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Abstract

In this paper, the relationship between the arbigraectional curvatures and
normal sectional curvatures of generalized timelikéed surface with timelike
generating space in n-dimensional Minkowski spRFeare investigated. Three
different types of relation are obtained and called Il., and Ill. type of
Lorentzian Beltrami-Meusnier formula.
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1 Introduction

Meusnier formula and Beltrami formula are well kmotheorems from classical
surface theory, (see for example, [3], [7], etcn) @&nalogue of Meusnier formula
was obtained in [6] by the way of applying thisrhula to tangential sections of
generalized ruled surface m-dimensional Euclid spacgé", and was called as
Beltrami-Meusnier formula. In [5], authors calcedtthe first fundamental form
and the metric coefficients of generalized timelikbed surfaces with timelike
generating space given in [1] and [2]. Moreovecoading to Christoffel Symbols,



Lorentzian Beltran-Meusnier Formula 65

Riemann-Christoffel curvatures of these surfacesewebtained. Furthermore, the
principal sectional curvatures of generalized tikeekuled surface with timelike
generating space and central ruled surface wenedféol be with respect to the
determinant of the first fundamental form of theface for spacelike and timelike
tangential sections, separately. Lastly, four défe: types of Lorentzian Beltrami-
Euler formulas were constituted for generalizedetike ruled surface with
timelike generating space in [5]. In this papee, will consult to these theorems,
in case of necessity. To avoid from repetitionha basic concepts in Minkowski-
Lorentz space, which are known from [8] and [9]ll wot be repeated.

2 Generalized Timelike Ruled Surfaces with Timelike
Generating Space in n-Dimensional Minkowski Space

A (k+1)- dimensional timelike ruled surface im— dimensional Minkowski
space,R] is given parametrically as

p(t.u,..4) =a(t)+i ye(d

= (2.2)
rank(¢ & (1) ....& (1) = k+ 1

where the base curver is a spacelike curve and generating space
E, (t) =Sde(t)....e (t)} is a timelike subspace.

A= ol ) () X ()

is called asymptotic bundle ofi with respect toE, (t). It is clear thatAlt) is a
timelike subspace. IfdimA(t)=k+m, O<sms<k , then one can find an
orthonormal ~ base  for Alt)  containing EJ(t) such as
{e()..e(t)a.l). a.,({t} . Furthermore, for the orthonormal base

{el(t)eK ( t)} , the following equations hold [2]

. Kk
e,=>0,6%K,8,, . lsosm
=1
7 (2.2)
Emep =Za(m+p)ﬂgl , 1sp<sk-nm
4=1

where

£,a,, =-¢€0, (2.3)
and

K >K,>...>K,>0. (2.4)

The subspace
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s e(}.-- e )} e Jar( )

is called tangential bundle &l with respect té&, (t) and denoted a%(t). It can
be easily seen that

k+m<boyT(t)<k+m+1, 0<sm<k.

If dimT(t)=k+m, then {e(t)..&t) au(t). a..(t)} is the base for both
asymptotic and tangential bundles.dlfnT(t) =k+ m+1, then one can find an

orthonormal base foff(t) as{e(t)..e, (t).a.,(t)..a,.,(t).a,...(t)} . For both
cases tangential bundigt) is a timelike subspace, [2].

Let dimT(t)=k+m+1. In this casdk +1)-dimensional timelike ruled surface
has a(k — m)-dimensional subspace called central spac# oénd denoted as
Z,..(t)OE,(t). The subspac&, (t) is either spacelike or timelike subspace. If
the base curver of M is chosen to be the base curve ahd (t) to be
generating space, we get(la—m+1)—dimensional ruled surface contained by
M in R". This is denoted b@ and called the central ruled surfaceZIf  (t) is

spacelike (timelike) then central ruled surf&@ebecomes spacelike (timelike)
ruled surface, [1].

A base curvex of (k +1) -dimensional ruled surfack! is a base curve of central
surfaceQ [0 M as well, iff its tangent vector has the form

. k
a(t)=Y.0,8 +lmBems - Do 20 (2.5)

v=1
wheren, ., 20, a,,,. IS a unit vector well defined up to the sign witie
property that{e,....8,a.,, 8 Aume) IS an orthonormal base of the
tangential bundle oM , [1]. The tangential space & at the central points is

perpendicular to the asymptotic bundit). Considering the equation (2.1) at
the central point of central ruled surfa@d 1M we see that

u,=0 , l<o<m. (2.6)

For the spacelike base curgeof (k +1)-dimensional timelike ruled surfadd ,
if .., #0 we callm-magnitudes
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p =l l<o<m 2.7)

is called theo™ principal distribution parameter of , [1].

