

Gen. Math. Notes, Vol. 29, No. 2, August 2015, pp. 48-54 ISSN 2219-7184; Copyright © ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Y-Supplement Extending Modules

Sahira M. Yaseen¹ and Mustafa M. Tawfiq²

 ^{1,2}Department of Mathematics, College of Science Baghdad University, Baghdad, Iraq
¹E-mail: Sahira.Mohmood@gmail.com
²E-mail: musutfamomoon199052@yahoo.com

(Received: 8-6-15 / Accepted: 23-7-15)

Abstract

Let R be a commutative ring with unitary and let M be any unitary R-module. In this work we present Y-supplement extending module concept as a generalization of supplement extending module. Also we generalize some properties of cls-module to Y-supplement extending module. And we study the relation between supplement extending and Y-supplement extending module.

Keywords: Extending module, Supplement submodule, Y-closed submodule.

1 Introduction and Preliminaries

Throughout this paper *R* will be a commutative ring with identity and all modules will be unitary left *R*-module. A submodule *N* of *M* is called an essential in *M* if for every nonzero submodule *K* of *M* then $N \cap K \neq 0$ [1]. A submodule *N* of *M* is called small in *M* if for any proper submodule *K* of *M* then $N+K\neq M$ [1]. A submodule *N* of *M* is called supplement in *M* if there exists a submodule *K* of such that N+K=M and *N* is minimal with this property. Equivalently, if N+K=M and $N \cap K \ll N$ [1]. A submodule *N* of *M* is called closed in *M* if it has no proper

essential extension in M [1]. Recall that a submodule $Z(M) = \{x \in M \text{ such that } ann(x) \text{ is essential in } R\}$ see [1], if Z(M) = 0 then M is called a nonsingular and called singular if Z(M) = M [1]. A submodule N of M is called Y-closed submodule in M provided $\frac{M}{N}$ is nonsingular see [2]. A module M is called cls-module provided every closed submodule in M is a direct summand of M see [3]. Recall that an R-module M is called extending (cs) if every closed submodule is a direct summand of M see [4]. An R-module M is called supplement extending if every submodule of M is essential in a supplement submodule in M. Equvalently, if and only if every closed submodule in M is supplement submodule in M see [10].

Remarks and Examples 1.1[10]:

- 1. It is clear that every extending module is supplement extending then Z, Q, $M=Z_2 \oplus Z_4$ as Z-module are supplement extending.
- 2. Every semisimpleR-module is supplement extending.
- 3. A Z-module $M=Z_4 \oplus Z_4$ is not supplement extending since $\{(\overline{0},\overline{2})\}$ is closed submodule in M which is not supplement submodule.

Proposition 1.2[2]: Let M be a singular R-module. Then M is the only Y-closed submodule in M.

Remark 1.3[2]: Let A and B be submodules of an R-module M if A is a Y-closed submodule in B and B is a Y-closed submodule in M, then A is a Y-closed submodule in M.

Remark 1.4[2]: Let M be an R-module and let A, B be submodules of M such that $A \subseteq B$, then

- 1. If A is a Y-closed submodule in M, then A is Y-closed submodule in B.
- 2. *B* is *Y*-closed submodule in *M* if and only if $\frac{B}{A}$ is a *Y*-closed submodule in $\frac{M}{A}$.

Remark 1.5[2]: Let *M* be an *R*-module and *N* be a *Y*-closed submodule in *M*, then [*N*:*M*] is a *Y*-closed ideal in *R*.

Remark 1.6[2]: Let M be an R-module and let $\{B_i, i \in I\}$ be an independent family of submodules of M. If $\{A_i, i \in I\}$ is a family of submodules of M such that $A_i \subseteq B_i$, $\forall i \in I$. Then $\bigoplus_i \in {}_IA_i$ is a Y-closed submodule in $\bigoplus_i \in {}_IB_i$ if and only if A_i is a Y-closed submodule in $\bigoplus_i \in {}_IB_i$ if A_i is a Y-closed submodule in B_i , $\forall i \in I$.

Proposition 1.7[2,Prop.1.3,P.17]: Let M be an R-module and A be a submodule of M. If B is any relative complement for A in M, then $A \oplus B \subseteq_{e} M$.

Remark 1.8[2]: For any R-module M

- 1. *M* is Y-closed in M.
- 2. Every Y-closed submodule in M is closed but the converse is true when M is nonsingular.

2 **Y-Supplement Extending Modules**

In this section we introduction a generalization for supplement extending module namely *Y*-supplement extending.

Definition 2.1: Let M be an R-module, then M is called Y-supplement extending if every Y-closed submodule in M is supplement submodule.

