

Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp. 88-93 ISSN 2219-7184; Copyright © ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

An Extension of Fisher's Theorem

Swatmaram

Chaitanya Bharathi Institute of Technology Hyderabad- 500075, Andhra Pradesh State, India E-mail: ramuswatma@yahoo.com

(Received: 12-6-13 / Accepted: 1-8-13)

Abstract

A result of Brain Fisher is extended to two pairs of self-maps through the notions of weak compatibility and property EA.

Keywords: Compatible self-maps, weakly compatible self-maps, property EA and common fixed point.

1 Introduction

In 1976 Brian Fisher [2] proved the following:

Theorem 1.1: Let A be a self-map on a complete metric space X satisfying the contractive type inequality

$$d^{2}(Ax, Ay) \le b d(x, Ax) d(y, Ay) + c d(x, Ay) d(y, Ax) \text{ for all } x, y \in X, \dots$$
(1.1)

where $0 \le b, c < 1$. Then A has a unique fixed point.

In this paper we extend Theorem 1.1 to two pairs of self-maps using the notion of property EA and weakly compatible maps (*cf.* Section 2 below).

2 **Preliminaries**

In this paper X denotes a metric space with metric d. Self-maps A and S are commuting if ASx = SAx for all $x \in X$.

Definition 2.1: A and S are compatible [3] if

$$\lim_{n \to \infty} d(ASx_n, SAx_n) = 0 \qquad \dots \qquad (2-a)$$

whenever $\{x_n\}_{n=1}^{\infty}$ is a sequence in X such that

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = z \qquad \dots \qquad (2-b)$$

for some $z \in X$.

Note that every commuting pair is compatible. That is compatibility is weaker than the commutativity. However, a compatible pair is commuting (*cf.* [3]).

By altering the asymptotic condition (2-a), later various types of compatibility like *A*- and *S*-compatibilities [9], Compatibility of type *A* (*cf.* [5]), type *B* (*cf.* [8]), type *C* (*cf.* [7]), type *E* (*cf.* [11]) and type *P* (See [6]) were developed in solving certain functional equations that arise dynamical programming. A nice comparative survey among these types of compatibility was done in [9] and [12].

Definition 2.2: Self maps *A* and *S* on *X* satisfy property EA [1] if there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in *X* with the choice (2-b)

Obviously compatible and noncompatible pairs satisfy the property EA.

Definition 2.3: Self maps *A* and *S* are *weakly compatible* [4] if they commute at their coincidence points.

It was shown that every compatible pair is weakly compatible but the converse is not true [4], and the notions of weakly compatibility and property EA are independent [10].

3 Main Result and Remarks

Theorem 3.1: Let A, B, S and T be self-maps on X satisfying the inclusions

$$A(X) \subset T(X) and \ B(X) \subset S(X) \qquad \dots \qquad (3)$$

and the inequality

$$d^{2}(Ax, By) \leq b d(Ax, Sx) d(By, Ty) + cd(Sx, By) d(Ty, Ax)$$

for all $x, y \in X$, ... (4)

with the same choice of the constants b and c as in Theorem 1.

If one of S(X) and T(X) is complete and

- (a) *Either* (A, S) or (B, T) satisfies property EA
- (b) The pairs (A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point.

Proof. Suppose that A and S satisfy the property EA. By the inclusion $A(X) \subset T(X)$, we can find another sequence $\{y_n\}_{n=1}^{\infty}$ in X such that

 $Ax_n = Ty_n$ for all *n* so that from (2-b)

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ty_n = z.$$
(5)

Let $q = \lim_{n \to \infty} By_n$. We prove below that q = z.

Writing $x = x_n$ and $y = y_n$ in the inequality (4), we get

$$d^{2}(Ax_{n}, By_{n}) \leq b d(Ax_{n}, Sx_{n}) d(By_{n}, Ty_{n}) + cd(Sx_{n}, By_{n}) d(Ty_{n}, Ax_{n}).$$

Applying the limit as $n \rightarrow \infty$ in this and using (5) it follows that

 $d^{2}(z,q) \leq b.0 + c.0$ so that $d^{2}(z,q) = 0$ or d(z,q) = 0. That is, q = z.

