

Gen. Math. Notes, Vol. 22, No. 1, May 2014, pp. 86-92 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Homomorphism of Multi L-Fuzzy Subgroup

K. Sunderrajan¹ and M. Suresh²

 ^{1,2}Department of Mathematics SRMV College of Arts and Science Coimbatore- 641020, Tamilnadu, India
 ¹E-mail: drksrfuzzy@gmail.com
 ²E-mail: suresh01_85@yahoo.co.in

(Received: 24-11-13 / Accepted: 25-2-14)

Abstract

In this paper we introduce the notion of homomorphism and anti homomorphism of a multi L-fuzzy subgroup and investigate some of its properties.

Keywords: Fuzzy set, multi-L-fuzzy subgroup, homomorphism of multi L-fuzzy group, anti homomorphism of multi L-fuzzy group.

1 Introduction

L. A. Zadeh introduced the notion of a fuzzy subset A of a set X as a function from X into I = [0, 1]. Rosenfeld [21] and Kuroki [14] applied this concept in group theory and semi group theory, and developed the theory of fuzzy subgroups and fuzzy sub semi groupoids respectively. J.A. Goguen [8] replaced the valuations set [0, 1], by means of a complete lattice in an attempt to make a generalized study of fuzzy set theory by studying L-fuzzy sets. In fact it seems in order to obtain a complete analogy of crisp mathematics in terms of fuzzy mathematics, it is necessary to replace the valuation set by a system having more rich algebraic structure. The concept of anti – fuzzy subgroup was introduced by Biswas [3]. The concept of multi fuzzy subgroups was introduced by Souriar Sebastian and S. Babu Sundar [13]. In all these studies, the closed unit interval [0, 1] is taken as the Membership lattice.

We introduce the notion of a multi L-fuzzy sub group G and discussed some of its properties. The characterizations of a Multi L-fuzzy subgroup under homomorphism and anti homomorphism are discussed.

2 Preliminaries

In this section, we review some definitions and some results of Multi L-fuzzy subgroups which will be used in the later sections. Throughout this section we mean that (G,*) is a group, e is the identity of G and xy as x*y.

Definition 2.1: A L-fuzzy subset λ of X is a mapping from x into L, where L is a complete lattice satisfying the infinite meet distributive law. If L is the unit interval [0,1] of real numbers, there are the usual fuzzy subset of X.

A L-fuzzy subset $\lambda: X \rightarrow L$ is said to be a nonempty, if it is not the constant map which assumes the values 0 of L.

Definition 2.2: Let X be a non – empty set. A Multi L – fuzzy set λ in X is defined as a set of ordered sequences $\lambda = \{ (x, \mu_1(x), \mu_2(x), ..., \mu_i(x), ...) : x \in X \}$, where $\mu_i : X \to L$ for all i.

Definition 2.3: A L-fuzzy subset λ of $_G$ is said to be a L-fuzzy subgroup of G, if for all $x, y \in G$,

i. $\lambda(xy) \ge \lambda(x) \lambda(y)$ ii. $\lambda(x^{-1}) = \lambda(x)$.

Definition 2.4: A Multi L – Fuzzy subset λ of G is called an Multi L – Fuzzy subgroup (MLFS) of G if for every $x, y \in G$,

- i. $\lambda(xy) \ge \lambda(x) \wedge \lambda(y)$
- ii. ii. $\lambda(x^{-1}) = \lambda(x)$.

Definition 2.5: A multi L-fuzzy subset λ of G is said to be an anti multi L-fuzzy subgroup of G, if, $\forall x, y \in G$

- i. $\lambda(xy) \leq \lambda(x) \vee \lambda(y)$
- ii. $\lambda(x^{-1}) = \lambda(x)$

Definition 2.6: The function $f: G \rightarrow G'$ is said to be a homomorphism if $f(xy) = f(x)f(y) \quad \forall x, y \in G$.

Definition 2.7: The function $f: G \rightarrow G'$ (G and G' are not necessarily commutative) is said to be an anti homomorphism if $f(xy) = f(y)f(x) \forall x, y \in G$.

Definition 2.8: Let f be any function from a set X to a set Y, and let λ be any L-fuzzy subset of x. Then λ is called f-invariant if f(x) = f(y) implies $\lambda(x) = \lambda(y)$, where $x, y \in X$.

3 Properties of Multi L-Fuzzy Subgroup under Homomorphism

In this section we study about properties of multi L-fuzzy subgroup under homomorphism.

