

Gen. Math. Notes, Vol. 25, No. 2, December 2014, pp.60-67 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

The Relationship between Weak almost Dunford-Pettis and Dunford-Pettis Operators

A. Retbi¹ and B. El Wahbi²

¹Université Ibn Tofail, Faculté des Sciences
Département de Mathématiques, B.P. 133, Kénitra, Morocco E-mail: abderrahmanretbi@hotmail.com
²Université Ibn Tofail, Faculté des Sciences
Département de Mathématiques, B.P. 133, Kénitra, Morocco E-mail: belwahbi@yahoo.fr
(Received: 11-7-14 / Accepted: 29-8-14)

Abstract

We give some necessary and sufficient conditions for which the class of weak almost Dunford-Pettis operators coincide with that of Dunford-Pettis. Next, we characterize Banach space X and Banach lattice F' topological dual of Banach lattice F for which each weak almost Dunford-Pettis operator $T: X \to F'$ is Dunford-Pettis, and we derive some consequences.

Keywords: Weak almost Dunford-Pettis operator, Dunford-Pettis operator, Schur property, KB-space, AM-compactness property, Order continuous norm.

1 Introduction and Notation

An operator T from a Banach space X into another Y is called Dunford-Pettis if $||T(x_n)|| \to 0$ for every weakly null sequence (x_n) in E [1]. A norm bounded subset A of a Banach lattice E is said to be almost Dunford-Pettis set, if every disjoint weakly null sequence (f_n) in E' converges uniformly to zero on A, that is, $\lim_{n\to\infty} \sup_{x\in A} f_n(x) = 0$. Recall from [5] an operator $T : X \to F$ from a Banach space X into a Banach lattice F is called weak almost Dunford-Pettis if T carries each relatively weakly compact set in X to an almost Dunford-Pettis set in F, equivalently, whenever $f_n(T(x_n)) \to 0$ for every weakly null

sequence (x_n) in X and every disjoint weakly null sequence (f_n) in F'. A Banach space X has

- the Schur property, if $||x_n|| \to 0$ for every weakly null sequence $(x_n) \subset E$. - the Dunford-Pettis property (DP property for short), if $x_n \stackrel{w}{\to} 0$ in X and $f_n \stackrel{w}{\to} 0$ in X' imply $f_n(x_n) \to 0$.

A Banach lattice E has the weak Dunford-Pettis property (wDP property for short), if every relatively weakly compact set in E is almost Dunford-Pettis, equivalently, whenever $f_n(x_n) \to 0$ for every weakly null sequence (x_n) in Eand for every disjoint weakly null sequence (f_n) in E' (see Corollary 2.6 of [5]).

A Banach lattice E is said to be a KB-space whenever every increasing norm bounded sequence of E^+ is norm convergent [1]. For exemple, each reflexive Banach lattice is a KB-space, but ℓ^{∞} is not a KB-space.

It is clair that each KB-space has an order continuous norm, but a Banach lattice with order continuous norm is not necessary a KB-space. In fact, the Banach lattice c_0 has an order continuous norm but it is not a KB-space. However, for each Banach lattice E, its topological dual E' is a KB-space if and only if its norm is order continuous (see Theorem 4.59 of [1]).

It follows from Proposition 3.1 of [3] that a Banach lattice E has the AMcompactness property if and only if for every weakly null sequence (f_n) of E', we have $|f_n| \xrightarrow{w^*} 0$. For exemple, the Banach lattice ℓ^1 has the AM-compactness property, but ℓ^{∞} does not have this property.

A linear mapping T from a vector lattice E into a vector lattice F is called a lattice homomorphism, if $x \wedge y = 0$ in E implies $T(x) \wedge T(y) = 0$ in F. An operator $T : E \to F$ between two Banach lattices is a bounded linear mapping. It is positive if $T(x) \ge 0$ in F whenever $x \ge 0$ in E. If $T : E \to F$ is a positive operator between two Banach lattices, then its adjoint $T' : F' \to E'$, defined by T'(f)(x) = f(T(x)) for each $f \in F'$ and for each $x \in E$, is also positive. For the theory of Banach lattices and positive operators, we refer the reader to monographs [1, 7].

Note that every Dunford-Pettis operator $T : X \to F$ is weak almost Dunford-Pettis, but the converse is not always true. In fact, the identity operator of the Banach lattice ℓ^{∞} is weak almost Dunford-Pettis (because ℓ^{∞} has the weak Dunford-Property) but it is not Dunford-Pettis (because ℓ^{∞} does not have the Schur property).

