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Abstract
In the present paper, we consider a curve in Euclidean 3-space E3 as a curve

whose position vector can be written as linear combination of its Bishop frame.
We characterize such curves in terms of their curvature functions. Further,
we obtain some results of T -constant and N-constant type curves in Euclidean
3-space E3.
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1 Introduction

A curve x : I ⊂ R→ E3 in Euclidean 3-space is called a twisted curve if it has
nonzero Frenet curvatures κ1(s) and κ2(s). From the elementary differential
geometry it is well known that a curve x(s) in E3 lies on a sphere if its position
vector (denoted also by x) lies on its normal plane at each point. If the
position vector x lies on its rectifying plane then x(s) is called rectifying curve
[7]. Rectifying curves characterized by the simple equation

x(s) = λ(s)T (s) + µ(s)N2(s), (1)

where λ(s) and µ(s) are smooth functions and T (s) and N2(s) are tangent and
binormal vector fields of x respectively [7]. In the same paper B. Y. Chen gave
a simple characterization of rectifying curves. In particular it is shown in [10]



82 Sezgin Büyükkütük et al.

that there exists a simple relation between rectifying curves and centrodes,
which play an important role in mechanics kinematics as well as in differential
geometry in defining the curves of constant procession. It is also provide
that a twisted curve is congruent to a non constant linear function of s [8].
Further, in the Minkowski 3-space E3

1, the rectifying curves are investigated
in ([11, 16, 17, 18]). In [18] a characterization of the spacelike, the timelike
and the null rectifying curves in the Minkowski 3-space in terms of centrodes
is given. For the characterization of rectifying curves in three dimensional
compact Lee groups or in dual spaces see [23] or [4] respectively. In [1], the
authors determined position vector of a general helix with respect to Frenet
frame. They deduced the natural representation of a general helix in terms of
the curvature and torsion with respect to standard frame of Euclidean 3-space.
Furthermore, in [2], the authors studied position vector of a slant helix with
respect to standard frame in Euclidean space E3 in terms of Frenet equations.

For a regular curve x(s), the position vector x can be decompose into its
tangential and normal components at each point:

x = xT + xN . (2)

A curve x(s) with κ(s) > 0 is said to be of constant ratio if the ratio∥∥xT∥∥ :
∥∥xN∥∥ is constant on x(I) where

∥∥xT∥∥ and
∥∥xN∥∥ denote the length of

xT and xN , respectively [6].
A curve in En is called T -constant (resp. N-constant) if the tangential

component xT (resp. the normal component xN) of its position vector x is
of constant length [6]. Recently, in [15], the authors give the necessary and
sufficient conditions for twisted curves in Euclidean 3-space E3 to become T -
constant or N -constant.

The ability to ”ride” along a three-dimensional space curve and illustrate
the properties of the curve, such as curvature and torsion, would be a great
asset to Mathematicians. The classic Serret-Frenet frame provides such abil-
ity, however the Frenet-Serret frame is not defined for all points along every
curve. A new frame is needed for the kind of Mathematical analysis that
is typically done with computer graphics. The Relatively Parallel Adapted
Frame or Bishop Frame could provide the desired means to ride along any
given space curve [3]. The Bishop Frame has many properties that make it
ideal for mathematical research. Another area of interested about the Bishop
Frame is so-called Normal Development, or the graph of the twisting motion
of Bishop Frame. This information along with the initial position and orien-
tation of the Bishop Frame provide all of the information necessary to define
the curve. The Bishop frame may have applications in the area of Biology and
Computer Graphics. For example it may be possible to compute information
about the shape of sequences of DNA using a curve defined by the Bishop
frame. The Bishop frame may also provide a new way to control virtual cam-
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eras in computer animations. In [19] authors studied natural curvatures of
Bishop frame. In [5], the same authors considered slant helix according to
Bishop frame in Euclidean 3-Space. In [21], authors researched the spinor
formulations of curves according to Bishop frames in E3.

In [22], the authors investigated position vectors of some special spacelike
curves with respect to Bishop frame in E3

1. They presented some characteri-
zations of curves with the components of position vector on the Bishop axis.
Furthermore, in [20], the authors studied classical differential geometry of the
curves according to type-2 Bishop trihedra. Also, they investigated position
vector of a regular curve by a system of ordinary differential equations whose
solution gives the components of the position vector with respect to type-2
Bishop frame. They presented some special characterizations introducing spe-
cial planes of three dimensional Euclidean space.

