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Abstract
In this paper we consider the problem about the conditions on f(x), a(t) and

g(x) to ensure that all solutions of (1) are bounded or oscillatory using a non
usual Lyapunov Function and two equivalent systems.
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1 Introduction

We consider the equation:

x′′ + f(x)x′ + a(t)g(x) = 0, (1)

where a, f and g are continuous functions satisfying the following condition:

a) xg(x)> 0 for x 6= 0,
b) ±∞0 g(s)ds = +∞,



56 Julio C. Acosta et al.

c) a ∈ C1([0,+∞)), satisfying 0 < a ≤ a(t) ≤ A < +∞ for t ∈ [0,+∞).

Various questions on the stability, oscillation and periodicity of solutions of
(1) have received a considerable amount of attention in the last years (one can
consult the references for a more complete picture) under condition f(x)>0
for all x ∈ R. In this paper we study the asymptotic behaviour of solutions of
(1) without making use of this condition and using a new method in which the
usual Lyapunov function is not used (cf. [2-4]).

To apply Lyapunov’s direct method to the equation (1), we usually define
a Lyapunov function V (t, x, y) by:

V (t, x, y) = b(t)W (t, x, y), (2)

where:

W (t, x, y) = G(x) +
y2

2 [a(t)]
(3)

G(x) =
∫ x
0
g(t)dt and b(t) = exp

(
−
∫ t
0
a′(s)−

a(s)
ds
)

with a′(t)− = max(−a′(t), 0).

Let V ′(1)(t, x, y) be the total derivative along the solutions of (1). If V ′(1)(t, x, y)

is non-positive in a suitable neighbourhood of the (0, 0), then the stability of
the zero solution of (1) follows. For the non-positivity of V ′(1)(t, x, y) we need

that F (x) satisfies:

F (−x) ≤ 0 ≤ F (x) somewhere in x ≥ 0, (4)

since V ′(1)(t, x, y) = − b(t)
a(t)

[
a′(t)−G(x) + y2a′(t)+

2a2(t)
+ a(t)g(x)F (x)

]
. In other

point of view, the non-positivity of V ′(1)(t, x, y) implies that every solutions of

(1) departing from a bounded region by a closed curve, remains in this region
as t increases. This fact plays an essential role in our work where the assump-
tions (4) is not used. So, we need alternative assumptions on F (x) and g(x)
under which the last remark is still valid.

The equation (1) is equivalent to the system:

x′ = y,

(5)

y′ = f(x)y − a(t)g(x).

The regularity of functions involved in this system ensures existence and
uniqueness of solutions of (5). The condition a) shows that (0, 0) is the only
point of equilibrium for system (5) and the condition b) ensures that results



On Some Qualitative Properties of a... 57

obtained are in global sense. From [10], obtain that condition c) is consistent
with common sense.

2 Problem Formulations

Let α be a given real. We indicate by Ωα the following open set:
Ωα ≡ R2 if α ≡ 0;
Ωα = {(x, y) : y > −α−1} if α>0;
Ωα = {(x, y) : y < −α−1} if α<0.
And let Fg(R) = {f ∈ C(R) : for x ≥ 0, f(x)−αAg(x) > 0 and for x ≤ 0,

f(x)− αAg(x) < 0}.
Consider the following function Vα given by:

Vα(t, x, y) =
1

a(t)
Wα(y) +G(x), (x, y) ∈ Ωα. (6)

with G(x) as above and Wα(y) =y
0

sds
αs+1

.
Now we present some auxiliary results.

Lemma 2.1. Under assumptions a)-c) and f ∈ Fg, Vα(t, x, y) is a definite
positive function.

Proof: Consider the following case.
Case α ≡ 0
In this case we have that Vα(t, x, y) becomes in

V0(t, x, y) =
y2

2a(t)
+G(x)

From this we have V0(t, 0, 0) ≡ 0 and V0(t, x, y) > 0 for all (x, y) 6= (0, 0).
Case α > 0
It is clear that Vα(t, 0, 0) ≡ 0 and

+∞
0

sds

αs+ 1
= +∞ =

− 1
α

0

sds

αs+ 1
. (7)

From this and definition of function G(x) we have that Vα(t, x, y) > 0 for
all (x, y) 6= (0, 0).

