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Abstract

This paper aims to show that the amenability of K1 ×K2 is equivalent to
the following condition: “If ϕ is a continuous positive definite function defined
on K1 ×K2 and ϕ ≥ 0 then the constant function 1K1×K2 belongs to the spec-
trum of ϕ”, which K1 and K2 are locally compact hypergroups as defined by R.
Jewett [1], with convolutions ∗1, ∗2 respectively.Our study deals with the cases
of exponentially bounded product hypergroups and discrete solvable product hy-
pergroups. And study of conditionally exponential convex functions.
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1 Introduction

Let K be a locally compact Hausdorff space, M(K) denote the space of all
bounded radon measures, M1(K) be the subset of all probability measures
and εx be the point mass measure of x ∈ K. The support of a measure µ is
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denoted by supp µ. C(K) denotes the space of continuous functions on K.
The space K is called a hypergroup if the following conditions are satisfied:

(H1) There exists a map: K × K → M1(K), (x, y) → εx ∗ εy, called
convolution, which is continuous, where M1(K) bears the vague topology.

(H2) supp εx ∗ εy is compact.
(H3) There exists a homomorphism K → K, x → x−, called involution,

such that x = (x−)− and (εx ∗ εy)− = εy− ∗ εx− .
(H4) There exists an element e ∈ K, called unit element, such that εe∗εx =

εx ∗ εe = εx.
(H5) e ∈supp εx ∗ εy− if and only if x = y.
(H6) The map (x, y) → supp εx ∗ εy of K × K into the space of nonvoid

compact subset of K is continuous, the latter space with topology as given in
[2,7].

Let K1 and K2 are locally compact hypergroups, with convolutions ∗1, ∗2

respectively. The cartesian product of K1 and K2 will take the form

K1×K2= {(x1, x2) : x1 ∈ K1, and x2 ∈ K2}

with convolution ∗ defined on M(K1 ×K2)by

ε(x1,x2) ∗ ε(y1,y2) = (εx1 ∗1 εy1)× (εx2 ∗2 εy2)

where ε(x1,x2) is the one point mass measure. And the involution of the
product hypergroups is defined by

(x1, x2)− = (x−1 , x
−
2 ),∀(x1, x2) ∈ K1 ×K2

finally, the identity element of the product hypergroups is (e1, e2), which
e1 and e2 are the identites of K1 and K2 respectively.

A map ϕ define on (K1×K2)2 on to R+ is called positive definite function
if

n∑
i,j=1

cicjϕ( (x1, x2)i ∗ (x1, x2)−j ) ≥ 0.

where {c1, c2, ..., cn} ∈ C, {(x1, x2)1 , (x1, x2)2 , ..., (x1, x2)n} ∈ K1 ×K2.

For an example of positive, positive definite functions on a product hy-
pergroups K1 × K2 are given by a functions of the form f ∗ f∼, where f
is a positive function on K1 × K2 with compact support, f∼ is defined by
f∼(x1, x2) = f(x1, x2)−1 and ∗ is the convolution, it is easy to see that the
function f ∗ f∼ is positive definite.
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If P (K1×K2) be the convex set of all continuous positive-definite functions
ϕ on K1 × K2 with ϕ (e1, e2) = 1. The spectrum spϕ of ϕ ∈ P (K1 ×K2)
can be defined as the set of all indecomposible ψ ∈ P (K1 × K2) which are
limits, in the sense of the topology of uniform converges on compact subsets
of K1 ×K2, of functions of the form

(x1, x2)→
n∑

i,j=1

cicj ε(x1,x2)i ∗ ε(x1,x2)−j
ψ (x1, x2)

where {c1, ..., cn} ∈ C,{(x1, x2)1 , (x1, x2)2, ..., (x1, x2)n} ∈ K1 ×K2.

If πϕ denotes the cyclic unitary representation of K1 ×K2 associated with
ϕ, then spϕ consists of all ψ ∈ P (K1 × K2) for which πψ is irreducible and
weakly contained in πψ [2].

Our main subject here is to prove that exponentially bounded product
hypergroups and solvable discete hypergroups satisfy the followig property
(which we denote by (P)):

(P) If ϕ ∈ P (K1×K2) and if ϕ is positive in usual sense, then the constant
positive- definite function 1 on K1×K2, 1K1×K2 , belongs to spϕ. For connected
hypergroups we show that the condition that the hypergroup is amenable is
equivalent to the following weaker version (P∗) of P:

(P∗) if ϕ ∈ P (K1 ×K2) and if ϕ is positive, then 1K1×K2 ∈ spd(ϕ), where
spd(ϕ) is the spectrum of ϕ when the domain of ϕ is (K1×K2)d ( the discrete
product hypergroups).