The canonical base of the tangential\f is

k k m
{Z(ZﬁZ%uﬂJwZ WKy Qo et Beresr & Geve @}- (2.8)
v p=1 o=1

=1

We can evaluate the first fundamental formi\bf and the metric coefficients with
respect to this canonical base. In conventionabtrmt we choosel, =t and
calculate the metric coefficients & as follows;

v=1

k k 2
Opo = —g+Z£V [Zv +Zal/ﬂuﬂj
H=1

k
gVO =£v (Zv +;av,uu,uj y 1SVS k (29)
9, =&9, ., Osv,us<k
g=def g, |=-> (uk,) -7 . O<ij<k.

o=1

In addition to these, the coefficients of the irmermatrix[g"]of the matrix

[gij], 0<i,j <k, are as follows

K
g° = ((V + Zavﬂuﬂ] g’ I<v<k (2.10)
=

k k
gW] :(gvdwlg_(zv +zal/ﬂuﬂ]((ﬁ +zaAﬂL}1J] g_l ! kv A <k
4=1 H=1

Substituting the equations (2.9) and (2.10) in® Kloszul equation (given in [4])
the Christoffel symbols are obtained for 2 7 4 sk,
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U=l V=1 =1
M, =T =0, (2.11)
r,=r,, =0,

rjo = rév :i _(Zﬁ +ia/l,uu,u]a_g+zg(aﬂv) .
29 4= ou,

Adopting that the base of tangential space in thighborhood of coordinate

system {u,,u,,...,u} is {9,,0,,...,0,} (%:6i , 0<i<k ), the Riemann

curvature tensor of the generalized timelike s@&fllc is given by
K a a [ [
Ruj =2 Gn| 5Ty~ ~ 2Nl + 20| (2.12)
r=0 oy, auj =0 =0

Considering the equations (2.9) and (2.1R),, R;,,, R, are found to be (in

terms of the determinant of the first fundamentahf of M , the first and second
order partial differentials ofy)

R =0 <0 jsk

R, =0 <0 jsk sausk (2.17)
2

Row =203 -1 9999 e gy,

20u,0u, 4gady dy,
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3 Lorentzian Beltrami-M eusnier Formula for
Generalized Timeike Ruled Surfaces with Timedike
Generating Space in n-Dimensional Minkowski Space

Two-dimensional subspade of (k +1)-dimensional time-like ruled surface at
the pointé T, (E) is called tangent section & at pointé. If v.andw form

a basis of the tangent section then Q(V, W) = (V,V)(W,W) - (V, W)’ is a non-zero

quantity iff M is non-degenerate. This quantity represents thersqof the
Lorentzian area of the parallelogram determined/lgnd w. Using the square of

the Lorentzian area of the parallelogram determimgdhe basis vectofs, v} ,

one has the following classification for the tangeections of the time-like ruled
surfaces:

Q(v, W) =(V, W{WwW—(y1 f<0 , (time-like plane),
Q(V, W) =(v, W (ww-("y *v)/ , (degenerate plan
Q(V, W) =(V, W(WW—(y f>0 , (space-like plane

For the non-degenerate tangent secfibmiven by the basifv, i} of M at the
point &

(Ravs W _ > RunBYiBVm
QvW) (v, v)(w, W)~ (v W’

is called sectional curvature d¥ at the pointé , wherc—:-\*/:Zﬁ;ai and
)ﬁ

K¢ (V, W) = (3.1)

\Tv:ZyjiX. Here the coordinates of the basis vectdrsand w are
(B, Byr---.5) and(Vy, Vis--- 1 Vi), respectively, [4].

Let the base curve of timelike ruled surfacé/ with timelike generating space
be also a base curve of central ruled surfacef M in R]. In this case, a

normal tangent vecton of M orthogonal toE, (t)is defined to be

n= Z 1) Ber () *+ 71 B e ( 9 : (771 2 0) 3.2)

at the pointD{(t,uV), where this normal tangent vector field is alwapsacelike
since it is orthogonal to generating spaggt).
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The central ruled surfac@ of the generalized timelike ruled surfabe with
timelike generating space [R;] is either spacelike or timelike. Therefore, at the
central pointld¢ JQ, any unit vectora is defined to be

Aol ”+Ael+ﬁ &t A g A gt A gk A e, a]=
wherea ande,, 1<o<m, are linearly independent. Heegis a timelike unit

vector which is either in subspaég (t) or in central subspacg,_,(t) and we

write
(@, Q) = AZ+ AT+ AL+ A A2~ AZH+AZ + .+ A= 1L

This means tha& is either unit spacelike or timelike vector. Thtigre exist the
following cases depending on whether central rgledaceQ of M is spacelike

(i.e., Z,_,(t), spacelike) or timelike (i.eZ,_,,(t), timelike):
(@  While the central spacg,_,(t) is spacelike,

(al) Unit vectora is either spacelike or
(a2) Unit vectora is timelike.

