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Abstract 

The homotopy analysis method (HAM) is implemented to obtain the approximate 
solutions of the nonlinear evolution equations in mathematical physics. The 
results obtained by this method have a good agreement with one obtained. It 
illustrates the validity and the great potential of the homotopy analysis method in 
solving partial differential equations. 
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1 Introduction 
 
The flow in channels and in circular pipes with permeable walls has received 
considerable attention in the past few years. The earliest work of steady flow 
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across permeable and stationary walls can be traced back to Berman [1], who 
showed that the governing equations can be reduced to single fourth-order 
nonlinear ordinary differential equation which includes permeation Reynolds 
number ℛ� , and associated solution can be obtained. Laminar flow studies in 
porous pipes or channels with expanding or contracting walls have received 
considerable attention due to their applications in biophysical flows. These 
include the model of pulsating diaphragms, filtration, blood flow and artificial 
dialysis, binary gas diffusion, the model of air and blood circulation in the 
respiratory system. In order to simulate the peristaltic motion by successive wall 
contractions and expansions. Uchida and Aoki [15] first examined the viscous 
flow inside an impermeable tube with contracting cross sections. Ohki [20] 
investigated the unsteady flow in a porous semi-infinite tube, whose elastic wall 
had a varied length and a stable cross section. To simulate the laminar flowed in 
cylindrical solid rocket motors, Goto and Uchida [4] analyzed the laminar 
incompressible flow in a semi-infinite porous pipe, whose radius varied with time. 
Bujurke et al. [3] obtained a series solution to the unsteady flow in a contracting 
or expanding pipe. Majdalani et al. [6] obtained an exact similarity solution to the 
viscous flow with small wall contractions or expansions and weakly permeability. 
Dauenhauer and Majdalani [5] obtained a numerical solution and Majdalani and 
Zhou [7] got both numerical and asymptotical solutions for moderate to large 
Reynolds numbers. Srinivasacharya [14] obtained a numerical solution to the flow 
and heat transfer of couple stress fluidin a porous channel with expanding and 
contracting walls. Si et al. [13] obtained analytic solutionto the micro-polar-fluid 
flow through a semi-porous channel with an expanding or contracting wall. 
Dinarvand [10] studied viscous flow through slowly expanding or contracting 
porous walls with lowseepage Reynolds number: a model for transport of 
biological fluids through vessels. 
 
No-slip condition was no longer valid at the permeable surface. Some of both 
experimental and theoretical studies stated that slip could not be ruled out as a 
significant element in the understanding of certain flow peculiarities [17]. 
Beavers, Joseph [2] reported mass efflux experimentsand proved the existence of 
a non-zero tangential (slip) velocity on the surface of a permeableboundary. Using 
a statistical approach, Saffman [12]derived a form for the slip velocity. Isenberg 
[8] posited slip for all practical purposes in his study of blood flow in capillary 
tubes. However, verylittle reports were found in literature for micropolar fluids 
with expanding or contracting walls andslip boundary condition. Bennett [11] 
reported that microscopic examination of blood flowing pasta glass wall shown 
slipping (skidding) of red cells in contact with the wall. Chellam et al. [9] 
investigated the effect on fluid flow and mass transfer with slip at a uniformly 
porous boundary. 
 
Recently, Zhang and Jia [18, 19] discussed the Navier-Stokes equations with first-
order and second-order accurate slip boundary conditions for describing the two-
dimensional gaseous steady laminar flow between two plates. Ramos [16] 
obtained an asymptotic analytical solution of channel flows of incompressible 
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fluids with a slip length that depended on the pressure and/or the axial 
pressuregradient. 
 
The series solutions are presented by HAM developed by Liao [21-23], which has 
been successfully applied to several nonlinear problemsby Hayat, Noor and 
Hashim [25, 26]. In this paper, the effects of different parameters, especially 
expansion ratio and slip coefficient, on velocityand temperature are studied and 
shown graphically. 
 
The main goal of this paper is to find the numerical solutions for the heat transfer 
insymmetric porous channel with expanding or contracting walls and slip 
boundary conditions. Thesecond section will give statement of the problem and 
governing equations. In section3, computations by Homotopy analysis method. 
Finally, the graphs for velocity components and heat transfer presented for 
different values of the fluid parameters are plotted and discussed. 
 