Theorem 3.1: Let G and G' be any two groups. Let $f: G \rightarrow G'$ be a homomorphism and onto. Let $\lambda: G \rightarrow L$ be a multi L-fuzzy subgroup of G. Then $f(\lambda)$ is a multi L-fuzzy subgroup of G', if λ has sup property and λ is f- invariant.

Proof: Let λ be a multi L-fuzzy subgroup of G.

i. $f(\lambda)(xy) = \vee \{\lambda(xy)/xy \in G, f(xy) = x_0y_0\}$ $= \lambda(x_0y_0)$ $\geq \lambda(x_0) \wedge \lambda(y_0)$ $\geq (\vee \{\lambda(x)/x \in G, f(x) = x_0\}) \wedge (\vee \{\lambda(y)/y \in G, f(y) = y_0\}$ $\geq (f(\lambda)(x)) \wedge (f(\lambda)(y))$ $f(\lambda)(xy) \geq (f(\lambda)(x)) \wedge (f(\lambda)(y)).$ ii. $f(\lambda)(x^{-1}) = \vee \{\lambda(x^{-1})/x^{-1} \in G, f(x^{-1}) = x_0\}$ $= \vee \{\lambda(x)/x \in G, f(x) = x_0\}$ $= \lambda(x_0)$ $= \vee \{\lambda(x)/x \in G, f(x_0) = x_0\}$ $= f(\lambda)(x)$

$$f(\lambda)(x^{-1}) = f(\lambda)(x).$$

Hence $f(\lambda)$ is a multi L- fuzzy subgroup of G^1 .

Theorem 3.2: Let G and G^1 be any two groups. Let f: $G \rightarrow G'$ be a homomorphism and onto. Let $\mu: G' \rightarrow L$ be a multi L-fuzzy subgroup of G^1 . Then $f^{-1}(\mu)$ is a multi L-fuzzy subgroup of G.

Proof: Let μ be a multi L-fuzzy subgroup of G'

$$\begin{aligned} \mathbf{i.} \quad f^{-1}(\mu)(xy) &= \mu(f(xy)) \\ &= \mu(f(x)f(y)) \\ &\geq \mu(f(x) \land \mu(f(y)) \\ &\geq f^{-1}(\mu)(x) \land f^{-1}(\mu)(y) \\ f^{-1}(\mu)(xy) &\geq f^{-1}(\mu)(x) \land f^{-1}(\mu)(y) \\ \end{aligned} \\ \begin{aligned} \mathbf{ii.} \quad f^{-1}(\mu)(x^{-1}) &= \mu(f(x^{-1})) \\ &= \mu(f(x^{-1})) \\ &= \mu(f(x)) \\ &= f^{-1}(\mu)(x) \\ f^{-1}(\mu)(x^{-1}) &= f^{-1}(\mu)(x). \end{aligned}$$

Hence $f^{-1}(\mu)$ is a multi L-fuzzy subgroup of G.

Theorem 3.3: Let G and G^1 be any two groups. Let f: $G \rightarrow G'$ be an anti homomorphism and onto. Let λ : $G \rightarrow L$ be a multi L-fuzzy subgroup of G. Then $f(\lambda)$ is a multi L-fuzzy subgroup of G^1 , if λ has sup property and λ is f- invariant.

Proof: Let λ be a multi L-fuzzy subgroup of G.

i.
$$f(\lambda)(xy) = \wedge \{\lambda(x_0y_0) | x_0y_0 \in G, f(x_0y_0) = xy \} = \lambda(x_0y_0)$$

 $\leq \lambda(x_0) \vee (\lambda(y_0))$
 $\leq (\wedge \{\lambda(x_0) | x_0 \in G, f(x_0) = x \}) \vee (\wedge \{\lambda(y_0) | y_0 \in G, f(y_0) = y \})$

 $\leq (f(\lambda)(x)) \lor (f(\lambda)(y))$ $f(\lambda)(xy) \leq (f(\lambda)(x)) \lor (f(\lambda)(y)).$ $ii. f(\lambda)(x^{-1}) = \wedge \{\lambda(x_0^{-1})/x_0^{-1} \in G, f(x_0^{-1}) = x^{-1}\}$ $= \lambda(x_0^{-1})$ $= \lambda(x_0)$ $= \wedge \{\lambda(x_0)/x_0 \in G, f(x_0) = x\}$ $= f(\lambda)(x)$ $f(\lambda)(x^{-1}) = f(\lambda)(x)$

Hence f (λ) is a multi L- fuzzy subgroup of G'.