Case α < 0
This case can be analysed in a similar way. End of proof.

Lemma 2.2. The solutions of system (5), and equation (1), do not admit
vertical asymptotes.
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Proof: It is enough, to this end, to show that all solutions of the equation

dy

dx
= −f(x)− a(t)g(x)

y
, y 6= 0 (8)

do not admit vertical asymptotes.

Let us assume that (8) has a solution

y = y(x), a ≤ x < b

such that

Lim
x→b−

y(x) = +∞. (9)

We can assume with no loss of generality, that 0 < y(a) ≤ y(x) for a ≤
x < b. Let

F ≥ max
a≤x<b

|f(x)| , G ≥ max
a≤x<b

|g(x)| .

It follows from the mean value theorem that, for a < x < b,

y(x)− y(a) ≤
[
F +

AG

y(a)

]
(b− a)

which contradicts to (9). The other situations can be analysed in a similar
way. This completes the proof.

Remark 2.3. This is equivalent to proved the continuation of the solutions
of system (5) and therefore, of equation (1).

It can be immediately verified that the derivative of V relative to system
(5) verified:

V ′α(t, x, y) ≤ −a
′(t)+
a2(t)

Wα(y)− 1

a(t)

(f(x)− αa(t)g(x))

[α(y − F (x)) + 1]
y2 (10)

Because a′(t)
a2(t)

Wα(x, y), α(y − F (x)) + 1 and y2

a(t)
they are positive for all

(x, y) ∈ Ωα, it follows that the non positivity of V ′α(t, x, y) depends only of
(f(x)− αa(t)g(x)).

From (6) we can define the function:

Vα(x, y) =
1

a
Wα(y) +G(x), (x, y) ∈ Ωα.
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Lemma 2.4. Assume there are α > 0 and b > 0 such that for all x ≥ b,
f(x) ≥ αAg(x). Let y0 > 0, L = Vα(b, y0) and

M =
{

(x, y) ∈ Ωα : x ≥ b, Vα(x, y) ≤ L
}

Let γ(t) = (x(t), y(t)) be the solution of (5) so that γ(t0) = (b, y1), with
0 < y1 < y0. Then, there is t1 > t0 such that

γ(t) ∈M, t0 ≤ t ≤ t1

and γ(t1) = (b, y2), with - 1
α
< y2 < 0.

Proof: From x′(t0) = y1 > 0, it follows there is t2 > t0 so that γ(t) ∈
M, t0 ≤ t ≤ t2. On the other hand, being x′(t) > 0 on the half plane y > 0,
x′(t) < 0 on the half plane y < 0, y′(t) < 0 on the positive half-axis x and (0, 0)
the only point of equilibrium, there must exist t3 > t2 such that γ(t3) /∈M .

Let t1={τ > t0 : γ(t) ∈M, t0 ≤ t ≤ τ}. From the hypothesis f(x) ≥ αAg(x),

x ≥ b, and from (11) it follows that Vα
′
(x, y) ≤ 0, t0 ≤ t ≤ t1. Since

Vα(γ(t)) = Vα(b, y1) < L.
Because x′(t) > 0 on the y > 0 half-plane, it follows that γ(t1) = (b, y2),

with - 1
α
< y2 < 0.

In a similar way, we can demonstrate the following lemmas:

Lemma 2.5. Assume there are α < 0 and c < 0 such that for all x ≤ c,
f(x) ≥ αAg(x). Let y0 < 0, L = Vα(c, y0) and

M =
{

(x, y) ∈ Ωα : x ≤ c, Vα(x, y) ≤ L
}

Let γ(t) = (x(t), y(t)) be the solution of (5) so that γ(t0) = (c, y1), with
y0 < y1 < 0. Then, there is t1 > t0 such that

γ(t) ∈M, t0 ≤ t ≤ t1

and γ(t1) = (c, y2), with 0 < y2 <- 1
α

.