Hence
$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Ty_n = \lim_{n \to \infty} By_n = z$$
. (6)

Similarly we can prove (6) if the pair (B, T) satisfies the property EA.

Case *A***:** Suppose that T(X) is complete subspace of *X*.

Note that $\{Ty_n\}_{n=1}^{\infty}$ is Cauchy and convergent sequence in T(X). Therefore $z \in T(X)$. That is z = Tq for some $q \in X$. Now we show that q is a coincidence point of B and T.

Taking $x = x_n$ and y = q in the inequality (4) and using (6) we get

$$d^{2}(Ax_{n},Bq) \leq b.d(Ax_{n},Sx_{n}) d(Bq,Tq) + c.d(Sx_{n},Bq)d(Tq,Ax_{n})$$

or $d^2(Tq, Bq) \le b.0 + c.0 = 0.$

Hence Tq = Bq, that is q is a coincidence point of T and B.

Again $B(X) \subset S(X)$ implies that $Bq \in S(X)$ or Bq = Sr for some $r \in X$.

Then from the inequality (4) with x = r, y = q we get

$$d^{2}(Ar,Bq) \leq b.d(Ar,Sr)d(Bq,Tq) + c.d(Sr,Bq)d(Tq,Ar).$$

Using Bq = Tq = Sr in this, we see that $d^2(Ar, Sr) \le 0$ or Ar = Sr. Hence

$$Ar = Sr = Bq = Tq. \tag{7}$$

In other words, r is a coincidence point of A and S and q is a coincidence point of B and T.

Case B: Suppose that *S*(*X*) is complete subspace of *X*.

Since $\{Sx_n\}_{n=1}^{\infty}$ is a Cauchy sequence and convergent sequence in S(X) we see that $z \in S(X)$ or z = Tp for some $p \in X$.

Now we write $x = x_n$ and y = p in the inequality (4). Then

$$d^{2}(Ax_{n},Bp) \leq b.d(Ax_{n},Sx_{n})d(Bp,Tp) + c.d(Sx_{n},Bp)d(Tp,Ax_{n})$$

or $d^2(Tp, Bp) \le b.0 + c$. 0 = 0 so that Tp = Bp or that p is a coincidence point of T and B.

Again $B(X) \subset S(X)$ implies that $Bp \in S(X)$ or Bp = Sv for some $v \in X$.

Then from the inequality (4) with x = v and y = p, we get

$$d^{2}(Av, Bp) \leq b.d (Av, Sv) d(Bp, Tp) + c.d (Sv, Bp) d(Tp, Av).$$

Using Tp = Bp = Sv, this gives

$$d^{2}(Av,Sv) \leq b.d(Av,Sv)d(Tp,Tp) + c.d(Bp,Bp) d(Tp,Av) = 0 \text{ or } Av = Sv.$$

Thus *v* is a coincidence point of *A* and *S* and *p* is a coincidence point of *B* and *T*.

Since the pairs (A, S) and (B, T) are weakly compatible, we find that

ASr = SAr and BTq = TBq. This implies Az = Sz and Bz = Tz.

Now from the inequality (4) with x = y = z, it follows that

$$d^{2}(Az, Bz) \leq b.d(Az, Sz)d(Bz, Tz) + c.d(Sz, Bz)d(Tz, Az)$$

$$\leq b.d(Sz, Sz)d(Tz, Tz) + c.d(Az, Bz) d(Bz, Az)$$

$$\Rightarrow (1-c) d^{2}(Az, Bz) \leq 0 \qquad \Rightarrow \qquad d^{2}(Az, Bz) = 0 \text{ or } Az = Bz.$$
Thus
$$Az = Sz = Bz = Tz \qquad \dots \qquad (8)$$

Now we prove that Az = z.