(b)  While centragZ,_,(t) is timelike,

(b1) Unit vectora is either spacelike or
(b2) Unit vectora is timelike.

Now let us consider these cases separately.
(al) Let the central space be spacelike and unit vector a be spacelike vector:

Suppose thaM is generalized timelike ruled surface with timeligenerating
space and spacelike central ruled surfac® jh The principle frame oM is

{e,....,e,....e,.., ¢ and the normal tangent vectoris orthogonal to the

generating spacEk(t) of M, so at the central poirfl{ 0Q any spacelike
vector a can be written as follows

a = coshy, — 2 +Z cosky, e + sinly_ e anchoska - sinfg, = (3.3)

V¢S
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wheree,, 1<s<m, is a timelike vector in the subspaEﬁ(t) and the angles
o ,,... Ws,... , are the hyperbolic angles between the spacelikevactor a
and the vectors), g,..., €,..., €.

(a2) Let the central space be spacelike and unit vector a betimelike vector:

Suppose thaM is generalized timelike ruled surface with timeligenerating
space and spacelike central ruled surface. As se ¢al), at the poinild 0Q

any timelike vectora is written as follows

a =sinhy, In ”+Z sinhy, e + cosiy, g andZsmh2 -coshg,=-: (3.4)

V¢S

such thate,, 1< s< m, is a timelike vector in subspaég, (t) and the hyperbolic
angles between the timelike unit vectarand vectorsn, g,...,€,..., ¢ are
Yo W,,... . YWs,... W, respectively.

(b1) Let the central space betimelike and unit vector a be spacelike vector:

Suppose thaM is generalized timelike ruled surface with timeligenerating
space and timelike central ruled surface. At the[JQ point any spacelike unit

vector a can be written as follows

a = coshy, In ||+ z cosy,e + sinly_. e  and Z costt g, - sinfg,,. = : (3.5)

V¢m+s V¢m+s

wheree, .., 1<s< k- m, is timelike vector in the central spaZg_m(t) and the
anglesy,,¢y,... ....--- W, are the hyperbolic angles between spacelike unit
vectora and base vectors,g,..., €.,....., §, respectively.

(b2) Let the central space betimelike and unit vector a betimelike vector:

Suppose thaM is generalized timelike ruled surface with timeligenerating
space and timelike central ruled surfaceRih. As in the case (bl) we takeis
orthogonal to generating spaEg(t) so that any timelike vectar can be written
as follows

a= smh41/0 + Z sinhy, g + cos, . e,  and Z sint? g, — coshig,,.=- : (3.6)

V¢m+ S |/¢m+s
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wheree,, , 1< s< k- m, is timelike vector in the central spaZg_m(t) and the

hyperbolic anglesy,.¢,,... Y....--- ¥ are the angles between spacelike unit
vector a and the base vectorse,..., €,,..,..., §, respectively.

Therefore, taking the cases (al) to (b2) into cersition, we give the following
theorems below, about the relationship betweenctitgatures of the section

(e,,a), 1< o<m, and theg" principal sectior(e,, n), 1I<so<m.

Theorem 3.1: Let a be any spacelike unit vector bf generalized timelike ruled
surface with timelike generating space and withcgike central ruled surface

and e,, 1< s< m, be timelike base vector within subspa?gﬁ(t), respectively.

i. Given the unit vectoa which is linearly independent with tla&" spacelike
vectore, , 1so<m, (o #s), there exists the following relation between the

curvatures of timelike sectio(*e(,,a) and theo™ spacelike principal section
(e,, n) at the point({ +ue) 0 M

(1—cosﬁwg)K(+ueU(eg a)= coshiy, K., . (& 1)

wherey, is the hyperbolic angle betweenandn and¢,, 1<o<m, (g #S)
are the hyperbolic angles betwearnand e, , respectively.

ii. Given any unit vectoa which is linearly independent with the8 timelike
vector e, 1<s<m, at the point({+ue)O M, there exists the following

relation between the curvatures of timelike secﬁeg a) and thes" timelike
principal section(e,, n)

(1+ sini? z//s) Ko (€5,8) = coshy, K., (e 1)

where the hyperbolic angles betwegrand n and betweera and e, are ¢, and
Y, respectively.

Proof: Let a be any spacelike unit vector of generalized tikeeliuled surface
M with timelike generating space and with spacelilemtral ruled surface in

n—dimensional Minkowski spacR? .

i. If we consider the equation (3.1) then the cunatfrtimelike section is
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B,B:24Rs w00
(e e){ad-(g &

(e,,a) atthe poin{¢ +ue,)0 M.