In [13], the authors gave parallel transport frame of a curve and they in-
troduce the relations between the Bishop frame and Frenet frame of the curve
in 4-dimensional Euclidean space. They characterized curves whose position
vectors lie in their normal, rectifying and osculating planes in 4-dimensional
Euclidean space E4.

In the present study, we consider a curve in Euclidean 3-space E3 as a curve
whose position vector can be written as linear combination of its Bishop frame.
Then its position vector satisfies the parametric equation

x(s) = m0(s)T (s) +m1(s)M1(s) +m2(s)M2(s), (3)

for some differentiable functions, mi(s), 0 ≤ i ≤ 2, where {T,M1,M2} is its
Bishop frame. We characterize such curves in terms of their curvature functions
mi(s) and give the necessary and sufficient conditions for such curves to become
T -constant or N -constant.

2 Basic Notation

Let x : I ⊂ R → E3 be a unit speed curve in Euclidean 3-space E3. Let us
denote T (s) = x′(s) and call T (s) as a unit tangent vector of x at s. We denote
the curvature of x by κ(s) = ‖x′′(s)‖. If κ(s) 6= 0, then the unit principal
normal vector N1(s) of the curve x at s is given by x

′′
(s) = κ(s)N1(s). The

unit vector N2(s) = T (s)×N1(s) is called the unit binormal vector of x at s.
Then we have the Serret-Frenet formulae:

T ′(s) = κ(s)N1(s),

N ′1(s) = −κ(s)T (s) + τ(s)N2(s), (4)

N ′2(s) = τ(s)N1(s),

where τ(s) is the torsion of the curve x at s (see, [12] and [14]).
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For a space curve x : I ⊂ R → E3, the planes at each point of x(s) the
spanned by {T,N1} , {T,N2} and {N1, N2} are known as the osculating plane,
the rectifying plane and normal plane respectively. If the position vector x
lies on its rectifying plane then x(s) is called rectifying curve. Similarly, the
curve for which the position vector x always lies in its osculating plane is called
osculating curve. Finally, x is called normal curve if its position vector x lies
in its normal plane.

From elementary differential geometry it is well known that a curve in E3

lies in a plane if its position vector lies in its osculating plane at each point,
and lies on a sphere if its position vector lies in its normal plane at each point
[7].

The Bishop frame or parallel transport frame is an alternative approach to
defining a moving frame that is well-defined even when the curve has vanishing
second derivative. One can express parallel transport of an orthonormal frame
along a curve simply by parallel transporting each component of the frame.
The tangent vector and any convenient arbitrary basis for the remainder of
the frame are used. Therefore, the Bishop (frame) formulas are expressed as T ′

M ′
1

M ′
2

 =

 0 k1 k2
−k1 0 0
−k2 0 0

 T
M1

M2


where {T,M1,M2} is the Bishop Frame and k1, k2 are called first and second
Bishop curvatures, respectively [3].

The relation between Frenet frame and Bishop frame is given as follows: T
N1

N2

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 T
M1

M2


where θ(s) = arctan

(
k2
k1

)
, τ(s) =

(
dθ(s)
ds

)
and κ(s) =

√
k21 + k22. Here Bishop

curvatures are defined by k1 = κ cos θ, k2 = κ sin θ.

3 Characterization of Curves According to its

Bishop Frame in E3

In the present section we characterize the curves in E3 in terms of their cur-
vature functions according to Bishop Frame.

Let x : I ⊂ R → E3 be a unit speed curve with Bishop curvatures k1(s)
and k2(s). By definition of the position vector of the curve (also defined by
x) satisfies the vectorial equation (3), for some differential functions mi(s),
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0 ≤ i ≤ 2. By taking the derivative of (3) with respect to arclength parameter
s and using the Bishop formulas (4), we obtain

x
′
(s) = (m

′

0(s)− k1(s)m1(s)− k2(s)m2(s))T (s)

+(m
′

1(s) + k1(s)m0(s))M1(s) (5)

+(m
′

2(s) + k2(s)m0(s))M2(s)

It follows that,

m
′

0 − k1m1 − k2m2 = 1

m
′

1 + k1m0 = 0 (6)

m
′

2 + k2m0 = 0

Lemma 3.1 Let x : I ⊂ R→E3 be a unit speed curve in E3 with the vectorial
equation (3). Then position vector x satisfies the curvature conditions in the
equation (6).

