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Abstract 

     In this paper we introduce the notion of homomorphism and anti 
homomorphism of a multi L-fuzzy subgroup and investigate some of its properties.  
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1 Introduction 
 
L. A. Zadeh introduced the notion of a fuzzy subset A of a set X as a function 
from X into I = [0, 1]. Rosenfeld [21] and Kuroki [14] applied this concept in 
group theory and semi group theory, and developed the theory of fuzzy subgroups 
and fuzzy sub semi groupoids respectively. J.A. Goguen [8] replaced the 
valuations set [0, 1], by means of a complete lattice in an attempt to make a 
generalized study of fuzzy set theory by studying L-fuzzy sets. In fact it seems in 
order to obtain a complete analogy of crisp mathematics in terms of fuzzy 
mathematics, it is necessary to replace the valuation set by a system having more 
rich algebraic structure. The concept of anti – fuzzy subgroup was introduced by 



Homomorphism of Multi L-Fuzzy Subgroup                                                       87 

 

 

Biswas [3]. The concept of multi fuzzy subgroups was introduced by Souriar 
Sebastian and S. Babu Sundar [13]. In all these studies, the closed unit interval [0, 
1] is taken as the Membership lattice. 
  
We introduce the notion of a multi L-fuzzy sub group G and discussed some of its 
properties. The characterizations of a Multi L-fuzzy subgroup under 
homomorphism and anti homomorphism are discussed. 
 

2 Preliminaries        
 
In this section, we review some definitions and some results of Multi L-fuzzy 
subgroups which will be used in the later sections. Throughout this section we 
mean that ),( ∗G  is a group, e is the identity of G  and xy as x∗ y. 
 
Definition 2.1: A L-fuzzy subset λ  of X is a mapping from X   into L, where L is a 
complete lattice satisfying the infinite meet distributive law. If  L  is  the  unit 
interval  [0,1]  of  real  numbers,  there  are  the  usual  fuzzy  subset  of  X. 
 
A  L-fuzzy subset λ:X→L is  said  to  be  a  nonempty,  if  it  is  not  the  constant 
map  which assumes  the  values  0  of  L. 
 
Definition 2.2: Let X be a non – empty set. A Multi L – fuzzy set λ in X is defined 
as a set of ordered sequences  λ = { (x, µ1(x), µ2(x), ..., µi(x), ...) : x ∈ X},  where 
µi : X → L  for all i. 
 
Definition 2.3: A L-fuzzy subset λ  of G  is said to be a L-fuzzy subgroup of G, if 
for all x, y ∈ G, 
 

i.  λ(xy) ≥ λ(x) λ(y) 
ii.  λ(x-1) =   λ(x). 

 
Definition 2.4: A Multi L – Fuzzy subset λ  of G is called an Multi L – Fuzzy 
subgroup (MLFS) of G if for every x, y ∈ G, 
 

i. λ(xy) ≥ λ(x) ∧ λ(y) 
ii.  ii. λ(x-1) =   λ(x) . 

 
Definition 2.5: A multi L-fuzzy subset λ of G is said to be an anti multi L-fuzzy 
subgroup of G, if ,∀  x, y ∈ G 
        

i.   λ(xy) ≤ λ(x) ∨ λ(y) 
ii.    λ(x-1) =   λ(x)  
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Definition 2.6: The function f: G→G′   is said to be a homomorphism if f(xy)= 
f(x)f(y) ∀ x, y∈ G       . 
 
Definition 2.7: The function f: G→G′  (G and G′  are not necessarily 
commutative) is said to be an anti homomorphism if f(xy)= f(y)f(x) ∀ x, y ∈ G. 
 
Definition 2.8: Let f be any function from a set X to a set Y, and let   λ be any L -
fuzzy subset ofX . Then λ  is called f -invariant if f(x) = f(y) implies   λ(x) =   λ(y), 

where x, y ∈ X. 
 

3 Properties of Multi L-Fuzzy Subgroup under 
Homomorphism 
          
In this section we study about properties of multi L-fuzzy subgroup under 
homomorphism. 
 
Theorem 3.1: Let G and G′   be any two groups.  Let f: G→G′  be a 
homomorphism and onto. Let LG →:λ  be a multi L-fuzzy subgroup of G. Then 

)(λf  is a multi L-fuzzy subgroup ofG′ , if λ has sup property and λ is f- invariant. 
 