In this paper, we establish a necessary and sufficient conditions for which each weak almost Dunford-Pettis operator is Dunford-Pettis (Theorem 2.2, Theorem 2.5 and Theorem 2.8). Also, we deduce that if X be a Banach space and F be a Banach lattice such that F has the AM-compactness property, then each weak almost Dunford-Pettis operator $T: X \to F'$ is Dunford-Pettis if and only if X has the Schur property or F' is a KB-space (Corollary 2.9). As consequences, we derive some interesting results (Corollaries 2.3, 2.4, 2.6, 2.10 and 2.11).

2 Main Results

The proof of the next Theorem is based on the following Proposition.

Proposition 2.1 Let X be a Banach space and F be a Banach lattice. Then, each operator $T : X \to F$ that admits a factorization through the Banach lattice ℓ^{∞} , is weak almost Dunford-Pettis.

Let $P: X \to \ell^{\infty}$ and $Q: \ell^{\infty} \to F$ be two operators such that $T = Q \circ P$. Let (x_n) be a weakly null sequence in X and let (f_n) be a disjoint weakly null sequence in F'. It is clear that $P(x_n) \xrightarrow{w} 0$ in ℓ^{∞} and $Q'(f_n) \xrightarrow{w} 0$ in $(\ell^{\infty})'$. Since ℓ^{∞} has the Dunford-Pettis property, then

$$f_n(Tx_n) = f_n(Q \circ P(x_n)) = (Q'f_n)(P(x_n)) \to 0.$$

This prove that, T is weak almost Dunford-Pettis.

The following Theorem gives some necessary conditions of a Banach lattices E and F under which each positive weak almost Dunford-Pettis operator from E into F is Dunford-Pettis.

Theorem 2.2 Let E and F be two Banach lattices such that F is Dedekind σ -complete. If each positive weak almost Dunford-Pettis operator $T : E \to F$ is Dunford-Pettis then one of the following assertions is valid:

- 1. E has the Schur property.
- 2. The norm of F is order continuous.

Assume by way of contradiction that E does not have the Schur property and F does not have the order continuous norm. We have to construct a positive weak almost Dunford-Pettis operator which is not Dunford-Pettis. As E does not have the Schur property, then there exists a weakly null sequence (x_n) in E which is not norm convergent to 0. As $||x_n|| =$ $\sup \{|f(x_n)| : f \in (E')^+, ||f|| = 1\}$, there exist a sequence (f_n) in $(E')^+$ with $||f_n|| = 1$, some $\epsilon > 0$ and a subsequence (y_n) of (x_n) such that $|f_n(y_n)| \ge \epsilon$ for all n.

Now, consider the operator $P: E \to \ell^{\infty}$ defined by

$$P(x) = (f_k(x))_{k=1}^{\infty}$$

Clearly, that P is positive. Also, since the norm of the Dedekind σ -complete Banach lattice F is not order continuous, it follows from Theorem 4.51 of [1] that ℓ^{∞} is lattice embeddable in F. Let $Q : \ell^{\infty} \to F$ be a lattice embedding, then there exists m > 0 and M > 0 such that

$$m. \| ((\lambda)_{k=1}^{\infty}) \|_{\infty} \le \| Q((\lambda)_{k=1}^{\infty}) \| \le M. \| ((\lambda)_{k=1}^{\infty}) \|_{\infty}$$

for all $((\lambda)_{k=1}^{\infty}) \in \ell^{\infty}$.

Let $T = Q \circ P : E \to \ell^{\infty} \to F$. It follows From Proposition 2.1 that T be a positive weak almost Dunford-Pettis but is not Dunford-Pettis. In fact, note that (y_n) is a weakly null sequence in E and for every n we have

 $||T(y_n)|| = ||Q((f_k(y_n))_{k=1}^{\infty})||_{\infty} \ge m. ||(f_k(y_n))_{k=1}^{\infty}||_{\infty} \ge m. |f_n(y_n)| \ge m.\epsilon$

This show that T is not Dunford-Pettis.

If we put E = F in Theorem 2.2, we give a condition sufficient for which a Banach lattice Dedekind σ -complete E has a order continuous norm.

Corollary 2.3 Let E a Banach lattice Dedekind σ -complete. If each positive weak almost Dunford-Pettis operator $T : E \to E$ is Dunford-Pettis then the norm of E is order continuous.