Ko (€,,8) = , 1so<sm , o#s. (3.7)

The coordinates of the™ base vectog,, 1<v <k, and spacelike unit vectar

given by the equation (3.3) af@,,B......8,.....8.) and (Vo Vare--Ver-- Vi) s
respectively. Thus, we may write

B =(e.8§)=0 , B =(e,g)=¢ , 1sv< b
and

yo:<a,eo>:%r:|7|% ., ¥,=(aeg)=cosly, , Kvsk ,v#s

v,=(ae)=sinhy, , I<ssm

When we substitute these last equations togethérthe equation (2.17) into the
equation (3.7) we find

costfy,| 19’9 1 ag ?
In* | 20u> 4glou,

1-cosKy,

Ko, (6 8) =

Since|n|’ = -g, we obtain

2 2
cosr?wo[—zlggu? + 4;2((;?3) }

1-cosHy,

Koo, (6 8) =

Considering equation (25) in ref. [5] we find the relation betwaewature of the
0" spacelike principal sectiofe,, n) and curvature of timelike sectide,, a) .

ii. Similarly, at the poin((+ues) [0 M, the timelike sectional curvature is given

by
Ko (€5 8) = PBARe o ,1<ssm, s#o. (3.8)

(e.e)(ad-(e &

Substituting the equation (2.17) into the equation (3.8) e@makidering that
||n||2 =-g we obtain
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(1+ Sinl’f ws) K[+ug (eS ’a) = COSF](//O [% g:? - 4:;2 (giJ J

Therefore, taking the equation (26) in ref. [5]ointonsideration we get the
relation between curvature of th&' timelike principal section(es,n) and

curvature of timelike sectio(e,, a) .

Theorem 3.2 Let M be a generalized timelike ruled surface with tikesl
generating space and with spacelike central ruledfeze in n— dimensional

Minkowski spaceR]. a and e,, 1< s< m, be any timelike unit vector ®f and
timelike base vector within subspaE,g(t), respectively. Given any timelike unit
vector a which is linearly independent witly , 1<o<m, g #s, at the point
(Z+ue[,)D M, there exists the following relation between cumvatof timelike

section(e,, a) and curvature of the" principal spacelike sectio(‘e(,, n)

(1+ cosﬁwg) Kee (6, A) == sinfy K. (& 1.

So that the angleg, and ¢, are the hyperbolic angles betweanand n and
betweena and e, , respectively.

Proof: At the point({+ue, )0 M the curvature of timelike sectiofe,, a)
becomes

Koo, (eg, a) = B, B2 R s 0 _ , lsosm ,o#s, (3.9)
(e 8){ad-(¢ 2
The coordinates of the" base vectog,, 1<v <k, and timelike unit vectoa

given by equation (3.4) arg3,,B.,....[3, .....B) and (Vo Vir-esVer-- Vi) » @nd
we write the following equations

b=(e.)=0 , B=(g.g)=¢g , lkvsKk
and

inh :
yo:<a,e0>:S”|In|l|'U° , ¥,=(aeg)=sinhy, , Kvsk ,V#s

v,=(ae)=coshy, , Ks<m
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Substituting these equations together with the #oug2.17) into the equation
(3.9) and considering thn|* = -g, we reach

. 10°g. 1(ag)
(-1-cosfy, )K ., (e &)= S'nﬁwo[_50u§ * 492(a%j

We obtain, therefore, a relation between curvaiirespacelikeg” principal
section(e,,n), 1<so<m, o #s, given by the equation (25) in ref. [5] and the

curvature of timelike sectio(e,, @) and this completes the proof.

Theorem 3.3; Let M be a generalized timelike ruled surface with tikesl
generating space and with spacelike central ruledfeze in n— dimensional

Minkowski spaceR]. a ande,,,, 1<s< k—m, be any spacelike unit vector of
M and timelike base vector within the central spZQ_e;n(t), respectively. Given

the spacelike unit vectoa which is linearly independent of spacelike base
vectore,, 1< o<m, at the point(Z+ue(,)D M, there exist the following relation

between the curvatures of timelike sect(ep, a) and thea™ spacelike principal

section(e,, n)

(1—cosﬁz//g)KZ+ueﬂ(eU a)= coshy, K., (& 1)

where the hyperbolic angles betwearand n, betweena and e, are ¢, and
Y, , respectively.