Proof: Let  λ  be a multi L-fuzzy subgroup of G.  
 
           i.  f (λ)(xy) = ∨ { λ(xy)/xy∈G,f(xy) = x0y0 } 
 
                                  = λ( x0y0) 
 
              ≥ λ( x0) ∧  λ(y0) 
 
                      ≥( { }0)(,/)( xxfGxx =∈∨ λ ) ∧  ( { }0)(,/)( yyfGyy =∈∨ λ  

   
             ≥ ( ))(( xf λ ) ∧ ( ))(( yf λ ) 
 
                   ))(( xyf λ   ≥  ( ))(( xf λ ) ∧ ( ))(( yf λ ). 
 
            ii. f (λ)(x-1) = ∨ { λ( x-1)/ x-1 ∈G, f(x-1) = x0} 
 
                                        =  ∨ { λ( x)/ x ∈G, f(x) = x0} 
 
                             = λ( x0)            
 
                                        =  ∨ { λ( x)/ x ∈G, f(x0) = x0 } 
 
                                       =   f (λ)(x) 
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                    f (λ)(x-1)  = f (λ)(x). 
    
Hence )(λf   is a multi L- fuzzy subgroup of 1G . 
 
Theorem 3.2: Let G  and 1G   be any two groups. Let f: G→G′  be a 
homomorphism and onto. Let LG →′:µ  be a multi L-fuzzy subgroup of1G . 

Then )(1 µ−f   is a multi L-fuzzy subgroup of G. 

 
Proof: Let  µ  be a multi L-fuzzy subgroup of G′  
 
            i.    f-1(µ)(xy) = µ(f(xy)) 
 
                          = µ(f(x)f(y)) 
 
                         ≥ µ(f(x) ∧  µ(f(y)  
 
                         ≥ f-1(µ)(x) ∧  f-1(µ)(y) 
 
                   f-1(µ)(xy) ≥ f-1(µ)(x) ∧  f-1(µ)(y)  
 
          ii.     f-1(µ)(x-1) = µ(f(x-1)) 
 
                                   = µ(f(x-1)) 
 
             = µ(f(x)) 
 
                                  = f-1(µ)(x) 
 
                 f-1(µ)(x-1) = f-1(µ)(x). 
 
Hence f-1(µ) is a multi L-fuzzy subgroup of G.         
 
Theorem 3.3: Let G  and 1G be any two groups. Let f: G→G′ be an anti 
homomorphism and onto. Let λ: G→L be a multi L-fuzzy subgroup of G. Then 
f(λ) is a multi L-fuzzy subgroup of1G , if λ has sup property and λ is f- invariant. 
 
Proof: Let  λ be a multi L-fuzzy subgroup of G. 
 
i. f (λ)(xy) = ∧ { λ( x0y0)/ x0y0 ∈G,f(x0y0) = xy }= λ( x0y0) 
 
                                   ≤   λ( x0 ) ∨  ( λ(y0) 
 
    ≤ (∧ { λ( x0)/ x0 ∈G, f(x0) = x }) ∨  (∧ { λ( y0)/ y0 ∈G, f(y0) = y }) 
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                                   ≤ (f (λ)(x)) ∨  ( f (λ)(y)) 
 
 f (λ)(xy)   ≤  ( ))(( xf λ ) ∨  ( ))(( yf λ ). 
 
           ii. f (λ)(x-1) = ∧ { λ( x0

-1)/ x0
-1 ∈G, f(x0

-1) = x-1} 
 
                     = λ( x0

-1) 
 
                    = λ( x0)            
 
                               = ∧ { λ( x0)/ x0 ∈G, f(x0) = x } 
 
                               =   f (λ)(x) 
 
         f (λ)(x-1)  = f (λ)(x) 
    
Hence f (λ) is a multi L- fuzzy subgroup ofG′ . 
 
Theorem 3.4: Let G  and 1G   be any two groups. Let f: G→G′ be an anti 
homomorphism and onto. Let LG →′:µ   be an multi L-fuzzy subgroup of G′ . 
Then )(1 µ−f  is a multi L-fuzzy subgroup of G. 
 
Proof: Letµ  be a multi L-fuzzy subgroup ofG′ .           
 
 i.   f-1(µ)(xy) = µ(f(xy)) 
 
                    = µ(f(y)f(x)) 
 
                    ≥ µ(f(y) ∧  µ(f(x)  
 
                    ≥ f-1(µ)(y) ∧  f-1(µ)(x) 
 
                   f-1(µ)(xy) ≥ f-1(µ)(y) ∧  f-1(µ)(x)  
 
          ii.         f-1(µ)(x-1) = µ(f(x-1)) 
 
                                   = µ(f(x-1)) 
 
             = µ(f(x)) 
 
                                  = f-1(µ)(x) 
 
                 f-1(µ)(x-1) = f-1(µ)(x). 
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Hence f-1(µ) is a multi L-fuzzy subgroup of G. 
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