rho \le c_4^*(\delta,\gamma_1,\widetilde{\Omega})||u_{n1}+u_{n3}||_{\rho}.$$
(3.36)

By using of (3.34)-(3.36), then it follows from (3.33) that

$$(1 - n^{-1}) \langle f(x, t, u_n), u_{n2} \rangle - G(u_{n2}) + \mathcal{L}(u_n, u_{n2}) - \mathcal{M}(u_n, u_{n2}) \leq c_2^*(\delta, \gamma_1, |\widetilde{\Omega}|) \|u_n\|_{\rho}^{2-m} + c_3^*(\delta, \gamma_1, |\widetilde{\Omega}|) + c_4^*(\delta, \gamma_1, |\widetilde{\Omega}|) \|u_{n1} + u_{n3}\|_{\rho}.$$

$$(3.37)$$

Dividing by $||u_n||_{\rho}$ on both sides of (3.37), we get

$$(1 - n^{-1})\langle f(x, t, u_n), w_n \rangle - G(w_n) + (\mathcal{L}(u_n, u_{n2}) - \mathcal{M}(u_n, u_{n2})) / ||u_n||_{\rho}$$

$$\leq c_2^*(\delta, \gamma_1, |\widetilde{\Omega}|) ||u_n||_{\rho}^{1-m} + c_3^*(\delta, \gamma_1, |\widetilde{\Omega}|) / ||u_n||_{\rho}$$

$$+ c_4^*(\delta, \gamma_1, |\widetilde{\Omega}|) ||u_{n1} + u_{n3}||_{\rho} / ||u_n||_{\rho}.$$
(3.38)

From (f2) and (3.29)(2), there exists K such that

$$\int_{\widetilde{\Omega}} f(x,t,u_n) w_n \rho \le \|h(x,t)\|_{\rho} \|w^*(x,t)\|_{\rho} \le K.$$
(3.39)

Because of $\mathcal{M} \sim \mathcal{L}$, by (3.21) and (3.22), we have

$$\lim_{\|u_n\|_{\rho} \to \infty} \frac{|\mathcal{L}(u_n, u_{n2}) - \mathcal{M}(u_n, u_{n2})|}{\|u_n\|_{\rho}} = 0.$$
(3.40)

Taking the limit in (3.38) as $n \to \infty$, and by (3.21), (3.24), (3.39), (3.40) and (3.29)(3), we get

$$\limsup_{n \to \infty} \int_{\widetilde{\Omega}} f(x, t, u_n) w_n \rho \le G(w).$$
(3.41)

Setting

$$\widetilde{\Omega}_1 = \{(x,t) \in \widetilde{\Omega} : w(x) > 0\}, \quad \widetilde{\Omega}_2 = \{(x,t) \in \widetilde{\Omega} : w(x) < 0\},$$

it follows from (3.39) and (3.41) that

$$\liminf_{n \to \infty} \int_{\widetilde{\Omega}_1} f(x, t, u_n) w_n \rho + \liminf_{n \to \infty} \int_{\widetilde{\Omega}_2} f(x, t, u_n) w_n \rho \le G(w).$$
(3.42)

By (3.21) and (3.29)(1)(3), we have

$$\lim_{n \to \infty} u_n(x,t) = +\infty, \quad a.e. \quad (x,t) \in \widetilde{\Omega}_1;$$

Wang Zhong-Xiang et al.

$$\lim_{n \to \infty} u_n(x,t) = -\infty, \quad a.e. \quad (x,t) \in \widetilde{\Omega}_2.$$

Next, it follows from (f2) and (3.29)(3) that

$$\begin{cases} f^+w\rho = \liminf_{n \to \infty} f(x, t, u_n)w_n\rho, & a.e. \ (x, t) \in \widetilde{\Omega}_1; \\ f^-w\rho = \liminf_{n \to \infty} f(x, t, u_n)w_n\rho, & a.e. \ (x, t) \in \widetilde{\Omega}_2. \end{cases}$$
(3.43)

And by (3.42), (3.43) and Fatou Lemma, we obtain

$$\int_{\widetilde{\Omega}_1} f^+(x,t)w(x)\rho + \int_{\widetilde{\Omega}_2} f^-(x,t)w(x)\rho \le G(w).$$

By (3.24) and (3.27), we know $||w||_{\rho} = 1$, thus, w is a nontrivial eigenfunction and satisfies (3.13). But it forms a contradiction between (3.13) and the above inequalities. Therefore, (3.15) is established and we complete the proof of Lemma 3.2.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since $\widetilde{H}(\widetilde{\Omega}, \Gamma)$ is a separable Hilbert space, we see from (3.15) and Lemma 2.3 that there exists a subsequence (For the sake of simplicity, we take to be a full sequence $\{u_n\}$) and a function $u^* \in \widetilde{H}(\widetilde{\Omega}, \Gamma)$ with the following properties:

$$\begin{cases} (1) \lim_{n \to \infty} ||u_n - u^*||_{\rho} = 0; \\ (2) \exists k(x,t) \in \widetilde{L}^2_{\rho}, \text{ s.t. } |u_n(x,t)| \leq k(x,t), a.e. (x,t) \in \widetilde{\Omega}, \forall n; \\ (3) \lim_{n \to \infty} u_n(x,t) = u^*(x,t), a.e. (x,t) \in \widetilde{\Omega}; \\ (4) \lim_{n \to \infty} \langle D_i u_n, v \rangle_{p_i} = \langle D_i u^*, v \rangle_{p_i}, \text{ for all } v \in \widetilde{L}^2_{p_i}, i = 1, \cdots, N; \\ (5) \lim_{n \to \infty} \langle a_0(x) u_n, v \rangle_q = \langle a_0(x) u^*, v \rangle_q, \text{ for all } v \in \widetilde{L}^2_q. \end{cases}$$