Lemma 2.6. Assume there are α < 0 such that for all x < c, f(x) ≤ 0. Let
y0 < 0, L = V0(c, y0) and

M =
{

(x, y) ∈ R2 : x ≤ c, V0(x, y) ≤ L
}

Let γ(t) = (x(t), y(t)) be the solution of (5) so that γ(t0) = (c, y1), with
y0 < y1 < 0. Then, there is t1 > t0 such that

γ(t) ∈M, t0 ≤ t ≤ t1

and γ(t1) = (c, y2), with 0 < y2 < |y0|.
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Lemma 2.7. Assume there are b > 0 such that f(x) ≥ 0, x ≥ 0. Let y0 > 0,
L = V0(b, y0) and

M =
{

(x, y) ∈ R2 : x ≥ b, V0(x, y) ≤ L
}

Let γ(t) = (x(t), y(t)) be the solution of (5) so that γ(t0) = (b, y1), with
0 < y1 < y0. Then, there is t1 > t0 such that

γ(t) ∈M, t0 ≤ t ≤ t1

and γ(t1) = (b, y2), with −y0 < y2 < 0.

Remark 2.8. When a ≡ 1, our results are consistent with those obtained
in [1], [5] and [13].

Remark 2.9. In the general case a(t) > 0 our results are non contradicts
with the obtained in [9] and [14].

Remark 2.10. The results obtained in Lemmas 3-6 completes those ob-
tained in [11], about the construction of a stability region for the equation (1).

2.1 Oscillatory and Boundedness Results

We know that all solutions of (1) are continuable to the future, now consider
instead the system (5) the following equivalent system to equation (1):

x′ = y − F (x),

y′ = −a(t)g(x).
(11)

Now we will establish various results on the oscillatory character of this
system. So, we have:

Theorem 2.11. Under conditions a)-c) if

1)
∫ +∞
0

a′(t)−

a(t)
dt¡∞, and

2) there is N¿0 such that |F (x)| ≤ N for x ∈ R,
then all solutions of the system are oscillatory if and only if:∫ +∞

t0

a(t)g [±k(t− t0)] dt = ±∞, (12)

for all k>0 and all t0 ≥ 0.
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Proof: Necessity: We suppose that all solution of (11) are oscillatory, but
condition (12) is not satisfy for some k>0. We shall construct a non-oscillatory
solution of system (5), making in (12) s = ±k(t− t0) we have:

±k
∫ +∞

t0

a(t)g[±k(t− t0)]dt =

∫ ±∞
0

a(± s
k

+ t0)g(s)ds,

thus: ∫ ±∞
0

a(± s
k

+ t0)g(s)ds = M < +∞,

for some k > 0 and some t0 ≥ 0. We consider a solution of system (11),
(x(t), y(t)) such that x(t0) = 0, y(t0) = A with A>k + N . While that y(t) >
k + N we have x′(t) ≥ k>0; from this inequality, after integration between t0
and t we obtain x(t)≥k(t− t0), then there is x−1(s) such that x−1(s) ≤ s

k
+ t0.

Consider the function b(t) = exp
(
−
∫ t
0
a′(τ)−

a(τ)
dτ
)

, from condition 2.1 we have

that 0<b1 ≤ b(t) ≤ 1 for 0 ≤ t<+∞, for some b1.

Since a(t) = b(t)c(t), where c(t) = a(0)exp
∫ t
0
a′(τ)+

a(τ)
dτ , we obtain:

M =

∫ +∞

t0

a(t)g[k(t− t0)]dt =

∫ +∞

t0

b(t)c(t)g[k(t− t0)]dt ≥

≥ b1

∫ +∞

t0

c(t)g[k(t− t0)]dt

and from here: ∫ +∞

t0

c(t)g[k(t− t0)]dt ≤
M

b1
≡M1.