As a consequence of Theorem 2.2, we obtain an operator characterization of the Schur property of a Banach lattice.

Corollary 2.4 Let E be a Banach lattice. Then the following assertions are equivalent:

- 1. Every operator $T: E \to \ell^{\infty}$ is Dunford-Pettis.
- 2. Every positive operator $T: E \to \ell^{\infty}$ is Dunford-Pettis.
- 3. Every positive weak almost Dunford-Pettis operator $T : E \to \ell^{\infty}$ is Dunford-Pettis.
- 4. E has the Schur property.

 $(1) \Rightarrow (2)$ Obvious.

 $(2) \Rightarrow (3)$ Obvious.

(3) \Rightarrow (4) It follows from Theorem 2.5 by noting that ℓ^{∞} is Dedekind σ complete and its norm is not order continuous.

 $(4) \Rightarrow (1)$ Obvious.

By a similar proof as the previous Theorem, we obtain the following result.

Theorem 2.5 Let X be a Banach space and F be a Dedekind σ -complete Banach lattice. If each weak almost Dunford-Pettis operator $T: X \to F$ is Dunford-Pettis then one of the following assertions is valid:

- 1. X has the Schur property.
- 2. The norm of F is order continuous.

Remark 1 The assumption "F Dedekind σ -complete" is essential in Theorem 2.2 (resp, Theorem 2.5). In fact, if we consider $E = \ell^{\infty}$ (resp, $X = \ell^{\infty}$) and F = c the Banach lattice of all convergent sequences, it is clear that F = c is not Dedekind σ -complete, and it follows from the proof of Proposition 1 of [10] and Theorem 5.99 of [1] that each operator from ℓ^{∞} into c is Dunford-Pettis. But ℓ^{∞} does not have the Schur property and the norm of c is not order continuous.

Remark 2 The second necessary condition of Theorem 2.2 (resp. Theorem 2.5) is not sufficient. In fact, the identity operator $I_{c_0} : c_0 \to c_0$ is positive weak almost Dunford-Pettis (resp. weak almost Dunford-Pettis) (because c_0 has the weak Dunford-Pettis property) but is not Dunford-Pettis (because c_0 does not have the Schur property). However the norm of c_0 is order continuous.

As a consequence of Theorem 2.5, we obtain an operator characterization of the Schur property of a Banach space.

Corollary 2.6 Let X be a Banach space. Then the following assertions are equivalent:

- 1. Every operator $T: X \to \ell^{\infty}$ is Dunford-Pettis.
- 2. Every weak almost Dunford-Pettis operator $T : X \to \ell^{\infty}$ is Dunford-Pettis.
- 3. X has the Schur property.

 $(1) \Rightarrow (2)$ Obvious.

(2) \Rightarrow (3) It follows from Theorem 2.5 by noting that ℓ^{∞} is Dedekind σ complete and its norm is not order continuous.

 $(3) \Rightarrow (1)$ Obvious.

For proof of the next Theorem, we need the following Lemma which is just Corollary 2.7 of Dodds and Fremlin in [4]

Lemma 2.7 Let E be a Banach lattice and let (f_n) be a sequence of E'. Then the following assertions are equivalent:

- 1. $||f_n|| \to 0.$
- 2. $|f_n| \xrightarrow{w^*} 0$ and $f_n(x_n) \to 0$ for every norm bounded disjoint sequence (x_n) in E^+ .

Now, we give some sufficient conditions for which every weak almost Dunford-Pettis operator T from a Banach space X into a dual topological F' of a Banach lattice F is Dunford-Pettis.

Theorem 2.8 Let X be a Banach space and F be a Banach lattice. Then every weak almost Dunford-Pettis operator $T : X \to F'$ is Dunford-Pettis if one of the following assertions is valid:

- 1. X has the Schur property.
- 2. F' has the Schur property.
- 3. F' is a KB-space and F has the AM-compactness property.
- (1) Obvious.
- (2) Obvious.

(3) Let (x_n) be a sequence in X such that $x_n \xrightarrow{w} 0$ in X. We show that $||T(x_n)|| \to 0$. By Lemma 2.7, it suffices to prove that $|T(x_n)| \xrightarrow{w^*} 0$ in F' and $T(x_n)(y_n) \to 0$ for each norm bounded disjoint sequence (y_n) in F^+ . It is clear that $(T(x_n))$ be a weakly null sequence in F', as F has the AM-compactness property then $|T(x_n)| \xrightarrow{w^*} 0$ in F'.