3.1 Curves of Constant-Ratio

Definition 3.2 Let x : I ⊂ R→En be a unit speed curve in E3. Then the
position vector x can be decompose into its tangential and normal components
at each point as in (2). If the ratio

∥∥xT∥∥ :
∥∥xN∥∥ is constant on x(I) then x is

said to be of constant-ratio [7].

For a unit speed curve x in En, the gradient of the distance function ρ =
‖x(s)‖ is given by

gradρ =
dρ

ds
x′(s) =

< x(s), x′(s) >

‖x(s)‖
x′(s) (7)

where T is the tangent vector field of x.

Theorem 3.3 [9] Let x : I ⊂ R→ En be a unit speed regular curve in En.
Then ‖gradρ‖ = c holds for a constant c if and only if one of the following
three cases occurs:

(i) x(I) is contained in a hypersphere centered at the origin.
(ii) x(I) is an open portion of a line through the origin.
(iii) x(s) = csy(s), c ∈ (0, 1), where y = y(u) is a unit curve on the unit

sphere of En centered at the origin and u =
√
1−c2
c

ln s.
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Corollary 3.4 [9] Let x : I ⊂ R→ En be a unit speed regular curve in En.
Then up to a translation of the arc length function s, we have

i) ‖gradρ‖ = 0 ⇐⇒ x(I) is contained in a hypersphere centered at the
origin.

ii) ‖gradρ‖ = 1 ⇐⇒ x(I) is an open portion of a line through the origin.
iii) ‖gradρ‖ = c ⇐⇒ ρ = ‖x(s)‖ = cs, for c ∈ (0, 1).
iv) If n = 2 and ‖gradρ‖ = c for c ∈ (0, 1), then the curvature of x satisfies

κ2 =
1− c2

c2 (s2 + b)
,

for some real constant b.

The following result characterize constant-ratio curves in E3 with its Bishop
frame and Bishop curvatures.

Proposition 3.5 Let x : I ⊂ R→E3 be a unit speed curve in E3. If x is of
constant-ratio then the position vector of the curve has the parametrization of
the form

x(s) =
(
c2s
)
T (s) +

(
c2k2(k

2
1 + k22)s− k′

2(c
2 − 1)

k
′
1k2 − k

′
2k1

)
M1(s)

+

(
c2 − 1

k2
− k1
k2

(
c2k2(k

2
1 + k22)s− k′

2(c
2 − 1)

k
′
1k2 − k

′
2k1

))
M2(s)

for some differentiable functions c,d ∈ [0, 1).

Proof. Let x be a curve of constant-ratio given with arclength function s.
Then, from the previous result the distance function ρ of x satisfies the equality
ρ = ‖x(s)‖ = cs for some real constant c. Further, using (7) we get

‖gradρ‖ =
< x(s), x′(s) >

‖x(s)‖
= c. (8)

Since, x is a curve of E3, then it satisfies the equality (3). So, we get m0 = c2s.
Hence, substituting this value into the equations in (6) one can get,

m1(s) =
c2k2(k21+k

2
2)s−k

′
2(c

2−1)
k
′
1k2−k

′
2k1

,

m2(s) = c2−1
k2
− k1

k2

(
c2k2(k21+k

2
2)s−k

′
2(c

2−1)
k
′
1k2−k

′
2k1

)
.

(9)

Substituting these values into (3), we obtain the desired result.
As a consequence of (9) with the (6), we get the following result.

Corollary 3.6 Let x : I ⊂ R→ E3 be a unit speed curve in E3. Then x is
of constant-ratio if and only if(

c2k2(k
2
1 + k22)s+ (1− c2) k′2
k

′
1k2 − k

′
2k1

)′
+ c2k1s = 0.
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3.2 T-Constant Curves

Definition 3.7 Let x : I ⊂ R→En be a unit speed curve in En. If
∥∥xT∥∥

is constant then x is called a T -constant curve [7]. For a T -constant curve x,
either

∥∥xT∥∥ = 0 or
∥∥xT∥∥ = λ for some non-zero smooth function λ. Further,

a T -constant curve x is called first kind if
∥∥xT∥∥ = 0, otherwise second kind.

As a consequence of (6), we get the following result.

Theorem 3.8 Let x : I ⊂ R→E3 be a unit speed curve in E3 with the
position vector which satisfies the equation (3). Then x is a T -constant curve
of first kind, if and only if

c1k1 + c2k2 + 1 = 0 (10)

where c1, c2 are integral constants.