Proof: At the point(¢ +ue,)0 M the curvature of timelike sectiofe,, a) ,
1<o<m,is given by

K[+ue0 (ea'l a) = IBJIBJAO/‘ORJOJO 1S gsm (310)

(&) (ad-(g &

The coordinates of the” base vectog,, 1<v <k, and spacelike unit vector are
(By Borees BB, B) and(Vo, Vv oo Vs Vi) » r€SPeCctively so that

B =(8.§)=0 . B=(e.g)=e, , lsvs<k
and

yO:<a’eO>:CO||Sr:|'|[//O . ¥,=(ag)=cosly, , Ev<sk vz m s

Vees={a,€, =sinhy ., I<s< k-m
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When these equations together with the equatiabi7)2are substituted into the
equation (3.10) one finds

costfy,| 10°g  1( dg ’
Inf* | 20u; 4glou,

1-cosHy,

Ko (€, 8) =

Considering the last equation together with Iﬂnﬁ% =-—( yields us

1 9° 1 (ag Y
(1= costty, ) K, (6, &) = COSW{_Zaug ' 492£03J J

Therefore, we obtain the relation between curvanfrspacelikeg” principal
section(e,, n), 1< o <m, given by the equation (25) in ref. [5] and thevature

of timelike section(e,, &) and this completes the proof.

Theorem 3.4: Let M be a generalized timelike ruled surface with tikesl
generating space and with spacelike central ruledfeze in n— dimensional

Minkowski spaceR], a be arbitrary timelike unit vector oM and e,,.,
1<s< k- m, be a timelike base vector in central spi‘kem(t), respectively.
Giving a spacelike vectog,, 1<o<m, and linearly independent with timelike
unit vectora there exists a relation at the poi(f +ue,)0 M,

(1+ COSH%) Ko, (& &)=~ sinfg, K. (& 1)

between the curvatures of timelike sect(ep, a) and theg™ spacelike principal
section(e,, n). Herey, and ¢, are the hyperbolic angles betweann, and a,
e,, 1< o<m, respectively.

Proof: Takingl<o<m, the sectional curvature at the po(m’t+ueU)D M is
given by

K — B,B,4ARs 000 1<

o, (€0 8) .elad-(e ¥ <osm (3.11)

If the coordinates of the" base vectog,, 1<v <k, and the timelike unit vector

given by the equation (3.6) (@, B.,....5, .- .B) and(Vo, Vire-- Vinwsre-+ Vi) s
respectively, then we may write

B, =(&.§)=0 . B=(e.g)=¢ , lsv< |
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and

yo=<a,%>=%:”w° ., ¥, =(ag)=sinhy, , Kv<ky#m s

Vows={a€, =coshy , ,, K s< k- m

Substituting the last equations and the equatidtv§dnto the equation (3.11) and
considering thaF|n||2 =-g we reach that

. 19%g. 1 (agY
(-1-costty, ) K., (8, 8) = Smﬁw{_ﬁ o ag (MJ

Taking the equation (25) in ref. [5] into considera, the relation between
curvature of thes™ principal spacelike sectiofeg, n), 1l<o<m, and curvature
of timelike section(e,, @) is found and this completes the proof.

Taking vectore given by equations (30), (31), (32) and (33) ifh f&] to be the
unit vector in Ek(t) and unit vectoa given by equations (3.3), (3.4), (3.5) and

(3.6) to be a unit vector at the central padiif [1Q, the following theorems
related to the sectional curvatureshf could be given.

Theorem 3.5. Let M be a generalized timelike ruled surface with tikeel
generating space and with spacelike central ruledfase in n— dimensional

n

Minkowski spaceR; , taking vectora, which is linearly independent with
spacelike unit vectore in generating spaC(Ek(t) of M, to be spacelike unit
vector at the central pointi¢ 0Q , the following relation holds between
curvature of nondegenerate secticﬁe, a) of M and curvature of spacelike

section(e, n)

K, (&.8) =M i (g

1-(e, a)z

where ¢, is the angle between spacelike unit veaoand spacelike normal
tangent vectom.

Proof: Considering the equation (3.1) the sectional cumeatt the central point
{0Q is given by

> BB A Roasa* BLAA R
R Y P P

(3.12)
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If the coordinates oé given by equation (30) in ref. [5] and tangenttee@

given by equation (3.3)(B, BB B) and (Vo Voo Voro Vi)
respectively, then we may write

/80=<e'%>=0,
B, =(ee)=sinhd, , 1< s<m
B, =(eg)=coshy, , Kvsk ,v#:s

and
_/ .\ _coshy,
h={ag)= :
AT
v.=(ae)=sinhy, , I<s<m
J/V:<a,e,>=cosh/lv , Kv<sk ,v#s

Substituting the last equations together with theagion (2.17) into the equation
(3.12) we get

m 2 2 2 2
cosﬁzt/lo > costt g, 10 ?—i 99 | |4 sinR 6, 79 199
Inf* | &= 20u; 4g|auy, 20 49\ 0y