Examples and Remarks 2.2:

- 1. *Z* as *Z*-module is *Y*-supplement extending, since the only *Y*-closed submodule in *Z* is *Z* and 0 which are supplement submodules in *Z*.
- 2. Z_6 as Z_6 -module is a Y-supplement extending, since the only Y-closed submodule are Z_6 and $\{\overline{0}\}$ which are supplement submodules in Z_6 .
- 3. Every singular R-module M is Y-supplement extending. In particular, every torsion module over an integral domain is a Y-supplement extending.

Proof: Let M be a singular R-module, then M is the only Y-closed submodule in M, by Prop. 1.2, but M is supplement then M is a Y-supplement extending module.

- 4. Clear that every supplement extending module *M* is *Y*-supplement extending. But the converse in not true in general, for example.
- 5. $Z_4 \oplus Z_4$ as Z-module is singular since Z_4 as Z-module is singular and every direct sum of singular is also singular by [2] and hence by Prop. 1.2, $Z_4 \oplus Z_4$ is the only Y-closed submodule but $Z_4 \oplus Z_4$ is supplement submodule . So, $Z_4 \oplus Z_4$ as Z-module is Y-supplement extending. But by Remarks and Examples 1.1(3) is not supplement extending module.

Proposition 2.3: Every nonsingular Y-supplement extending R-module is supplement extending. In particular, every torsion free module over an integral domain is Y-supplement extending module.

Proof: Let M be a nonsingular module and A be a closed submodule in M. Since M is nonsingular then by Remark 1.8(2), A is a Y-closed submodule in M but M is Y-supplement extending then A is supplement submodule and hence M is supplement extending.

Proposition 2.4: Let M be an R-module such that for every submodule X of M, there exists a Y-closed submodule A in M such that X is essential in A. Then M is Y-supplement extending if and only if M is supplement extending.

Proof: Let X be a submodule of M and M be a Y-supplement extending, then by assumption, there is a Y-closed submodule A in M such that X is essential in A but M is a Y-supplement extending then A is supplement submodule in M. Now X is essential in A where A is supplement in M. Hence M is supplement extending. The converse is true from Examples and Remarks 2.2(4).

Proposition 2.5: Any direct summand of Y-supplement extending module is Y-supplement extending.

Proof: Let $M = A \oplus B$ be a Y-supplement extending module. To show that A is a Y-supplement extending, let K be a Y-closed submodule in A, by the third and second isomorphism theorems we have $\frac{M}{K \oplus B} = \frac{A \oplus B}{K \oplus B} \cong \frac{A \oplus B}{B} \cong \frac{A}{K \cap B} = \frac{A}{K}$ but K is a Y-closed submodule in A then $\frac{A}{K}$ is nonsingular and hence $K \oplus B$ is a Y-closed in M but M is a Y-supplement extending then $K \oplus B$ is supplement in $M = A \oplus B$. So, by [7] K is supplement in A and hence A is Y-supplement extending.

Proposition 2.6: Every Y-closed submodule in Y-supplement extending module is again Y-supplement extending.

Proof: Let A be a Y-closed submodule in M to show that A is Y-supplement extending. Let K be a Y-closed submodule in A by Prop. 1.3 K is a Y-closed in M but M is Y-supplement extending then K is supplement in M and hence K is supplement in A by [9, lemma 1.5]. So A is Y-supplement extending.

Proposition 2.7: Let A and B be submodules of an R-module M. If B is a Y-supplement extending and A is Y-closed submodule in M then $A \cap B$ is supplement submodule in B.

Proof: Assume that *B* is *Y*-supplement extending and *A* is *Y*-closed in *M* by the second isomorphism theorem $\frac{B}{B \cap A} \cong \frac{A+B}{A}$. Since $\frac{A+B}{A} \subseteq \frac{M}{A}$ and *A* is *Y*-closed in *M* then $\frac{M}{A}$ is nonsingular. So $\frac{A+B}{A}$ is nonsingular and hence $A \cap B$ is *Y*-closed in *B* but *B* is *Y*-supplement extending then $A \cap B$ is supplement in *B*.

Proposition 2.8: Let A be a submodule of an R-module M. If M is a Y-supplement extending then $\frac{M}{A}$ is Y-supplement extending.