From the second equation of system (11) we deduce that:

y′(t)

b(t)
= −c(t)g(x(t)), (13)

thus y′(t) ≥ y′(t)
b(t)

= c(t)g(x(t)), integrating (13) between t0 and t we have

y(t) ≥ y(t0)−
∫ t

t0

c(s)g(x(s))dt ≥ A− 1

k

∫ t

t0

c(s)g(x(s))x′(s)dt =

= A− 1

k

∫ x(t)

0

c(x−1(s))g(s)dt.
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Since x−1(s) ≤ s
k

+ t we have c(x−1(s)) ≤ c( s
k

+ t0) and from here we obtain

y(t) ≥ A− 1

k

∫ x(t)

0

c(
s

k
+ t0)g(s)dt ≥ A− M1

k
.

Taking A such that A − M1

k
≥ k + N for t ≥ t0 we have that x(t) ≥

k(t− t0)→ +∞ as t→ +∞. This is a contradictory with the initial supposi-
tion, so we have the necessity of condition (12). The case x ≤ 0 can be proved
in a similar way.

Sufficiency: Let (x(t),y(t)) be the solution of (11) leaving a pointB(x0, F (x0)),
at t = 0. Suppose that (x(t),y(t)) does not traverse the y-axis. Then (x(t),y(t))
stays in the region R2 = {(x, y) : x ≥ 0, y < F (x)} as long as the solu-
tion is defined for t ≥ 0, hence x′(t) < 0 and therefore x(t) ≤ x(t0). Let
N1 = max

0≤x≤x0
|F (x)|, then the solution (x(t), y(t)) does not traverse the curve

Vα(t, x(t), y(t)) = Vα(x0, F (x0)) =
1

A

∫ F (x0)+N1

0

sds

αs+ 1
+G(x0)

as t increases. Therefore the orbit (x(t),y(t)) traverses the y-axis at C(0, yC).
Since x′= 0 and y′<0 on the curve y = F (x) in the region x > 0, F (0) = 0
implies yC ≤ 0. Thus the orbit traverses the negative y-axis at some finite
time t1. We choose x(t1) = 0, y(t1) = yC . In the region R3 = {(x, y) : x ≤
0, y < F (x)}, x′(t) ≤ yC + N , so we have x(t) ≤ (yC + N)(t − t0) from here
x−1(s) ≥ s

yC+N
+ t0 and y′

b1
≥ −c(t)g(x(t)). It follows then, for all t > t1, that:

y(t) ≥ (yC +N)− b1
yC +N

∫ t

t1

c(s)g(x(s))x′(s)ds,

and hence:

y(t) ≥ yC −
b1

yC +N

∫ x(t)

0

c(
r

y0
+ t0)g(r)dr. (14)

Since y(t)<F (x(t)) if x(t)→ ±∞ then from (14) we have that y(t)→ +∞,
and the orbit (x(t),y(t)) traverses the curve y = F (x). Now consider the region
R3 = {(x, y) : x < 0, y > F (x)}, here x′(t) > 0, y′(t) > 0, the analysis of phases
velocities show the existence of a point D(0, yD) on the y-axis positive. If x(t)
is bounded, i.e., x(t1) ≥ x(t) ≥ M we have that x(t) → M− while that y(t)
is increasing. Again an analysis of phases velocities show that there is a finite
time t′ such that y(t′) = F (x(t′)). This completes the proof of theorem.

Remark 2.12. The simple case x′′ − 2x′ + x = 0, with non-oscillatory
solution x(t) = et, shows that positivity of f is probably necessary in some
sense. This is an open problem.
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Theorem 2.13. Under assumptions of Lemma 1 if the following conditions:
1) a′(t)>0 for t ≥ 0,

2) |F (x)| ≤ N for some N>0 and x ∈ R,
3) G(∞) =∞,
hold. Then the solutions of the equation (1) are bounded if and only if the
condition (12) is fulfilled.

Proof: We suppose that condition (12) is fulfilled. Then all solutions of
are oscillatory. In this case c(t) = a(t) for all t ≥ t0 ≥ 0. We taking in account
the function Vα defined in (6) and his total derivative (7) we have that:

Vα(t, x(t), y(t)) ≤ Vα(t0, x(t0), y(t0)).