2 Exponentially Bounded Hypergroups

Let π be a continuous unitary representation of K1 ×K2 in the Hilbert space
(Hπ, 〈., .〉). A unit vector ξ ∈ Hπ will be called a positive vector for π, if

Re 〈π (x1, x2) ξ, ξ〉 ≥ 0

for all (x1, x2) ∈ K1 ×K2.
So,

Re 〈π (.) ξ, ξ〉 ∈ P (K1 ×K2)

Now, it is easy to translate (P) into a property of unitary representations
with positive vectors. In fact, condsider the following property (P ′) of K1×K2

which is formally stronger than (P):
(P ′) If π is a unitary representation of K1×K2 with a positive vector, then

π contains weakly 1K1×K2 .



62 A.S. Okb El Bab et al.

Theorem 2.1 (P ) and (P ′) are equivalent for every product hypergroups
K1 ×K2.

Proof: Let π be a unitary representation of K1×K2 with a positive vector
ξ ∈ Hπ. Let ϕ (x1, x2) = Re 〈π (x1, x2) ξ, ξ〉, (x1, x2) ∈ K1 ×K2. If (P) holds,
then 1K1×K2 is weakly contained in πϕ which is the subrepresentation of π⊕ π
and this implies that 1K1×K2 is weakly contained in π.

A locally compact product hypergroups is called Exponentially bounded if

limn |Gn|
1
n = 1

for each compact neighbourhood G of (e1, e2), where |.|denotes the Haar
measure and Gn = {g1, ..., gn; gi ∈ G}. Exponentially bounded hypergroups
are amenable[4].

Theorem 2.2 Exponentially bounded product hypergroups satisfy property
(P).

Proof: Let K1 × K2 be an exponentially bounded product hypergroups
and let ϕ ∈ P (K1 ×K2), with ϕ ≥ 0. Let G be a compact neighbourhood of
(e1, e2) with the condition G = G−1, and ε > 0. Then there is an n ∈ N such
that ∫

Gn+1×Gn+1

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

≤ (1 + ε)

∫
Gn×Gn

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2) (1)

where d(y1, y2), and d(z1, z2)are Haar measures on K1 ×K2.
In fact, otherwise∣∣Gn+1

∣∣2 ≥ ∫
Gn+1×Gn+1

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

> (1 + ε)n
∫
Gn×Gn

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

for all n ∈ N.
Since ∫

Gn×Gn
ε(y1,y2)∗ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2) > 0,

this would be a contradiction with

lim |Gn|
1
n = 1.
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Now choose n ∈ N such that (1) holds.
Let f = χGn be the characteristic function of Gn. Let π be the unitary

representation of K1 ×K2 associated to ϕ with Hilbert space Hπ. Let ξ ∈ Hπ

be such that ϕ (x1, x2) = 〈π (x1, x2) ξ, ξ〉 , (x1, x2) ∈ K1 ×K2.
Then

‖π (f) ξ‖2 =

∫
K1

∫
K2

f−∗f (x1, x2) ϕ (x1, x2) d(x1, x2) > 0,

since f− ∗ f(e1, e2) ϕ (e1, e2) > 0 and f− ∗ f (x1, x2)ϕ (x1, x2) ≥ 0 for all
(x1, x2) ∈ K1 ×K2.

Now let

ψ (x1, x2) =
1

‖π (f) ξ‖2 〈π (x1, x2) π (f) , π (f) ξ〉 , (x1, x2)∈ K1×K2.

Thenψ is associated to π.moreover, for each (x1, x2) ∈ K1 ×K2

|ψ (x1, x2)− 1|2 =
1

‖π (f) ξ‖4 |〈π ((x1, x2) f − f) ξ, π (f) ξ〉|2

≤ ‖π ((x1, x2) f − f) ξ‖2

‖π(f)ξ‖2

=

∫
(K1×K2)2

((x1, x2)f − f) (y1, y2) ((x1, x2) f − f) (z1, z2) ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)∫
(K1×K2)2

f (y1, y2) f(z1, z2)ε(y1,y2) ∗ ε(z1,z2)−(ϕ)d(y1, y2)d(z1, z2)

=

∫
((x1,x2)Gn∆Gn)2

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)∫
(Gn)2

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

where ∆ is the symmetric difference.
Now (1) implies that for (x1, x2) ∈ G.∫

((x1,x2)Gn∆Gn)2
ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

≤
∫
(
Gn+1

Gn

)2
ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

+

∫
(

Gn

(x1,x2)G
n

)2
ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

≤ ε

∫
(G)2

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

+

∫
(

(x1,x2)
−1Gn

(x1,x2)G
n

)2 ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)
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≤ 2ε

∫
(Gn)2

ε(y1,y2) ∗ ε(z1,z2)− (ϕ) d(y1, y2)d(z1, z2)

since (x1, x2)−1 ∈ G. Hence |ψ (x1, x2)− 1|2 ≤ 2ε for all (x1, x2) ∈ G.