1-(e a)

K, (e a)=

Considering the last equation aH'rnﬂ2 =-g we reach

. 10, 109V, Gl 10°0, 1(0g)
COSVF!,I/O[UZ=1 COSF'QU{ zgau§+4gz(0%j J+ Slngrﬂ{ 296@+4§(‘3Q

1-(e, a)z

K, (e a)=

Considering curvature of the” spacelike principal sectio(eg, n), l<o<m,

o # s, given by the equation (25) in ref. [5] and thevature of thes" timelike
principal sectior(es, n) ,1<s<m, given by the equation (26) in ref. [5] at the
central point¢ 0Q we find

cosﬁw{i coshg K, (e, a)- sintg,K, (e @j
K, (e a)= = :

1-(e, a>2
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If we take I. type Lorentzian Beltrami-Euler formujiven by theorem in ref. [5]
we complete the proof.

Theorem 3.6: Let M be a generalized timelike ruled surface with tikeel
generating space and spacelike central ruled s@fan n- dimensional

Minkowski spaceR; and a be a timelike unit vector which is linearly
independent with spacelike unit vec®min generating spacEk(t) of M. The

relationship between curvature of timelike sectigma) and curvature of
spacelike sectiofie,n) of M at 0 0Q is

K()% (e

wherey, is an angle between timelike vectrand spacelike normal tangent
vectorn.

Proof: At the point{ 0Q the sectional curvature is given by

ZﬁJﬁJAOAORTOJO+IBSﬁSAC/]ORSOSO
=1
KZ (e’ a) =22 2
(ee(agd-(ed
If the coordinates o€ given by equation (30) in ref. [5] and the unitciar a

given by equation (3.4) ardpB,f.....5....B8) and (Vo Vive-- Ver-- Vi) s
respectively, then we obtain

(3.13)

B =(e &) =0,
B,=(e g)=sinhf, , 1< s m
B,=(eg)=coshg, , Kv<k ,V#s

and
_ _ sinhy,
y - a’ - 3
AT
v,=(ae)=coshy, , Kssm
y,=(a,g)=sinhy, , =kvsk ,V#s

Substituting the last equations together with eéquaf2.17) into equation (3.13)
and considering theﬂﬁ”2 =-g we reach
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. m 10 1(ag) ], . 10°g. 1(ag)
H kg | - B ho| -2+ = | =%
sin w{; cos U[ 2 au§+4gz(aq,J + sinhé, 2ga@+ 263y

1+(e,a)°

K,(ea)=-

Considering the curvature of the™ spacelike principal sectionieg, n) ,
l<o<m, og#s, which is given by equation (25) in ref. [5], acarvature of the
s" timelike principal sectiofe,, n), 1<s< m, is given by (26) in ref. [5], into
the last equation at the poigt1Q, we get

sinhzw()(zm: cosfig,K, (e, a)- sinfg,K, (¢ a)j

K,(ea)=- o

1+(e, a>2

The last equation together with the I. type LoramtzBeltrami-Euler formula
completes the proof.

Theorem 3.7 Let M be a generalized timelike ruled surface with tikesl
generating space and spacelike central ruled s@fdn n- dimensional

Minkowski spaceR]. If we suppose the vectar, which is linearly independent
with timelike unit vectoe in the generating spacEk(t) to be a spacelike unit
vector at the pointl¢ 0Q there exists the following relation between cuuvat
of timelike sectior{e, a) and curvature of timelike sectidie, n) of M

cosit ¢,
Koo =g (e

wherey, is an angle between spacelike vecioand spacelike normal tangent
vectorn.

Proof: At the central point 0Q, the curvature of the timelike sectitée, a) is
given by

> BB AR o+ BLAD R
A R

If the coordinates oé given by equation (30) in ref. [5] and the tangesttora
are (B, B\ Byre--,Be) and Vo, Viseeo s Vo Vi) » respectively, then we get

(3.14)
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B =(e&)=0,
B,=(ee)=coshf, , K s m,
B, =(eg)=sinhg, , Ivsk ,v#s
and
_ _ coshy,
S T
v,=(ae)=sinhy, , I<ssm,
y,=(a,g)=coshy, , Ev<sk ,v#s

Substituting the last equations together with theagion (2.17) into the equation
(3.14) and considering thﬂlh”z =-g we find

2 2
mo _iazg 1 ﬂ _71@ 71 E
cosffw{; S'”ﬁgﬂ{ 29 O +4gz(6%J } Cos”rﬂ{ 2004 " 4(5[0 UJ B

1+(e, a>2

K, (e a)=-

If we substitute the curvature of the" spacelike principal sectiofe,,n),
1<so<m, o#s, given by equation (25) in ref. [5], and the cuwvea of thes”
timelike principal sectior(es, n) , 1< s< m, given by equation (26) in ref. [5] into
the last equation at the poigitt1Q, we get

o=1

coshzt/lo(—zm: sinfig,K, (e, a)+ costy,K, (e a)j
K, (e @)= '

1+(e, a>2

Considering the Il. type Lorentzian Beltrami-Eulermula given by Theorem 4.7
in ref. [5] completes the proof.