From the inequality (4) with x = z and y = q, we have

$$d^{2}(Az, Bq) \leq b.d(Az, Sz)d(Bz, Tq) + c. d(Sz, Bq)d(Tq, Az) \leq b \cdot 0 + c.d^{2}(Az, z)$$

$$\Rightarrow (1-c) d^2(Az, z) \le 0 \text{ or } Az = z.$$

Hence Az = Sz = Bz = Tz = z. Thus z is a common fixed point of A, S, B and T.

Uniqueness: Let z, z' be two common fixed points of A, S, B and T.

From the inequality (4) with x = z and y = z', we get

$$d^{2}(Az, Sz') \leq b.d(Az, Sz)d(Bz', Tz') + c.d(Sz, Bz')d(Tz', Az) \leq 0 + c.d(z, z')d(z', z)$$

or $d^2(z, z') \le c \cdot d^2(z, z')$ so that z = z'.

Hence the fixed point is unique.

Remark 3.1: Writing B = A and S = T = I, the identity map on X in Theorem 3.1, we get (1) from (4) as a special case. It is also known that the identity map commutes and hence is weakly compatible with every map. Further from the proof of Theorem 1.1, the sequence $\{A^n x\}_{n=1}^{\infty}$ is Cauchy for each $x \in X$. Therefore if X is complete, this converges to some $z \in X$ and its convergence is equivalent to the property EA of the pair (A, I), that is the condition (a) of Theorem 3.1.

Acknowledgements

The author expresses sincere thanks to the referee for his/her valuable suggestions in improving the paper for publication.

References

- [1] M. Aamri and D.I. EI Mountawaki, Some new common fixed point theorems under strict contractive conditions, *Journal of Mathematical Analysis and Applications*, 270(2002), 181-188.
- [2] B. Fisher, Fixed points and constant mappings on metric spaces, *Atti Acad. Naz. Lincci Rend, CL. Sci. Fis. Mat. Natur*, 61(1976), 329-332.
- [3] G. Jungck, Compatible mappings and common fixed points, *Int. Jour. Math. & Math. Sci*, 9(1986), 771-779.
- [4] G. Jungck and B.E. Rhoades, Fixed point for set-valued functions with out continuity, *Indian J. Pure Appl. Math.*, 29(3) (1998), 227-238.
- [5] G. Jungck, P.P. Murty and Y.J. Cho, Compatible mappings of type (*A*) and common fixed points, *Math. Japonica*, 38(2) (1993), 381-390.
- [6] H.K. Pathak, Y.J. Cho, S.M. Kang and B.E. Lee, Fixed point theorems for compatible mappings of type (*P*) and applications to dynamic programming, *Le Matematiche*, 50(1995), 15-33.
- [7] H.K. Pathak, Y.J. Cho, S.M. Kang and B. Madharia, Compatible mappings of type (*C*) and common fixed point theorem of Gregus type, *Demonstr. Math.*, 31(3) (1998), 499-517.
- [8] H.K. Pathak and M.S. Khan, Compatible mappings of type (*B*) and common fixed point theorems of Gregus type, *Czechoslovak Math. J.*, 45(120) (1995), 685-698.
- [9] H.K. Pathak and M.S. Khan, A comparison of various types of compatible maps and common fixed points, *Indian. J. Pure Appl. Math.*, 28(4) (1997), 477-485.
- [10] H.K. Pathak, R.R. Lopez and R.K. Verma, A common fixed point theorem using implicit relation and property E.A. in metric spaces, *Filomat*, 21(2) (2007), 211-234.
- [11] M.R. Singh and Y.M. Singh, Compatible mappings of type (*E*) and common fixed point theorems of Meir-Keeler type, *Int. J. Math. Sci. & Engg. Appl.*, 1(2) (2007), 299-315.
- [12] S.L. Singh and A. Tomar, Weaker forms of commuting maps and existence of fixed points, J. Korea Soc. Math. Edu. Ser. B: Pure Appl. Math., 10(3) (2003), 145-161.