It is to be noted that last Theorem can be reformulate in the form: ” If ϕ
is positive and ϕ ∈ P (K1×K2) where (K1×K2) is an exponentially bounded
product hypergroups, then the constant function 1K1×K2 is the uniform limit
on compact subsets of K1 ×K2 of functions of the form

(x1, x2)→
n∑

i,j=1

ε(x1,x2)i
∗ ε(x1,x2)−j

(ϕ (x1, x2)) cicj

where cl ≥ 0 and (x1, x2)l ∈ K1 ×K2 for all 1 ≤ l ≤ n.

Theorem 2.3 Discrete solvable product hypergroups satisfy property (P).

Proof: Let K1 ×K2 be a discrete solvable product hypergroups and let
ϕ ∈ P (K1 ×K2) with ϕ ≥ 0. Let (K1 ×K2) = (K1 ×K2)n ⊇ (K1 ×K2)n−1 ⊇
.... ⊇ (K1 × K2)0 = {(e1, e2)}, be a composition series with abelian factor
(K1 × K2)i/(K1 × K2)i−1, 1 ≤ i ≤ n. First we show by induction on i that:
for each 0 ≤ i ≤ n there is a net (ψα)α in P (K1 ×K2) with ψ ≥ 0 such that
limψ(x1, x2) = 1 for all (x1, x2) ∈ (K1 × K2)i and such that πψα is weakly
contained in π for all α.

For i = 0, the assertion is trivial (take ψα = ϕ). For any i suppose that a
net (ψα)α∈N exists. Let ψ be a limit point of {ψα}α∈N in the weak *-topology
σ (l∞(K1 ×K2), l1(K1 ×K2)). Then ψ ∈ P (K1 ×K2) and ψ ≥ 0.

Moreover
ψ (x1, x2) = lim

α
ψα(x1, x2) = 1

for all (x1, x2) ∈ (K1 ×K2)i.
Hence ψ | (K1 × K2)i−1 factors to a positive definite function of (K1 ×

K2)i+1/(K1 ×K2)i. Thus by last theorem in its reformulated form there is a
net

(
ψ
′

β

)
β

in P ((K1 ×K2)i+1/(K1 ×K2)i) of the form

ψ
′

β(x1, x2) =
∑

ckclε(x1,x2) ∗ ε(x1,x2)−(ψ(x1, x2)), (x1, x2) ∈ (K1 ×K2)i+1

where all ck ≥ 0 and (x1, x2) ∈ (K1 ×K2)i+1, such that

limψ
′

β(x1, x2) = 1

for all (x1, x2) ∈ (K1 ×K2)i+1.
It is clear that ψ′β ∈ P (K1 ×K2) and ψ′β ≥ 0. Moreover πψ′β = πψ. Hence

each πψ′β is weakly contained in {πψα | α ∈ A} which is weakly contained in
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πϕ. So, we get a net (ψα)α ∈ P (K1 ×K2) such that limψα(x1, x2) = 1 for all
(x1, x2) ∈ (K1×K2)n = (K1×K2) and such that each πψα is weakly contained
in πϕ. Hence 1K1×K2 is weakly contained in πϕ.

Now we reformulate property (P*), defined earlier, as follows: If π is a
unitary representaion of K1×K2 with positive vectors, then 1K1×K2 is weakly
contained in π, when π and 1K1×K2 is viewed as representations of the discrete
product hypergroups K1 ×K2.

Theorem 2.4 For a connected product hypergroups K1×K2 ,the following
statements are equivalent:

i) K1 ×K2 has property (P*).
ii) K1 ×K2 is amenable.
Proof: Suppose K1 ×K2 is amenable. Let N be the closure of the com-

mutative subhypergroup of K1 ×K2, by [8] proposition 3, N has polynomial
growth hence it is exponentially bounded [4].Let ϕ ∈ P (K1 ×K2), ϕ ≥ 0. By
last theorem in its reformulated form there is a net (ψα)αin P (K1 ×K2) with
ψα ≥ 0 such that limψα(x1, x2) = 1 for all (x1, x2) ∈ N and such that πψα is
weakly contained in πϕ for all α. Considering K1 ×K2 as a discrete product
hypergroups we can apply the method of proof of the last theorem to get some
ψ ∈ P (K1 ×K2), ψ ≥ 0 with ψ | N = 1 and such that πψ is weakly contained
in πϕ. Since K1 ×K2/N is abelian, 1K1×K2 is weakly contained in πψ and the
result follows.

Now if K1 × K2 has property (P*), then 1K1×K2 is weakly contained in
the regular representation λK1×K2 ,when both representations are considered as
representations of K1 ×K2. This is equivalent to the amenability of K1 ×K2

[4].