Proof. Let x is a T -constant curve of first kind. Then, from the second and
third equalities in (6) we get m

′
1 = 0 and m

′
2 = 0. Further substituting m1 = c1

and m2 = c2 into the first equation we get the result.

Theorem 3.9 Let x : I ⊂ R→E3 be a unit speed curve in E3. If x is a
T -constant curve of second kind, then the position vector of the curve has the
parametrization of the form

x(s) = m0T (s)+
k2(k

2
1 + k22)m0 − k

′
2

k
′
1k2 + k1k

′
2

M1(s)+

[
k1
(
k2(k

2
1 + k22)m0 − k

′
2

)
k2(k

′
1k2 + k1k

′
2)

+
1

k2

]
M2(s),

(11)
where m0 is a constant function.

Proof. Suppose that x is a T -constant curve of second kind. Then, by the
use of (6), we get

k
′

1m1 + k
′

2m2 = (k21 + k22)m0 (12)

Also substituting m2 = k1m1+1
k2

into (12), we get

m1 =
k2(k

2
1 + k22)m0 − k

′
2

k
′
1k2 + k1k

′
2

,

and

m2 =
k1
(
k2(k

2
1 + k22)m0 − k

′
2

)
k2(k

′
1k2 + k1k

′
2)

+
1

k2
.

Substituting this values into (3), we obtain the result.
As a consequence of (6), we get the following result.
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Corollary 3.10 Let x : I ⊂ R→E3 be a unit speed curve in E3. If x is a
T -constant curve of second kind, then the curvatures functions mi of the curve
x satisfy the equation

2m0s+ c = m2
1 +m2

2 (13)

where c is a integral constant.

Proof. Let x is a T -constant curve of second kind, from the second and third
equalities in (6), we get

k1 = −m
′
1

m0

, k2 = −m
′
2

m0

.

Substituting this values into first equation in (6), we obtain the differantial
equation

m
′

1m1 +m
′

2m2 = m0

which has the solution (13).

3.3 N-Constant Curves

Definition 3.11 Let x : I ⊂ R→En be a unit speed curve in En. If
∥∥xN∥∥ is

constant then x is called a N-constant curve. For a N-constant curve x, either∥∥xN∥∥ = 0 or
∥∥xN∥∥ = µ for some non-zero smooth function µ [7]. Further, a

N-constant curve x is called first kind if
∥∥xN∥∥ = 0, otherwise second kind.

So, for a N -constant curve x∥∥xN(s)
∥∥2 = m2

1(s) +m2
2(s) (14)

becomes a constant function.
As a consequence of (3) and (6) with (14) we get the following result.

Lemma 3.12 Let x : I ⊂ R→E3 be a unit speed curve in E3. Then x is a
N-constant curve if and only if

m
′

0 = k1m1 + k2m2 + 1

m
′

1 = −k1m0 (15)

m
′

2 = −k2m0

0 = m1m
′

1 +m2m
′

2

hold, where m0(s), m1(s) and m2(s) are differentiable functions.

Theorem 3.13 Let x : I ⊂ R→E3 be a unit speed curve in E3. Then x
is a N-constant curve of first kind if and only if x(I) is an open portion of a
straight line.
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Proof. Suppose that x is N -constant curve of E3, then the equality (14) holds.
Further if x is of first kind then from (14) m1 = m2 = 0 which implies that
k1 = k2 = 0. Then the first Frenet curvature of the curve x is zero. So x is a
part of a straight line.

Theorem 3.14 Let x : I ⊂ R→E3 be a unit speed curve in E3 and s be
its arclenght function. If x is a N-constant curve of second kind, then x is a
T -constant curve of first kind with the parametrization

x(s) = λM1(s) + µM2(s) (16)

where λ and µ are real constants or the curve has the parametrization

x(s) = (s+ b)T (s) +

(
+
−

√
ck22

k21 + k22

)
M1(s) +

(
+
−

√
ck21

k21 + k22

)
M2(s) (17)

where b and c are real constants.

Proof. Let x is a N -constant curve of second kind then the equation (15)
holds. So we get m0(k1m1 + k2m2) = 0. Hence, there are two possible cases;
m0 = 0 or k1m1 +k2m2 = 0. The first case with the equation (15) implies that
m1 = λ = const, m2 = µ = const. So x is a T -constant curve of first kind
with the parametrization (16). For the second case by the use of (15), we get

m0 = s+ b

m1 =
+
−

√
ck22

k21 + k22

m2 =
+
−

√
ck21

k21 + k22

which completes the proof of the theorem.
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