2 Statement of the Problem and Governing Equations  
 
Consider the unsteady two-dimensional motion of an incompressible fluid with 
heat transfer in a porous semi-infinite channel with expanding or contracting walls 
with slip boundary condition. The distance 2�(t) between the porous walls is 
much smaller than the width and length of the channel. One end of the channel is 
closed by a complicated solid membrane. Both walls have equal permeability �	and expand or contract uniformaly at a time-depended rate �
 (�). As shown in 
Fig. 1, a coordinate system may be chosen with the origin at the center of channel. 
Take �  and y�  to be co-ordinate axes parallel and perpendicular to the channel 
walls and assume u� and v� to be the velocity components in the � and y� directions 
respectively and θ�   is the temperature. Under these assumptions, the governing 
equations are expanded as follows [27]. 
 
 
 

���
�
���

������ + ������   = 0                                                        
" #����$ + %� ������ + &� ������'  = − �)���� + *+,%�
" #����$ + %� ������ + &� ������'  = − �)���� + *+,&�

"-. #�/0�$ + %� �/0��� + &� �/0���' = * 14 #������', + #������ + ������',3 + 4+,5,0
7                           (1) 
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Figure1: Coordinate system and bulk fluid motion 
 
A general infinitesimal group of transformations under which given partial 
deferential equations are invariant [27], the equations (1) are a set of linear 
deferential equations. Ref [27] completed transforms as 
 % = 898: , & = − 898; ,                                                                                                 (2) 

 
And the stream function takes the form, [24, 27] 
 < =  =(>), % =  ?@?� , & = −=,                                                                           (3) 

 
These transforms change the second equation in (1) to, 
 ABCA:B + α #y AECA:E + 2 AFCA:F' + ℛ� #G AECA:E − ACA: AFCA:F' = 0,                                           (4) 

 
He Suggest that the form of temperature take as 
 5 = H(, >) = I(>) + ,J(>),                                                                            (5) 
 
During the assumption of the third and fourth equation in (1) become 
 K,JK>, + LM N(O > + ℛP=) KJK> + QR SK,=K>,T, − 2ℛPJ K=K>U = 0, 
 ?FV?�F + LM 1(O > + ℛP=) ?V?� + 4QR #?@?�',3 + 2 J = 0,                                            (6)                                                    

 
With the boundary conditions 
 K=(1)K> = −X K,=(1)K>, , =(1) = 1, I(1) = 1,     J(1) = 0, 
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?F@(Y)?�F = 0, =(0) = 0, I(0) = 5,,     J(0) = 0,(7) 

 

Where ℛ� = Z[\]   is permeation Reynolds number, P_ = `abc   is Prandtl number 

and Ea = Z[\F
Re/f   is Eckart number. The wall permeance or injection coefficient A is 

defined as  h = ℛiZ , it is a measure of wall permeability. It will be started to solve 

the nonlinear equations (4) and (6) with the boundary conditions. 
 

3     Computations by Homotopy Analysis Method [21-23] 
 
From the rule of solution expression and the boundary conditions (7) it is 
straightforward to choose the following initial guesses. 
 =Y(>) = �(j klmn�F),(olm k) , JY(>) = �(j klmn�F),(olm k) , and IY(>) = 5, + (1 + 5,)>,          (8) 

 
The linear operators are selected as 
 ℒo = ?B @?�B , ℒ, = ?F q?�F , and ℒm = ?F V?�F,                                                                      (9) 

 
These operators satisfy the following properties: 
 ℒo(ro>m + r,>, + rm> + rs) = 0, ℒ,(rt > + rj) = 0, and 
 ℒm(ru > + rv) = 0,                                                                                             (10) 
 
Where rw  (x = 1 − 8) are the constants. 
 
Upon making use of above definitions, we construct the zero-order deformation 
problems 
 (1 − z)ℒo{=� − =Y| = z ℏ ℵo{=�, Ĵ|,                                                                  (11) 
 =��(1, z) = −X =���(1, z),   =�(1, z) = 1, =���(0, z) = 0, =�(0, z) = 1,                  (12) 
 (1 − z)ℒ,(Ĵ − JY) = z ℏ ℵ,{=�, Ĵ|,                                                                   (13) 
 Ĵ(1, z) = 0, Ĵ(0, z) = 1,                                                                                    (14) 
 (1 − z)ℒm(�� − �Y) = z ℏ ℵm(=�, J,� I�),                                                                (15) 
 I�(1, z) = 1, I�(0, z) = 5,,                                                                                   (16) 
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ℵo{=�, Ĵ| = �B@���B + O #> �E@�(�,))��E + 2 �F@�(�,))��F ' + ℛP #�E@�(�,))��E =�(>, z)  − �@�(�,))�� �F@�(�,))��F '                              