3 Conditionally Exponential Convex Functions

on Product Dual Hypergroups

In this section we will give some properties of the class of conditionally expo-
nential convex functions defined on product dual hypergroups.

Definition 3.1 Let K∗ be the dual of the hypergroup K the function ψ :
K∗ → C is said to be conditionally exponential convex if for all n ∈ N and any
y1, y2, ..., yn ∈ K∗ and c1, c2, ..., cn ∈ C we have:

n
i,j=1[ψ(yi) + ψ(yj)− ψ(yi + yj)]cicj ≥ 0

for all n ∈ N, c1, c2, ..., cn ∈ C and any y1, y2, ..., yn ∈ K∗.
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Theorem 3.2 If ψ : K∗1 → C, ψ : K∗2 → C are conditionally exponential
convex functions respectively, then ψ : K∗1 ×K∗2 → C defined by

ψ(y1, y2) = ψ(y1) + ψ(y2)

is conditionally exponential convex function.

Proof: Let ψ : K∗1 → C, and ψ : K∗2 → C,
then

n
i,j=1[ψ(y1)i + ψ(y1)j − ψ((y1)i + (y1)j)]cicj ≥ 0
n
i,j=1[ψ(y2)i + ψ(y2)j − ψ((y2)i + (y2)j)]cicj ≥ 0

then we have

ψ(y1, y2) = n
i,j=1[ψ(y1, y2)i + ψ(y1, y2)j − ψ((y1, y2)i + (y1, y2)j)]cicj

= n
i,j=1[ψ(y1)i + ψ(y2)i + ψ(y1)j + ψ(y2)j − ψ[(y1)i + (y1)j]− ψ[(y2)i + (y2)j]]cicj

= n
i,j=1[ψ(y1)i + ψ(y1)j − ψ[(y1)i + (y1)j]cicj

+n
i,j=1ψ(y2)i + ψ(y2)j − ψ[(y2)i + (y2)j]cicj

≥ 0

= ψ(y1) + ψ(y2).

there for ψ(y1, y2) is conditionally exponential convex function.

Theorem 3.3 A continuous function ψ : K∗1 × K∗2 → C is conditionally
exponential convex iff the following conditions are satisfied: (i) ψ(0, 0) ≥ 0,
(ii) Ψt(y1, y2) = exp[−tψ(y1, y2)] is conditionally exponential covex for all t.

Proof: Suppose that ψ is continuous conditionally exponential convex
function, then (i) is easly satisfied. To establish (ii) we have:

n
i,j=1[ψ(y1, y2)i + ψ(y1, y2)j − ψ((y1, y2)i + (y1, y2)j)]cicj ≥ 0

which implies that

n
i,j=1 exp[ψ(y1, y2)i + ψ(y1, y2)j − ψ((y1, y2)i + (y1, y2)j)]cicj ≥ 0

So, we have for t = 1,

n
i,j=1Ψ1((y1, y2)i + (y1, y2)j)cicj

=
n∑

i,j=1

exp[−ψ((y1, y2)i + (y1, y2)j)]cicj

=
n∑

i,j=1

exp[ψ(y1, y2)i + ψ(y1, y2)j − ψ((y1, y2)i + (y1, y2)j)]c
′
ic
′
j
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where c′k = ck exp[−ψ(y1, y2)k]. Hence, Ψ1(y1, y2) is conditionally exponential
convex.

Since tψ(t) is conditionally exponential convex, then its clear that Ψt(y1, y2)
is conditionally exponential convex all t > 0.

To prove the converse, let (i) and (ii) be satisfied. By (i) we have exp[−tψ(0, 0)] ≤
1 for all t > 0. So Ψt(y1, y2) = 1

t
[1 − exp(−tψ(y1, y2))] is conditionally expo-

nential convex for all t > 0. Using Fattou’s lemma we can easily get that
ψt(y1, y2) = lim Ψt(y1, y2) is conditionally exponential convex.

Theorem 3.4 Let ψ : K∗1 ×K∗2 → C be a conditionally exponential convex
and suppose that ψ(0, 0) ≥ 0 then 1

ψ
is conditionally exponential convex.

Proof: Since ψ is conditionally exponential convex function, then the func-
tion exp[−tψ(y1, y2)] is coditionally exponential convex for all t > 0. The
function 1

ψ
can be written in the form:

1

ψ(y1, y2)
=

∫ ∞
0

exp[−tψ(y1, y2)]dt

Hence,

n∑
i,j=1

1

ψ((y1, y2)i + (y1, y2)j)
cicj

=
n∑

i,j=1

cicj

∫ ∞
0

exp[−tψ((y1, y2)i + (y1, y2)j)]dt

=

∫ ∞
0

{
n∑

i,j=1

exp[−tψ((y1, y2)i + (y1, y2)j)]cicj

}
dt ≥ 0.

Thus, 1
ψ

is conditionally exponential convex.
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