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Abstract

We give some necessary and sufficient conditions for which the class of weak
almost Dunford-Pettis operators coincide with that of Dunford-Pettis. Next, we
characterize Banach space X and Banach lattice F ′ topological dual of Banach
lattice F for which each weak almost Dunford-Pettis operator T : X → F ′ is
Dunford-Pettis, and we derive some consequences.
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1 Introduction and Notation

An operator T from a Banach space X into another Y is called Dunford-Pettis
if ‖T (xn)‖ → 0 for every weakly null sequence (xn) in E [1]. A norm bounded
subset A of a Banach lattice E is said to be almost Dunford-Pettis set , if every
disjoint weakly null sequence (fn) in E ′ converges uniformly to zero on A, that
is, lim

n→∞
supx∈A fn(x) = 0. Recall from [5] an operator T : X → F from a

Banach space X into a Banach lattice F is called weak almost Dunford-Pettis
if T carries each relatively weakly compact set in X to an almost Dunford-
Pettis set in F , equivalently, whenever fn(T (xn)) → 0 for every weakly null



The Relationship between Weak almost... 61

sequence (xn) in X and every disjoint weakly null sequence (fn) in F ′.
A Banach space X has

- the Schur property, if ‖xn‖ → 0 for every weakly null sequence (xn) ⊂ E.

- the Dunford-Pettis property (DP property for short), if xn
w→ 0 in X and

fn
w→ 0 in X ′ imply fn(xn)→ 0.

A Banach lattice E has the weak Dunford-Pettis property (wDP property for
short), if every relatively weakly compact set in E is almost Dunford-Pettis,
equivalently, whenever fn(xn) → 0 for every weakly null sequence (xn) in E
and for every disjoint weakly null sequence (fn) in E ′ (see Corollary 2.6 of [5]).

A Banach lattice E is said to be a KB-space whenever every increasing
norm bounded sequence of E+ is norm convergent [1]. For exemple, each
reflexive Banach lattice is a KB-space, but `∞ is not a KB-space.

It is clair that each KB-space has an order continuous norm, but a Banach
lattice with order continuous norm is not necessary a KB-space. In fact, the
Banach lattice c0 has an order continuous norm but it is not a KB-space.
However, for each Banach lattice E, its topological dual E ′ is a KB-space if
and only if its norm is order continuous (see Theorem 4.59 of [1]).

It follows from Proposition 3.1 of [3] that a Banach lattice E has the AM-
compactness property if and only if for every weakly null sequence (fn) of E ′,

we have |fn|
w?

→ 0. For exemple, the Banach lattice `1 has the AM-compactness
property, but `∞ does not have this property.

A linear mapping T from a vector lattice E into a vector lattice F is called
a lattice homomorphism, if x ∧ y = 0 in E implies T (x) ∧ T (y) = 0 in F . An
operator T : E → F between two Banach lattices is a bounded linear mapping.
It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. If T : E → F is a positive
operator between two Banach lattices, then its adjoint T ′ : F ′ → E ′, defined
by T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E, is also positive.
For the theory of Banach lattices and positive operators, we refer the reader
to monographs [1, 7].

Note that every Dunford-Pettis operator T : X → F is weak almost
Dunford-Pettis, but the converse is not always true. In fact, the identity
operator of the Banach lattice `∞ is weak almost Dunford-Pettis (because `∞

has the weak Dunford-Property ) but it is not Dunford-Pettis (because `∞

does not have the Schur property).

In this paper, we establish a necessary and sufficient conditions for which
each weak almost Dunford-Pettis operator is Dunford-Pettis (Theorem 2.2,
Theorem 2.5 and Theorem 2.8). Also, we deduce that if X be a Banach space
and F be a Banach lattice such that F has the AM-compactness property,
then each weak almost Dunford-Pettis operator T : X → F ′ is Dunford-Pettis
if and only if X has the Schur property or F ′ is a KB-space (Corollary 2.9).
As consequences, we derive some interesting results (Corollaries 2.3, 2.4, 2.6,
2.10 and 2.11).
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2 Main Results

The proof of the next Theorem is based on the following Proposition.

Proposition 2.1 Let X be a Banach space and F be a Banach lattice. Then,
each operator T : X → F that admits a factorization through the Banach
lattice `∞, is weak almost Dunford-Pettis.

Let P : X → `∞ and Q : `∞ → F be two operators such that T = Q ◦ P .
Let (xn) be a weakly null sequence in X and let (fn) be a disjoint weakly null
sequence in F ′. It is clear that P (xn)

w→ 0 in `∞ and Q′(fn)
w→ 0 in (`∞)′.