Theorem 3.8: Let M be a generalized timelike ruled surface with tikesl
generating space and timelike central ruled surface — dimensional Minkowski

spaceRR] . Suggesting the vectar, which is independent with spacelike unit
vector e in the generating spackg, (t) to be a spacelike unit vector at the point
0¢ 0Q, there exists the following relation between ctuva of nondegenerate
section(e, a) and curvature of spacelike sectif@ n) of M

_ costt ¢,

1_<e’a>2 K((el’)

K, (e a)
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so thaty, denotes the angle between spacelike unit veat@nd spacelike
normal tangential vecton.

Proof: The curvature of the spacelike sect(cma) at the point{ JQ is

S B8R oo
K, (e a) =22 (3.15)

(eg(agd-(ey

If the coordinates o€ from the equation (32) in [5] and the tangent et

given by equation (3.5) ar€B,, B.,..., Buesr--:B) AN (Vo Vareo s Vinwsre- Vi) »
respectively, we find

B, ={e &) =0,
Bris=(€ €y =sinhd,, , 1< s< k- m

+Ss

ﬂV:<e,¢,>=cosh€V , Kv<sk ,v#Em s

and
- _coshy,
Vh=\a&)= ,
=28 =y
ym+s:<a)em :Sinhl//m o I< s< k- m,
y,=(a,g)=coshy, , Kv<sk ,v#zmts

Considering that||n||2:—g and substituting the last equations together with
equation (2.17) into the equation (3.15) yields

Ry, & 10°g_ 1(ag Y
€os wOZcosﬁeg[g—(ng

||n||2 e~ 20u’ 4glou,

K, (e a)= (e, a>2

Considering that the curvature of spacelik® principal section(eg, n) ,
1< 0 <m, given by equation (25) in ref. [5] at the poit]Q, we obtain

cosit t//ozm: coshg,K, (e, a)

KZ (e’ a) = Jzi_<e’ a>2
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From Ill. type Lorentzian Beltrami-Euler formula,ewsee that there exists the
relation between the curvature of spacelike secfiera) and curvature of

spacelike sectiofe, n) and this completes the proof.

Theorem 3.9: Let M be a generalized timelike ruled surface with tikeel
generating space and timelike central ruled surfaxca — dimensional Minkowski

spaceR]. Considering that the vecta, which is independent with spacelike
unit vectore in the generating spacEk(t), to be a timelike unit vector at the
point 0 00Q , there exists the following relation between thevature of
timelike sectior(e, @) and curvature of spacelike secti¢g n) of M, such that

K:(e,a)=—%mer)

where ¢, is the angle between timelike unit vectrand spacelike normal
tangential vectom.

Proof: The curvature of timelike sectic(re, a) at the point¢ JQ is given by

z ﬂJﬂJAO/‘ORJOJ 0
K, (e a)=-=

(ed(ag-(ed

Taking the coordinates af from equation (32) in ref. [5] and the tangentteec
atobe(By, B\ Bovsr--B) ANA Yo, Vise o Vinrsr-- Vi) » FESPECtively, we reach

(3.16)

B =(e&)=0,
Bris=(€ €y =sinhd,, , 1< s< k- m
B, =(e,g)=coshd, , Kvsk ,v#m s
and

ym+s:<a)em :COShﬂms’ K s< k- m,
yv:<a’q/>:Sinh(//V , Isv<sk ,v#Em s

Considering||n||2=—g and substituting the last equations together viita
equation (2.17) into the equation (3.16), we find
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. m 10°g. 1 (g ’
sinh? coshg | -—— +
Yo, ( 29 o2 492(aufj

Ke(eg)=- 1+(e, a>2

If we consider the curvature of the" spacelike principal sectio(reg, n) ,
1< o0 <m, given by equation (25) in ref. [5], we find

sinhzwozm: cosfig,K, (e, a)
K( (e’ a) == J:i+<e a>2

Considering the curvature of spacelike sec(ie,m) , Which is given by lll. type
Lorentzian Beltrami-Euler formula in ref. [5] conepés the proof.