                                                                                                                             (17) 
 ℵ,{=�, Ĵ| = �Fq�(�,))��F + LM #(O > + ℛP=�(>, z)' �q�(�,))�� + QR( �F@�(�,))��F  ), −
2ℛPĴ(>, z) �@�(�,))�� )                                                                                             (18) 

 

ℵm{G0, χ�| = ∂,ζ�(y, p)∂y, + P_ �#α y + ℛ�G0(y, p)' ∂ζ�(y, p)∂y + 4Ea( ∂G0(y, p)∂y ),� + 2χ�(y, p), 
                                                                                                                             (19) 
 
If z ∈ [0, 1]  is an embedding parameter and ℏ  are the nonzero auxiliary 
parameters then the zeroth-order deformation problems can be constructed as [15] 
respectively. Using Taylor’s theorem, we can write 
 =�(>, z) = =�Y(>) + ∑ =��(>)z�,���o =��(>) = o�! ��@�(�,))�)� ,                                (20) 

 Ĵ(>, z) = ĴY(>) + ∑ Ĵ�(>)z�,���o Ĵ�(>) = o�! ��q�(�,))�)� ,                                 (21) 

 I�(>, z) = I�Y(>) + ∑ I��(>)z�,���o I��(>) = o�! ��V�(�,))�)� ,                                   (22) 

 
The convergence of the two series is strongly dependent upon ℏ. Assume that ℏis 
chosen so that the series (20-22) are convergent at z = 1. From Equations (20-
22), we have 
 =(>, z) = =Y(>) + ∑ =�(>),���o                                                                         (23) 
 J(>, z) = JY(>) + ∑ J�(>),���o                                                                         (24) 
 I(>, z) = IY(>) + ∑ I�(>),���o                                                                           (25) 
 
Differentiating Equations (14) and (16) m times with respect toz, then setting z =  0  and finally dividing them by m! , we obtain the following m�� -order 
deformation problems. 
 ℒo(=�(>) − ��=�no(>)) =  ℏ ℜ�@ (>),                                                            (26) 
 =�� (1) = −X =���(1),   =�(1) = 0, =��� (0) = 0, and =�(0) = 0,                       (27) 
 ℜ�@ (>) = =�no(s) + O(> =�no��� + 2 =�no�� ) + ∑ ℛP(=�n�no=����  − =�n�no� =���),�no��Y     (28) 
 ℒ,(J�(>) − ��J�no(>)) =  ℏ ℜ�q (>),                                                            (29) 
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 J�(0) = 0, J�(1) = 0,                                                                                     (30) 
 ℜ�� (y) = χ�no�� + P_(( α y)χ�n�no� + ℛ� ∑ (G�n�noχ�� − 2χ�n�noG�� )�no��Y + EaG�n�no�� G���),                                                                                                    (31)   
 ℒm(ζ�(y) − ��ζ�no(y)) =  ℏ ℜ�� (y),                                                               (32) 
 ζ�(0) = θ,, ζ�(1) = 1,                                                                                     (33) 
 ℜ�� (y) = ζ�no�� + P_[( α y)ζ�n�no� + ℛ� ∑ (f�n�noζ���no��Y + 4EaG�n�no� G�� ] +2χ�no�� ,                                                                                                                  (34) 
 
Where 
 �� = � 0,               � ≤ 1,1,              � > 1.  7                                                                                   (35) 

 
The general solutions of Equations (26), (29) and (32) are 
 =�(>) = =�∗ (>) + ro +  r,> + rm>, + rs>m),                                                 (36) 
 J�(>) = J�∗ (>) + rt +  rj>),                                                                           (37) 
 I�(>)  = I�∗ (>) + ru +  rv>),                                                                           (38) 
 
in which G�∗ (y), χ�∗ (y) and  ζ�∗ (y)denote the special solutions of Equations (26), 
(29) and (32) and the integral constantsC£ (i = 1 − 8) are determined by 
employing the boundaryconditions (27),(30) and(33).In this way, it is easy to 
solve the linear nonhomogeneous. Equations (26), (29) and (32) by using 
Mathematicaone after the other in the order m =  1, 2, 3, . . .. 
 