$$(3.44)$$

Since $s_i(u)$ satisfies (S1), we have

$$\lim_{n \to \infty} s_i(u_n) = s_i(u^*), \ \ i = 0, 1, 2, \cdots, N.$$

Let $v \in \widetilde{H}$ and $\tau_J(v)$ be defined by (2.14). Then $\tau_J(v) \in S_J(J \ge n_0)$ and from (3.44)(1)(4)(5) we have that

$$\lim_{n \to \infty} \mathcal{M}(u_n, \tau_J(v)) + \lim_{n \to \infty} \langle D_t u_n, \tau_J(v) \rangle = \mathcal{M}(u^*, \tau_J(v)) + \langle D_t u^*, \tau_J(v) \rangle.$$
(3.45)

Next from (f1)-(f2), (3.44)(2)(3) and the Lebesgue dominated convergence theorem, we obtain

$$\lim_{n \to \infty} \langle f(x, t, u_n), \tau_J(v) \rangle = \langle f(x, t, u^*), \tau_J(v) \rangle, \quad a.e. \ (x, t) \in \widetilde{\Omega}.$$
(3.46)

And from (B1), (3.44)(2)(3) and the Lebesgue dominated convergence theorem, we get

$$\lim_{n \to \infty} \langle b(x, t, u_n)(u_n)^-, \tau_J(v) \rangle = \langle b(x, t, u^*)(u^*)^-, \tau_J(v) \rangle, \quad a.e. \ (x, t) \in \widetilde{\Omega}. \ (3.47)$$

It follows from (3.44)-(3.47) that

$$\langle D_t u^*, \tau_J(v) \rangle + \mathcal{M}(u^*, \tau_J(v)) = \lambda_{j_0} \langle u^*, \tau_J(v) \rangle + \langle b(x, t, u^*)(u^*)^-, \tau_J(v) \rangle + \langle f(x, t, u^*), \tau_J(v) \rangle - G(\tau_J(v)).$$

$$(3.48)$$

Passing to the limit as $J \to \infty$ on both sides of (3.48), we have

$$\langle D_t u^*, v \rangle + \mathcal{M}(u^*, v) = \lambda_{j_0} \langle u^*, v \rangle + \langle b(x, t, u^*)(u^*)^-, v \rangle + \langle f(x, t, u^*), v \rangle - G(v).$$

Thus we complete the proof of Theorem 2.1.

Competing Interests: The authors declare that they have no competing interests.

Authors Contributions: We declare that all authors collaborated and dedicated the same amount of time in order to perform this article.

Acknowledgements: This work has been supported by the Natural Science Foundation of China (11171220) and Shanghai Leading Academic Discipline Project (XTKX2012) and Hujiang Foundation of China (B14005).

References

- H. Brezis and L. Nirenberg, Characterization of ranges of some nonlinear operators and applications of boundary value problems, Ann. Scuo. Norm. Sup. Pisa, 5(1978), 225-326.
- [2] G. Jia, M.L. Zhao and F.L. Li, Eigenvalue problems for a class of singular quasilinear elliptic equations in weighted spaces, *Elec. J. Qual. Theo. Diff. Equa.*, 71(2012), 1-10.
- [3] G. Jia and D. Sun, Existence of solutions for a class of singular quasilinear elliptic resonance problems, *Nonlinear Analysis*, 74(2011), 3055-3064.
- [4] G. Jia, X.J. Zhang and L.N. Huang, Existence of solutions for quasilinear parabolic equations at resonance, *Elec. J. Diff. Equa.*, 13(2013), 1-16.
- [5] S. Kesavan, *Topics in Functional Analysis and Applications*, John Wiley and Sons, New York, (1989).

 \Box .

- [6] C.C. Kuo, Solvability of a quasilinear elliptic resonance equation on the N-torus, Appl. Anal., 80(2001), 205-215.
- [7] C.C. Kuo, On the solvability of a quasilinear parabolic partial differential equation at resonance, J. Math. Anal. Appl., 275(2002), 13-937.
- [8] E.M. Landesman and A.C. Lazer, Nonlinear perturbations of a linear elliptic boundary value problem at resonance, J. Math. Mech., 19(1970), 609-623.
- [9] L. Lefton and V.L. Shapiro, Resonance and quasilinear parabolic differential equations, J. Diff. Equa., 101(1993), 148-177.
- [10] M. Legner and V.L. Shapiro, Time-periodic quasilinear reaction-diffusion equations, SIAM J. Math. Anal., 26(1996), 135-169.
- [11] A. Rumbos and V.L. Shapiro, Jumping nonlinearities and weighted Sobolev spaces, J. Diff. Equ., 214(2005), 326-357.
- [12] V.L. Shapiro, *Singular Quasilinearity and Higher Eigenvalues*, Memoirs of the AMS, Providence, Rhode Island, (2001).
- [13] V.L. Shapiro, Resonance, distributions and semilinear elliptic partial differential equations, Nonlinear Analysis, TMA, 8(1984), 857-871.
- [14] V.L. Shapiro, Special functions and singular quasilinear partial differential equations, SIAM J. Math. Anal., 22(1991), 1411-1429.
- [15] E. da Silva, Quasilinear elliptic problems under strong resonance conditions, Nonlinear Anal., 73(2010), 2451-2462.