From Theorem 2.7 there are t2 ≥ t1 ≥ t0 such that x(t1) > 0, x(t2) < 0,
and y(t1) = F (x(t1)), y(t2) = F (x(t2)). Also we obtain, from decreasing of
functions Vα, that:

Vα(t, x(t), y(t)) ≤ Vα(t1, x(t1), y(t1)) = G(x(t1))

and consequently:

G(x(t)) ≤ G(x(t1)).

From this we obtain that x(t) ≤ x(t1). Similarly, we can obtain that
x(t2) ≤ x(t). So, putting M = max(−x(t2), x(t1)) we have |x(t)| ≤ M for
t ≥ max{t2, t1}. This prove the sufficiency. In the Theorem 7 we proved that
if the condition is not true, there are unbounded solutions of equation (1).
Thus the proof of theorem is finished.

Lemma 2.14. If in addition to conditions a)-c) we have that g(x) is not
increasing function and a(t)→ +∞ as t→ +∞, then condition (12) does not
hold.

Proof: If condition (12) is not valid, then there exits k> 0 and t0 ≥ 0 such
that ∫ +∞

t0

a(t)g[k(t− t0)]dt = M < +∞,

(the negative case is similar). From Theorem 2.7 the equation (1) have non-
oscillatory solutions defined for t ≥ t0 ≥ 0. We consider a solution x = x(t)
with this property, without loss of generality we can suppose that there exists
T1 ≥ t0 such that for some m, a(t)>m if t ≥ T1 (the case x(t)< − m<0 is
analogous). It is easy follow that for m>0 there exists T2 ≥ t0 such that:
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k(t− t0)>m>0, t ≥ T2. (15)

By use of (13) and definition of g we have:

g[k(t− t0)] ≥ g(m)>0, t ≥ T2.

Therefore we obtain:

a(t)g(m) ≤ a(t)g[k(t− t0)), t ≥ T2. (16)

Let us consider T = max{T1, T2} after integration of (16) between T and
+∞ we obtain:

g(m)

∫ +∞

T

a(t)dt ≤
∫ +∞

T

a(t)g[k(t− t0)]dt = M∗ < +∞,

hence ∫ +∞

T

a(t)dt ≤ M∗

g(m)
< +∞. (17)

Since a(t)→ +∞ as t→ +∞ we have that:∫ +∞

T

a(t)dt = +∞,

which is a contradiction to (17). Hence the condition (12) holds. Thus the
proof is now complete.

Corollary 2.15. Under conditions of Lemma 9 all solutions of equation (1)
are oscillatory if the following conditions:

a)
∫ +∞
0

a′(t)−

a(t)
dt < +∞,

b) there exist N>0 such that F (x) ≤ N for x ∈ R
hold.

Proof: It follows from Lemma 2.2, Lemma 2.1 and Theorem 2.7.

Theorem 2.16. Under condition Lemma 1 if the condition:

1)
∫ +∞
0

a′(t)−

a(t)
dt<+∞,

holds, then all solutions of equation (1) are bounded.

Proof: By similar arguments to sufficiency of Theorem 2.8 we obtain that
there exists R > 0 such that |x(t)| ≤ R.

Corollary 2.17. Under condition of Lemma 9 all solutions of equation (1)
are bounded if the conditions:
a) a′(t)>0 for all t ≥ 0,



On Some Qualitative Properties of a... 65

b) there exists N > 0 such that F (x) ≤ N for x ∈ R
hold.

Proof: The proof follows immediately applying Lemma 2.9 and Theorem
2.8.

Finally we give examples of functions f(x) which show that our results
contains those in [15] and [16].

Example 1: f(x) =

{
x, if |x| ≤ 1,
x−1, if |x| > 1.

Example 2: f(x) =


1, if x ≥ 1,
x, if |x| < 1,
−1, if x ≤ −1.

These examples do not satisfy the conditions of Repilado and Ruiz, but we
can guarantee the boundedness of the solutions under Corollary 12.

Acknowledgements: The authors acknowledge the comments and sugges-
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