On the other hand, let (y_n) be a norm bounded disjoint sequence in F^+ , Since F' is a KB-space then its norm is order continuous, it follows from Corollary 2.9 of Dodds and Fremlin [4] that $(y_n) \xrightarrow{w} 0$ in F. Now, we have the canonical injection $\tau : F \to F''$ is a lattice homomorphism, we obtain that $\tau(y_n)$ is a disjoint weakly null sequence in F''. Finally, as T is weak almost Dunford-Pettis, then $\tau(y_n)(T(x_n)) \to 0$. Also by the equality

$$\tau(y_n)(T(x_n)) = T(x_n)(y_n)$$

for each n, we deduce that $T(x_n)(y_n) \to 0$, and this complete the proof. Our major result is given by the following characterization.

Corollary 2.9 Let X be a Banach space and F be a Banach lattice such that F has the AM-compactness property. Then the following assertions are equivalent:

- (1) Every weak almost Dunford-Pettis operator $T: X \to F'$ is Dunford-Pettis, (2) One of the following expections is well defined.
- (2) One of the following assertions is valid:
 - (a) X has the Schur property,
 - (b) F' is a KB-space.

 $(1) \Rightarrow (2)$ Immediately from Theorem 2.5 by noting that if the norm of F' is order continuous then F' is a KB-space (see Theorem 2.4.14 of [7]). (2) \Rightarrow (1) It follows from Theorem 2.8.

Remark 3 The assertion "Each weak almost Dunford-Pettis operator T: $X \to F$ is Dunford-Pettis" is not equivalent to the assertion "X has the Schur property or F is a KB-space". In fact, if we put $X = \ell^{\infty}$ and $F = c_0$, then by Proposition 2.1 every operator from ℓ^{∞} into c_0 is weak almost Dunford-Pettis. But ℓ^{∞} does not have the Schur property and c_0 is not a KB-space.

As a consequences of Theorem 2.2 and Corollary 2.9, we obtain

Corollary 2.10 Let E and F be two Banach lattices such that F has the AMcompactness property. Then the following assertions are equivalent: (1) Every positive weak almost Dunford-Pettis operator $T : E \to F'$ is Dunford-Pettis.

- (2) One of the following assertions is valid:
 - (a) E has the Schur property,
 - (b) F' is a KB-space.

Another consequence of Corollary 2.9 is the following result.

Corollary 2.11 Let F be a Banach lattice such that F has the AM-compactness property.

F' is a KB-space if and only if every weak almost Dunford-Pettis operator $T: \ell^{\infty} \to F'$ is Dunford-Pettis.

It follows from Corollary 2.9 by noting that ℓ^{∞} does not have the Schur property.

References

- [1] C.D. Aliprantis and O. Burkinshaw, *Positive Operators (Reprint of the 1985 original)*, Springer, Dordrecht, (2006).
- [2] B. Aqzzouz, K. Bouras and A. Elbour, Some generalizations on positive Dunford-Pettis operators, *Result. Math.*, 54(2009), 207-218.
- [3] B. Aqzzouz and K. Bouras, Weak and almost Dunford-Pettis operators on Banach lattices, *Demonstratio Mathematica*, XLVI(1) (2013), 165-179.
- [4] P.G. Dodds and D.H. Fremlin, Compact operators on Banach lattices, Israel Journal of Mathematics, 34(4) (1979), 287-320.
- [5] K. Bouras and M. Moussa, Banach lattice with weak Dunford-Pettis property, International Journal of Information and Mathematical Sciences, 6(3) (2010), 203-207.
- [6] K. Bouras and M. Moussa, On the class of positive almost weak Dunford-Pettis operators, *Positivity*, 17(3) (2013), 12 pages.
- [7] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Verlag, Berlin, (1991).
- [8] H.H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin and New York, (1974).

66

- [9] A.W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Mathematical Proceedings of the Cambridge Philosophical Society, 120(1) (1996), 175-179.
- [10] W. Wnuk, Remarks on J.R. Holub's paper concerning Dunford-Pettis operators, *Math. Japon*, 38(1993), 1077-1080.
- [11] W. Wnuk, Banach lattices with the weak Dunford-Pettis property, Atti Sem. Mat. Fis. Univ. Modena, 42(1) (1994), 227-236.
- [12] W. Wnuk, Banach Lattices with Order Continuous Norms, Polish Scientific Publishers, Warsaw, (1999).