Since `∞ has the Dunford-Pettis property, then

fn(Txn) = fn(Q ◦ P (xn)) = (Q′fn)(P (xn))→ 0.

This prove that, T is weak almost Dunford-Pettis.
The following Theorem gives some necessary conditions of a Banach lattices

E and F under which each positive weak almost Dunford-Pettis operator from
E into F is Dunford-Pettis.

Theorem 2.2 Let E and F be two Banach lattices such that F is Dedekind
σ-complete. If each positive weak almost Dunford-Pettis operator T : E → F
is Dunford-Pettis then one of the following assertions is valid:

1. E has the Schur property.

2. The norm of F is order continuous.

Assume by way of contradiction that E does not have the Schur prop-
erty and F does not have the order continuous norm. We have to con-
struct a positive weak almost Dunford-Pettis operator which is not Dunford-
Pettis. As E does not have the Schur property, then there exists a weakly
null sequence (xn) in E which is not norm convergent to 0. As ‖xn‖ =
sup {|f(xn)| : f ∈ (E ′)+, ‖f‖ = 1}, there exist a sequence (fn) in (E ′)+ with
‖fn‖ = 1, some ε > 0 and a subsequence (yn) of (xn) such that |fn(yn)| ≥ ε
for all n.

Now, consider the operator P : E → `∞ defined by

P (x) = (fk(x))∞k=1

Clearly, that P is positive. Also, since the norm of the Dedekind σ-complete
Banach lattice F is not order continuous, it follows from Theorem 4.51 of [1]
that `∞ is lattice embeddable in F. Let Q : `∞ → F be a lattice embedding,
then there exists m > 0 and M > 0 such that

m. ‖((λ)∞k=1)‖∞ ≤ ‖Q((λ)∞k=1)‖ ≤M. ‖((λ)∞k=1)‖∞
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for all ((λ)∞k=1) ∈ `∞.
Let T = Q ◦ P : E → `∞ → F . It follows From Proposition 2.1 that T be

a positive weak almost Dunford-Pettis but is not Dunford-Pettis. In fact, note
that (yn) is a weakly null sequence in E and for every n we have

‖T (yn)‖ = ‖Q((fk(yn))∞k=1)‖∞ ≥ m. ‖(fk(yn))∞k=1‖∞ ≥ m. |fn(yn)| ≥ m.ε

This show that T is not Dunford-Pettis.
If we put E = F in Theorem 2.2, we give a condition sufficient for which a

Banach lattice Dedekind σ-complete E has a order continuous norm.

Corollary 2.3 Let E a Banach lattice Dedekind σ-complete. If each positive
weak almost Dunford-Pettis operator T : E → E is Dunford-Pettis then the
norm of E is order continuous.

As a consequence of Theorem 2.2, we obtain an operator characterization
of the Schur property of a Banach lattice.

Corollary 2.4 Let E be a Banach lattice. Then the following assertions are
equivalent:

1. Every operator T : E → `∞ is Dunford-Pettis.

2. Every positive operator T : E → `∞ is Dunford-Pettis.

3. Every positive weak almost Dunford-Pettis operator T : E → `∞ is
Dunford-Pettis.

4. E has the Schur property.

(1)⇒ (2) Obvious.
(2)⇒ (3) Obvious.
(3) ⇒ (4) It follows from Theorem 2.5 by noting that `∞ is Dedekind σ-
complete and its norm is not order continuous.
(4)⇒ (1) Obvious.

By a similar proof as the previous Theorem, we obtain the following result.

Theorem 2.5 Let X be a Banach space and F be a Dedekind σ-complete
Banach lattice. If each weak almost Dunford-Pettis operator T : X → F is
Dunford-Pettis then one of the following assertions is valid:

1. X has the Schur property.

2. The norm of F is order continuous.
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Remark 1 The assumption ”F Dedekind σ-complete” is essential in Theorem
2.2 ( resp, Theorem 2.5). In fact, if we consider E = `∞ (resp, X = `∞) and
F = c the Banach lattice of all convergent sequences, it is clear that F = c
is not Dedekind σ-complete, and it follows from the proof of Proposition 1 of
[10] and Theorem 5.99 of [1] that each operator from `∞ into c is Dunford-
Pettis. But `∞ does not have the Schur property and the norm of c is not order
continuous.

Remark 2 The second necessary condition of Theorem 2.2 ( resp, Theorem
2.5) is not sufficient. In fact, the identity operator Ic0 : c0 → c0 is positive
weak almost Dunford-Pettis (resp, weak almost Dunford-Pettis) (because c0 has
the weak Dunford-Pettis property) but is not Dunford-Pettis (because c0 does
not have the Schur property). However the norm of c0 is order continuous.