 =(>) = ( �uujojYY(olm¦)§ (−3880800(−3 + >, − 6X)(1 + 3X)s − 55440(−1 +>,)(1 + 3X),(ℛP(−2 + >, + >s + 3(−6 + >, + >s)X) + 21O(1 + 3X)(−1 −7X + >,(1 + 3X)))ℏ + (−1 + >,)(−2772O(1 + 3X),(25>sO(1 + 3X), −210(1 + 3X)(1 + 7X) − 2>,(1 + 3X)(−105 + 19O + 15(−21 + 8O)X) +O(13 + 3X(52 + 285X))) + 6ℛP,(703 + 14>v(1 + 3X), − 7>j(1 +3X),(53 + 110X) − >,(1 + 3X)(173 + 7X(71 + 330X)) − >s(1 +3X)(173 + 7X(71 + 330X)) + X(11248 + 21X(2063 + 3630X))) −77¬(1 + 3X)(65>jO(1 + 3X), + >,(1 + 3X)(360(1 + 3X) + O(227 +681X + 3240X,)) + >s(1 + 3X)(360(1 + 3X) + O(389 + 15X(121 +216X))) − 3(240(1 + 3X)(1 + 9X) + O(227 + X(3178 + 3X(3793 +6480X))))))ℏ,)),                                                                                               (39) 
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If we take ϕ → 0, we get 
 

=(>) = Sn�E
, + m�, + 3O #�§

sY − �E
,Y + �sY' + ℛP # �¯

,vY − m�E
,vY + �osY + O(− omℛi�°±,YojY −

² �¯
,vYY + ² �§

tjYY + ,,u�E
,t,YY − ,,u�mmjYY)'³ + ℛP,( �´´

²,sYY − µF�°
mmjY + m�¯

o²jYY + um�E
oYuvYY − uYm�o,²mjYY) +

O,(n�¯
oo, + ²�§

sYY − to�E
,vYY + om�,vYY),                                                                               (40) 

 

4 Numerical Results and Discussion 
 
Our computations show that the series solutions converge in the whole region of ywhenℏ¶ = ℏ· = −1,. This section deals with the graphics and the interpretation 
of the dimensionless wall dilation rateα and the slip coefficientϕ, on the  and y 
components of the fluid velocity and heat transfer distributions. Table (1), figures 
2(a) and 2(b) present the comparison of self-axial velocity u/x profiles between 
the HAM solutions and Ref. [24] analytical results for α = ±0.5, X = 0. 
 
Figures (3–5) show the effect of slip coefficient on the velocity components and 
the temperature distributions. We can observe that the slip coefficient ϕ has 
obvious influence on the velocity and the temperature. Fig.2 shows that the axial 
velocity is a decreasing function of X   near to the center. However, it is an 
increasing function of ϕ  near to the walls. However, with the increase in ϕ  , the 
influence of  X  on the velocity and the temperature becomes smaller. We can also 
find that the radial velocity is a deceasing function ofX in fig. 3. Fig.4 show that 
the effect of the slip coefficient ϕ  on temperature θ , it is obvious that as ϕ 
increasing the temperature θ decreasing.The influence of the wall expansion ratio α on velocity component u/x is given in Figures (6–11) for fixed  ϕ in case of 
injectionℛ� = 1  and suctionℛ� = −1. With the expansion of the wall, the axial 
velocity increases. The maximum of streamwise velocity lies at the center of the 
channel whether α is positive and the lower near the wall; however, whether α is 
negative (contracting wall), increasing contraction ratio leads to lower axial 
velocity near the center, and the higher near the wall. The axial velocity 
distribution, in all cases, approaches a cosine profile. Figs. (8 and 11) shows that 
the effect of the wall expansion ratio α on the temperature θ, It is shown that the 
temperature is increasing function with α for injection and suction. Figs. (12-14) 
shows that the effect of the Eckert numberEa , Prandtel number P_ and the 
initialtemperatureθ, on the temperature distribution, we find that the temperature 
is increasing function withEa, P_ and θ,. 
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Table1: Comparison between present work solutions and Ref. [24] for self-axial 
velocity at ℛ� = 5, forX = 0,O = −0.5 and O = 0.5 

 
 α = -0.5 α = 0.5, 

Y Ref[24] Present Percentage error 
(%) Ref[24] Present Percentage 

error (%) 