Proof: Let $\frac{B}{A}$ be a Y-closed submodule in $\frac{M}{A}$, Then by [Prop. 1.4 (2)] B is Y-closed submodule in M. But M is Y-supplement extending, therefore B is supplement in M. Thus M=B+K, where K is a submodule of M and $B\cap K \ll B$ but $A \subseteq B$, then one can easily show that $\frac{M}{A} = \frac{B}{A} + \frac{K+A}{A}$ to show $\frac{B}{A} \cap \frac{K+A}{A} \ll \frac{B}{A}$ i.e. $\frac{B\cap(K+A)}{A} \ll \frac{B}{A}$ i.e. $\frac{A+(K\cap B)}{A} \ll \frac{B}{A}$ [by modular law]. Let $\frac{L}{A} + \frac{A+(K\cap B)}{A} = \frac{L+A+(B\cap K)}{A} = \frac{B}{A}$ then

 $L+A+(B\cap K)=B$ but $B\cap K\ll B$. Hence L+A=B but $A\subseteq L$ then L=B and $\frac{L}{A}=\frac{B}{A}$. Hence $\frac{A+(B\cap K)}{A}\ll \frac{B}{A}$. Thus $\frac{B}{A}$ is supplement in $\frac{M}{A}$ and hence $\frac{M}{A}$ is Y-supplement extending.

Proposition 2.9: Let M be a faithful multiplication R-module. If R is a Y-supplement extending ring then M is Y-supplement extending module.

Proof: Let A be a Y-closed submodule in M, but M is multiplication, so [A:M]M=A. But A is a Y-closed in M then by Prop. 1.5, [A:M] is Y-closed ideal in R. But R is Y-supplement extending ring then [A:M] is supplement ideal in R i.e. there exists an ideal J of R such that [A:M]+J=R and $[A:M]\cap J\ll [A:M]$. Now, M = RM = ([A:M] + J)M = [A:M]M + JM = A + JM and we have $A \cap JM = [A:M]M \cap JM$ since M is faithful then $[A:M]M \cap JM = ([A:M] \cap J)M$. Now, to show that $([A:M] \cap J)M$ $\ll [A:M]M=A.$ Let $([A:M] \cap J)M + KM = [A:M]M$ then $(([A:M]\cap J)+K)M = [A:M]M$ but M is multiplication then $([A:M]\cap J)+K = [A:M]$ but $[A:M] \cap J \ll [A:M]$. So, K = [A:M] and KM = [A:M]Mand hence $[A:M] \cap J$) $M \ll [A:M]M = A$, then A is supplement in M and M is Y-supplement extending.

Let *M* be an *R*-module. *M* is called *Y*-extending if for any submodule *A* of *M* there exists a direct summand *K* of *M* such that $A \cap K$ is essential in *A* and $A \cap K$ is essential in *K* see [5].

Proposition 2.10: Let M be a Y-extending R-module then M is Y-supplement extending.

Proof: See [3] because every cls-module is *Y*-supplement extending.

Now, we take the following remark.

Remark 2.11 [2, p.49]: Let A be a submodule of an R-module M. By Zorn's Lemma, there is a smallest Y-closed submodule H of M containing A called the Y-closure of A in M {we denote it by A^{-y} }.

Proposition 2.12: An *R*- module *M* is *Y*-supplement extending if and only if A^{-y} is supplement in *M*, for every submodule of *M*.

Proof: Let *M* be a *Y*-supplement extending module and let *A* be a submodule of *M*. Since A^{-y} is a *Y*-closed submodule in *M*, then A^{-y} is supplement submodule in *M*. The converse, let *A* be a *Y*-closed submodule in *M*, then $A^{-y} = A$. Thus *A* is supplement in *M*.

3 Direct Sum of *Y*-Supplement Extending Module

In this section, direct sums of *Y*-supplement extending are studied. It is shown that if $M=M_1 \bigoplus M_2$ when M_1 and M_2 are *Y*-supplement extending modules.

Proposition 3.1: Let M_1 and M_2 be Y-supplement extending modules such that $annM_1+annM_2 = R$, then $M_1 \oplus M_2$ is Y-supplement extending module.

Proof: Let *A* be a *Y*-closed submodule in $M_1 \oplus M_2$. Since $annM_1 + annM_2 = R$ then by the same way of the proof [6, prop 4.2, ch.1], $A = C \oplus D$ where *C* and *D* are submodules of M_1 and M_2 respectively. Since $A = C \oplus D$ is a *Y*-closed in $M_1 \oplus M_2$ then *C* and *D* are *Y*-closed in M_1 and M_2 respectively by [prop 1.5]. But M_1 and M_2 are *Y*-supplement extending modules then *C* and *D* are supplement submodules in M_1 and M_2 respectively. So, $A = C \oplus D$ is supplement in $M_1 \oplus M_2$ by [7]. Hence $M_1 \oplus M_2$ is *Y*-supplement extending module.

Definition 3.2: Let M be an R-module. We say that M is distributive module if $A \cap (B+C) = (A \cap B) + (A \cap C)$, for all submodules A, B and C of M, see [8].

Proposition 3.3: Let $M=M_1 \oplus M_2$ be a distributive module. Then M is a Y-supplement extending if and only if M_1 and M_2 are Y-supplement extending modules.

Proof: \rightarrow Clear by [Prop.2.5].