Theorem 3.4: Let G and G^1 be any two groups. Let f: $G \rightarrow G'$ be an anti homomorphism and onto. Let $\mu: G' \rightarrow L$ be an multi L-fuzzy subgroup of G'. Then $f^{-1}(\mu)$ is a multi L-fuzzy subgroup of G.

Proof: Let μ be a multi L-fuzzy subgroup of G'.

i.
$$f^{-1}(\mu)(xy) = \mu(f(xy))$$

 $= \mu(f(y)f(x))$
 $\ge \mu(f(y) \land \mu(f(x))$
 $\ge f^{-1}(\mu)(y) \land f^{-1}(\mu)(x)$
 $f^{-1}(\mu)(xy) \ge f^{-1}(\mu)(y) \land f^{-1}(\mu)(x)$
ii. $f^{-1}(\mu)(x^{-1}) = \mu(f(x^{-1}))$
 $= \mu(f(x^{-1}))$
 $= \mu(f(x))$
 $= f^{-1}(\mu)(x)$.

Hence $f^{-1}(\mu)$ is a multi L-fuzzy subgroup of G.

References

- [1] S. Abou-zaid, On fuzzy sub near rings and ideals, *Fuzzy Sets and Systems*, 44(1991), 139-148.
- [2] H. Aktas, On fuzzy relation and fuzzy quotient groups, *International Journal of Computational Cognition*, 2(2) (2004), 71-79.
- [3] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, *Fuzzy Sets and Systems*, 35(1990), 121-124.
- [4] S.K. Bhakat and P. Das, Fuzzy sub algebras of a universal algebra, *Bull. Cal. Math. Soc.*, 85(1993), 79-92.
- [5] G. Birkhof, *Lattice Theory (Volume XXV)*, American Mathematical Society Colloquium Publications, (1961).
- [6] L. Filep, Study of fuzzy algebras and relations from a general view point, Acto Mathematica Academiae Paedagogocae Nyiregyhaziensis Tamus, 14(1968), 49-55.
- [7] L. Fuchs, *Partially Ordered Algebraic Systems*, Pergamon Press, (1963).
- [8] J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18(1967), 145-174.
- [9] Y.B. Jun, On fuzzy prime ideals of Γ -rings, *Soochow J. Math.*, 21(1995), 41-48.
- [10] A.K. Katsaras and D.B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, *J. Math. Anal. Appl.*, 58(1977), 135-146.
- [11] A. Kehagias, The lattice of fuzzy intervals and sufficient conditions for its distributivity, June 11 (2005), arXiv:cs.OH/0206025 v1.
- [12] A. Solairaju and R. Nagarajan, A new structure and construction of Q-fuzzy groups, *Advances in Fuzzy Mathematics*, 4(1) (2009), 23-29.
- [13] S. Sabu and T.V. Ramakrishnan, Multi-fuzzy sets, *International Mathematical Forum*, 50(2010), 2471-2476.
- [14] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, *Fuzzy Sets* and Systems, 5(1981), 203-215.
- [15] L. Wang-Jin, Fuzzy invariant subgroups and fuzzy ideals, *Fuzzy Sets and Systems*, 8(1982), 133-139.
- [16] D.S. Malik and J.N. Mordeson, Extensions of fuzzy subrings and fuzzy ideals, *Fuzzy Sets and Systems*, 45(1992), 245-251.
- [17] J.N. Mordeson and D.S. Malik, *Fuzzy Commutative Algebra*, World Scientific Publishing Co. Pvt. Ltd., (1998).
- [18] T.K. Mukherjee and M.K. Sen, On fuzzy ideals of a ring, *Fuzzy Sets and Systems*, 21(1987), 99-104.
- [19] V. Murali, Lattice of fuzzy algebras and closure systems in I^X, *Fuzzy Sets and Systems*, 41(1991), 101-111.
- [20] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.
- [21] K.L.N. Swamy and U.M. Swamy, Fuzzy prime ideals of rings, J. Math. Anal. Appl, 134(1988), 94-103.
- [22] U.M. Swamy and D.V. Raju, Algebraic fuzzy systems, Fuzzy Sets and

Systems, 41(1991), 187-194.

[23] L.A. Zadeh, Fuzzy sets, Inform and Control, 8(1965), 338-353.