0.00 1.5151 1.50268 0.0124254 1.556324 1.5439 0.0124254 

0.05 1.51134 1.49901 0.0123324 1.551780 1.53945 0.0123324 

0.10 1.50005 1.488 0.0120513 1.538164 1.52611 0.0120513 

0.15 1.48118 1.4696 0.0115757 1.515522 1.50395 0.0115757 

0.20 1.45465 1.44376 0.0108947 1.483935 1.47304 0.0108947 

0.25 1.42038 1.41039 0.00999335 1.443517 1.43352 0.00999335 

0.30 1.37826 1.36941 0.00885233 1.394421 1.38557 0.00885233 

0.35 1.32817 1.32072 0.00744968 1.336839 1.32939 0.00744968 

0.40 1.27002 1.26426 0.00576282 1.271006 1.26524 0.00576282 

0.45 1.20371 1.19994 0.00377264 1.197207 1.19343 0.00377264 

0.50 1.1292 1.12773 0.00146993 1.115778 1.11431 0.00146993 

0.55 1.04651 1.04764 0.00113512 1.027110 1.02824 0.00113512 

0.60 0.955722 0.959722 0.00399957 0.931656 0.935656 0.00399957 

0.65 0.857047 0.864077 0.00702959 0.829933 0.836962 0.00702959 

0.70 0.750818 0.760875 0.0100568 0.722523 0.73258 0.0100568 

0.75 0.650349 0.650349 0.0128079 0.610078 0.622886 0.0128079 

0.80 0.532795 0.532795 0.0148669 0.493322 0.508189 0.0148669 

0.85 0.408567 0.408567 0.0156289 0.373046 0.388675 0.0156289 

0.90 0.278066 0.278066 0.014244 0.250109 0.264353 0.014244 

0.95 0.141729 0.141729 0.00955104 0.125435 0.134986 0.00955104 

1.00 -3.470E-18 0.00000 3.470E-18 3.470E-18 0.00000 3.470E-18 
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Fig. 3:The effect of the slip coefficient » on the self-
axial velocity component with ¼½=0.5, ¾=0.2 

Fig.4: The effect of the slip coefficient » on the 
radial velocity component with ¼½=0.5, ¾=0.2 

Fig (2a): Comparison between present work solutions and Ref. 
[24] for self-axial velocity profiles at ¿ = 0.5 and ¼À = 5.0.

Fig (2b):Self-axial velocity profiles shown over a 
range of Re at ¾ = −Á. » = Á 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: The effect of the slip coefficient » on temperture 
distribution  with ¼½= 1, ¾ =0.5, ÂÃ = 0.5, ÄÅ = 0.7, ÆÇ = 
0, È =3. 

Fig. 6: The effect of the wall expansion ratio O onthe 

self-axialvelocity component with ℛ�=1, ϕ =0.2. 
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Fig. 8: The effect of the wall expansion ratio O on  
temperature distribution with ℛ�= 1, X = 0.2,  Pr = 0.7, Ec=0.5, θ, = 0, x =3. 

Fig. 11: The effect of the wall expansion ratio Oon  
temperaturedistribution with ℛ�=- 1, X =0.2, Q- = 
0.5,LË = 0.7, 5, = 0,x=3 

Fig. 9: The effect of the wall expansion ratio Oonthe self-
axialvelocity component with ℛ�= -0.5, ϕ =0.2. 

Fig. 10: The effect of the wall expansion ratio O on 
the radial velocity component with ℛ� = -0.5, ϕ=0.2. 

Fig. 7: The effect of the wall expansion ratio O on the 
radialvelocity component with ℛ� = 1, ϕ=0.2. 

Fig. 12:The effect of the Eckart number QR on 
temperaturedistribution with ℛ�= 1, , X = 0.2α =0.5,  Pr = 0.7, θ, = 0, x =3. 
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Fig. 14: The effect of ÆÇ on temperature 
distribution with ¼½= 0.5, » = Á. Ç, ¾ =0.5, ÂÃ = 
0.5, ÄÅ = 0.7, È =3. 

 

 
5 Conclusion 
 
In this paper, the Homotopy Analysis Method has been applied to study the heat 
transfer in symmetric porous channel with expanding or contracting walls and slip 
boundary condition equation. The explicit series solutions our problem are 
obtained, which are the same as those results given by Lie group analysis method 
[27]for ℏ = −1. In conclusion, HAM provides accurate numerical solution for 
nonlinear problems in comparison with other methods. It also does not require 
large computer memory and discretization of the variables and>. The results 
show that HAM is powerful mathematical tool for solving nonlinear partial 
differential equations. Mathematica has been used for computations in this paper. 
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