Conversely, let *K* be a *Y*-closed submodule in *M*. But $M=M_1 \oplus M_2$ then $K=K \cap (M_1 \oplus M_2)$. Since *M* is distributive module then $K=(K \cap M_1) \oplus (K \cap M_2)$ is a Y-closed submodule in $M=M_1 \oplus M_2$ by Prop. 1.6, $K \cap M_1$ and $K \cap M_2$ are *Y*-closed submodules in M_1 and M_2 respectively. But M_1 and M_2 are *Y*-supplement extending modules, then $K \cap M_1$ and $K \cap M_2$ are supplement submodules in M_1 and M_2 respectively, by [7], $K=(K \cap M_1) \oplus (K \cap M_2)$ is supplement in $M_1 \oplus M_2=M$. Hence *M* is *Y*-supplement extending.

Proposition 3.4: Let $M = \bigoplus_i M_i$ where $i \in I$ be an *R*-module such that every *Y*-closed submodule in *M* is fully invariant then *M* is *Y*-supplement extending if and only if M_i are *Y*-supplement extending for all $i \in I$.

Proof: Let *A* be an *Y*-closed submodule in *M*. For each $i \in I$, if $f_i: M \to M_i$ is the projection map. Now, let $x \in A$ then $x = \sum_{i \in I} m_i$, $m_i \in M_i$ and $m_i = 0$ for all except a finite number of $i \in I$. Clearly that $f_i(x) = m_i$, for all $i \in I$. Since *A* is a *Y*-closed submodule in *M*, then by assumption, *A* is fully invariant and hence $f_i(x) = m_i \in A \cap M_i$. So, $x \in \bigoplus (A \cap M_i)$, thus $A \subseteq \bigoplus (A \cap M_i)$, but $\bigoplus (A \cap M_i) \subseteq A$ thus $\bigoplus (A \cap M_i) = A$. Since *A* is a *Y*-closed submodule in *M* then $(A \cap M_i)$ is a *Y*-closed in M_i for all $i \in I$, by Remark 1.6. But M_i is *Y*-supplement extending modules for all $i \in I$ then $(A \cap M_i)$ is supplement in M_i for all $i \in I$. But by [7] $A = \bigoplus (A \cap M_i)$ is supplement in $\bigoplus M_i = M$. Hence *M* is *Y*-supplement extending.

Proposition 3.5: An *R*-module *M* is *Y*-supplement extending module if and only if for every direct summand A of the injective hull E(M) of *M* such that $A \cap M$ is a *Y*-closed submodule in *M*, then $A \cap M$ is a supplement submodule in *M*.

Proof: \rightarrow Clear.

Conversely, let A be a Y-closed submodule in M and let B be a relative complement of Ain M, then by Prop.1.9, $A \oplus B$ is essential in M. Since M is essential in E(M), then $A \oplus B$ is essential in E(M). Thus $E(M) = E(A \oplus B) = E(A) \oplus E(B)$. Since E(A) is direct summand and $A = A \cap M$ is essential in $E(A) \cap M$. So, $\frac{E(A) \cap M}{A}$ is singular. Now, $\frac{E(A) \cap M}{A} \subseteq \frac{M}{A}$ which is nonsingular then $\frac{E(A) \cap M}{A}$ is nonsingular. So, $\frac{E(A) \cap M}{A} = 0$ i.e. $E(A) \cap M = A$ is Y-closed and by assumption $E(A) \cap M = A$ is supplement in M.

References

- [1] F. Kasch, *Modules and Rings*, Acad. Press, London, (1982).
- [2] K.R. Gooderl, *Ring Theory, Nonsingular Ring and Modules*, Marcel Dekker, New York, (1973).
- [3] A. Tercan, On CLS-modules, *Rocky Mountain J. Math.*, 25(1995), 1557-1564.
- [4] A.W. Challers and S.M. Khuri, Endomorphism rings of modules over nonsingular CS-rings, *J. London Math. Soc.*, 21(1980), 434-444.
- [5] E. Akalan, G.E. Birkenmeier and A. Tercan, Goldie extending modules, *Communication in Algebra*, 37(2) (2009),663-683.
- [6] M.S. Abbas, On fully stable modules, *Ph. D. Thesis*, University of Baghdad, (1991).
- [7] D.K. Tutuncu, On coclosed submodules, *Indian J. Pure Appl. Math*, 36(3) (2005), 135-144.
- [8] V. Erdogdu, Distributive modules, *Canada Math. Bull*, 30(1987), 248-254.
- [9] C. Nebiyev and N. Sokmez, Modules which lie above a supplement submodule, *International Journal of Computational Cogntion*, 8(2) (2010).
- [10] S.M. Yaseen and M.M. Tawfeek, Supplement extending modules, Iraq, *Journal of Science*, 56(3b) (To appear).