Theorem 3.10 Let M be a generalized timelike ruled surface with tikeel
generating space and timelike central ruled surface — dimensional Minkowski

spaceR] . Considering that the vecta, which is independent with timelike unit
vector e in the generating spack, (t) of M, to be a timelike unit vector at the
central pointd{ 0Q, there exists the following relation between ctuva of
timelike sectior(e, @) and curvature of timelike sectide, n)

K()% (e

Where ¢, denotes the angle between spacelike unit veat@nd spacelike
normal tangential vecton.

Proof: The curvature of timelike sectic(re, a) at the central poin{ JQ is given
by

i IBJIBJAOAORO'OJO
K, (e a) ==L (3.17)

(ed(ad-(ey

If the coordinates of tangent vectargiven by equation (3.5) angl given by (33)

in ref. [5] are (B, B :Buesr--Bi) aNd (Vo, Vivevw Vinesr-- Vi) » TESPECively,
then we write
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B, =(e g)=0,
Brws=(€ 6y )=coS , , K s< k- m,
B,=(eg)=sinhg, , Iyv<sk ,v#zms
and
_ _ coshy,
Vo={a &)= :
o= {88 =T

ym+s:<a)ems>:Sinhl//ms, I< s< k- m
y,=(a,g)=coshy, , Kv<sk ,v#zmts

Considering thaﬂn||2 =-g and substituting the equation (2.17) together \ith
last equations into the (3.17) we reach

mo 10°g. 1 ( 0g ’
cosit sinfg | ——+
O "[ 29 0u; 49{%)

KZ (e' a) == 1+<e’ a>2

If we use the curvature of the" spacelike principal sectiofe,, n), 1<o<m,

given by the equation (25) in ref. [5] at the cahtpoint {JQ in the last
equation we see that

COShzl/IOZm: sinfig,K, (e, A)

KZ (e’ a) =~ 1+<e’ a>2

Considering the IV. type Lorentzian Beltrami-Eufermula in Theorem 4.9, [5]
completes the proof.

From the last six theorems it can be easily seahvthen the central ruled surface
of M is either spacelike or timelike, the relationsadhéd are seemed to be same.
Therefore we can give the following corollariesspectively.

From Theorems 3.6 and 3.8 we give the followingtary.

Corollary 3.11: Let M be a generalized timelike ruled surface with tikeel
generating space and (spacelike or timelike) cdntraled surface in

n-dimensional Minkowski spadR]. The vectora is the spacelike unit vector,
which is linearly independent with spacelike urettor e in Ek(t) of M at the

central point[]¢ 0Q. The curvature of spacelike sectifg a) of M depends on
the vectorse and a, Lorentzian Beltrami-Euler formula for the spa&elisection
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(e, n) and the angley, = <:(a, n). In this case, there exists the following relation
between the curvature of spacelike sect(ena) and curvature of spacelike
section(e, n) of M

K()% (e 0.

This equation is called. type Lorentzian Beltrami-Meusnier formula for
sectional curvature of generalized timelike ruledface with timelike generating
space at the central point.

From Theorems 3.7 and 3.10 we give the followingltary.

Corollary 3.12: Let M be a generalized timelike ruled surface with tikeel
generating space and (spacelike or timelike) céntraled surface in

n-dimensional Minkowski spadR;. The vectora be a timelike unit vector,
which is linearly independent with spacelike urgttor e in Ek(t) of M at the
central pointd¢ 0Q . In this case, the following relation holds betwehe
curvature of timelike sectiofe, a) and curvature of spacelike sectife n)

Kg(e,a);%@(e@

and this equation is called. type Lorentzian Beltrami-Meusnier formula for
sectional curvature of generalized timelike ruledface with timelike generating

space at the central point. Here, any curvatureimfelike sectior(e, a) of M
depends on the vectoes and a, Lorentzian Beltrami-Euler formula for the
spacelike sectioffe, n) and the angley, =<(a,n).

We can give the following corollary from Theoren7 and 3.10.

Corollary 3.13: Let M be a generalized timelike ruled surface with tikesl
generating space and (spacelike or timelike) cdntraled surface in

n-dimensional Minkowski spadR;. We also suppose that the vectois a
spacelike unit vector, which is linearly indeperndesth timelike unit vector in
E.(t) of M. In this special case any curvature of timeliketisa (e, a) of M
depends on the vectoes and a, Lorentzian Beltrami-Euler formula for the
timelike sectior(e, n) and the angley, = <« (a, n). The relation
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i &,
(e =12 g (e

holds between the curvature of timelike sec(iara) and curvature of timelike

section(e, n) and this equation is namedtl . type Lorentzian Beltrami-Meusnier

formula for sectional curvature of generalized timelikéedisurface with timelike
generating space at the central point.
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