As a consequence of Theorem 2.5, we obtain an operator characterization
of the Schur property of a Banach space.

Corollary 2.6 Let X be a Banach space. Then the following assertions are
equivalent:

1. Every operator T : X → `∞ is Dunford-Pettis.

2. Every weak almost Dunford-Pettis operator T : X → `∞ is Dunford-
Pettis.

3. X has the Schur property.

(1)⇒ (2) Obvious.
(2) ⇒ (3) It follows from Theorem 2.5 by noting that `∞ is Dedekind σ-
complete and its norm is not order continuous .
(3)⇒ (1) Obvious.

For proof of the next Theorem, we need the following Lemma which is just
Corollary 2.7 of Dodds and Fremlin in [4]

Lemma 2.7 Let E be a Banach lattice and let (fn) be a sequence of E ′. Then
the following assertions are equivalent:

1. ‖fn‖ → 0.

2. |fn|
w?

→ 0 and fn(xn)→ 0 for every norm bounded disjoint sequence (xn)
in E+.

Now, we give some sufficient conditions for which every weak almost Dunford-
Pettis operator T from a Banach space X into a dual topological F ′ of a Banach
lattice F is Dunford-Pettis.
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Theorem 2.8 Let X be a Banach space and F be a Banach lattice. Then
every weak almost Dunford-Pettis operator T : X → F ′ is Dunford-Pettis if
one of the following assertions is valid:

1. X has the Schur property.

2. F ′ has the Schur property.

3. F ′ is a KB-space and F has the AM-compactness property.

(1) Obvious.
(2) Obvious.
(3) Let (xn) be a sequence in X such that xn

w→ 0 in X. We show that

‖T (xn)‖ → 0. By Lemma 2.7, it suffices to prove that |T (xn)| w
?

→ 0 in F ′ and
T (xn)(yn)→ 0 for each norm bounded disjoint sequence (yn) in F+. It is clear
that (T (xn)) be a weakly null sequence in F ′, as F has the AM-compactness

property then |T (xn)| w
?

→ 0 in F ′.
On the other hand, let (yn) be a norm bounded disjoint sequence in F+,

Since F ′ is a KB-space then its norm is order continuous, it follows from
Corollary 2.9 of Dodds and Fremlin [4] that (yn)

w→ 0 in F . Now, we have
the canonical injection τ : F → F ′′ is a lattice homomorphism, we obtain that
τ(yn) is a disjoint weakly null sequence in F ′′. Finally, as T is weak almost
Dunford-Pettis, then τ(yn)(T (xn))→ 0. Also by the equality

τ(yn)(T (xn)) = T (xn)(yn)

for each n, we deduce that T (xn)(yn)→ 0, and this complete the proof. Our
major result is given by the following characterization.

Corollary 2.9 Let X be a Banach space and F be a Banach lattice such that
F has the AM-compactness property. Then the following assertions are equiv-
alent:
(1) Every weak almost Dunford-Pettis operator T : X → F ′ is Dunford-Pettis,
(2) One of the following assertions is valid:

(a) X has the Schur property,
(b) F ′ is a KB-space.

(1)⇒ (2) Immediately from Theorem 2.5 by noting that if the norm of F ′

is order continuous then F ′ is a KB-space (see Theorem 2.4.14 of [7]).
(2)⇒ (1) It follows from Theorem 2.8.

Remark 3 The assertion ”Each weak almost Dunford-Pettis operator T :
X → F is Dunford-Pettis” is not equivalent to the assertion ”X has the Schur
property or F is a KB-space”. In fact, if we put X = `∞ and F = c0, then by
Proposition 2.1 every operator from `∞ into c0 is weak almost Dunford-Pettis.
But `∞ does not have the Schur property and c0 is not a KB-space.
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As a consequences of Theorem 2.2 and Corollary 2.9, we obtain

Corollary 2.10 Let E and F be two Banach lattices such that F has the AM-
compactness property. Then the following assertions are equivalent:
(1) Every positive weak almost Dunford-Pettis operator T : E → F ′ is Dunford-
Pettis,
(2) One of the following assertions is valid:

(a) E has the Schur property,
(b) F ′ is a KB-space.

Another consequence of Corollary 2.9 is the following result.

Corollary 2.11 Let F be a Banach lattice such that F has the AM-compactness
property.
F ′ is a KB-space if and only if every weak almost Dunford-Pettis operator
T : `∞ → F ′ is Dunford-Pettis.

It follows from Corollary 2.9 by noting that `∞ does not have the Schur
property.
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