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Abstract
Let R be a semiprime ring. An additive mapping f : R → R is called

a semiderivation if there exists a function g : R → R such that f(xy) =
f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x)) = g(f(x)) for all x, y ∈ R.
In the present paper we investigate commutativity of R satisfying any one of
the properties (i) [f(x), f(y)] = 0, (ii) [f(x), f(y)] = [x, y], (iii) [f(x), d(y)] =
[x, y], d is a derivation on R, or (iv) f([x, y]) = ±[x, y], for all x, y in some
appropriate subset of R. Also we extend two results of Bell and Martindale
from prime rings to semiprime rings.

Keywords: prime ring, semiprime ring, essential ideal, derivation,
semiderivation, commuting mapping, strong commutativity-preserving map-
ping.

1 Introduction

Throughout, R will be an associative ring. R is said to be 2-torsion-free,
if 2x = 0, x ∈ R implies x = 0. As usual the commutator xy − yx for
x, y ∈ R will be denoted by [x, y]. We shall use basic commutator identities
[x, yz] = [x, y]z + y[x, z] and [xy, z] = [x, z]y + x[y, z], for x, y, z ∈ R. Recall
that R is prime if aRb = (0) implies a = 0 or b = 0 for every a, b ∈ R, and
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is semiprime if aRa = (0) implies a = 0, for every a ∈ R. An ideal U of R
is essential if for every nonzero ideal K of R we have U ∩K 6= (0). If R is a
ring with center Z, a mapping f from R to R is called centralizing on S ⊆ R
if [x, f(x)] ∈ Z for all x ∈ S; in the special case where [x, f(x)] = 0 for all
x ∈ S, the mapping f is said to be commuting on S. A mapping f : R→ R is
called strong commutativity-preserving (scp) on S ⊆ R if [f(x), f(y)] = [x, y]
for all x, y ∈ S. A derivation d : R → R is an additive map which satisfies
d(xy) = d(x)y + xd(y) for all x, y ∈ R.

The present paper has been motivated by the works of Chang [7], Daif [9],
Bell and Daif [3], Daif and Bell [8], and Bell and Martindale [5]. Bergen [6]
has introduced the following notion. An additive mapping f of a ring R into
itself is called a semiderivation if there exists a function g : R → R such that
f(xy) = f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x)) = g(f(x)) for all
x, y ∈ R. For g = 1 a semiderivation is of course a derivation. The other
main motivating examples are of the form f(x) = x− g(x) where g is any ring
endomorphism of R. Then f is a semiderivation of R with associated map g
which is not a derivation. In [11], Herstein has shown that if R is a prime ring
admitting a nonzero derivation d such that [d(x), d(y)] = 0 for all x, y ∈ R,
then R is commutative whenever charR 6= 2, and if charR = 2, then either R
is commutative or is an order in a simple algebra which is 4-dimensional over
its center. In [7], Chang has given an extension of the above mentioned result
of Herstein in the following way. Let f 6= 0 be a semiderivation of a prime ring
R associated with an epimorphism g of R such that [f(R), f(R)] = {0}. Then,
if char (R) 6= 2, R is a commutative, and if char (R) = 2, R is commutative
or is an order in a simple algebra which is 4−dimensional over its center.
In [9], Daif has generalized the previously mentioned result of Herstein in the
following way. Let R be a two-torsion-free semiprime ring and U a nonzero
ideal of R. If R admits a derivation d which is nonzero on U and [d(x), d(y)] = 0
for all x, y ∈ U , then R contains a nonzero central ideal. In [8], Daif and Bell
have proved that a semiprime ring R is commutative if it admits a derivation
d for which either d([x, y]) = [y, x] for all x, y ∈ R or d([x, y]) = [x, y] for all
x, y ∈ R. In [3], Bell and Daif have shown that if a semiprime ring R admits
a strong-commutativity preserving derivation on a nonzero right ideal U of R,
then U ⊆ Z, the center of R. In [5], Bell and Martindale have proved the
following three results.

(i) Let f 6= 0 be a semiderivation of a prime ring R of characteristic not 2 with
associated endomorphism g of R and U 6= 0 be an ideal of R. Suppose that
a ∈ R such that af(U) = 0. Then a = 0.

(ii) Let f be a semiderivation of a prime ring R of characteristic not 2 with
associated endomorphism g of R. If there exists a nonzero ideal U of R for
which U ∩g(R) = 0, then there exists λ ∈ C (the extended centroid of R) such
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that f(x) = λ(x− g(x)) for all x ∈ R.

(iii) Let f be a semiderivation of a prime ring R of characteristic not 2 with
associated endomorphism g of R. If g is not one-one and V 6= 0 is an ideal
of R contained in ker g, then f(V ) is a nonzero ideal of R, and there exists
λ ∈ C such that f(x) = λ(x− g(x)) for all x ∈ R.

In [1], Ali and Huang have proved the following theorem. Let R be a 2−torsion
free semiprime ring and I a nonzero ideal of R. Let d be a derivation of R. If
one of the following conditions holds:

(i) [d(x), d(y)] = [x, y] for all x, y ∈ I,

(ii) [d(x), d(y)] = −[x, y] for all x, y ∈ I,

(iii) for all x, y ∈ I, either [d(x), d(y)] = [x, y] or [d(x), d(y)] = −[x, y],

then d is commuting on I. Further, if d(I) 6= 0, then R has a nonzero central
ideal.

In [10], De Filippis, Mamouni and Oukhtite have showed the following result.
Let R be a prime ring of characteristic not 2 and I a nonzero ideal of R .
If R admits a nonzero semiderivation f with associated function g such that
f([x, y]) = [x, y] for all x, y ∈ I, then one of the following holds:

(1) R is commutative;

(2) f(x) = x− g(x) for all x ∈ R, with g([R,R]) = 0;

(3) f(x) = x, for all x ∈ I and g(I) = 0 .
Our aim in this work is to investigate the commutativity of semiprime rings

admitting semiderivations. In the first section we extend the above mentioned
result of Chang [ 7, Theorem 2 ] for prime rings to semiprime rings, extend
two results of Bell and Martindale ([ 5, Lemma 4 ], [ 5, Lemma 5]) for prime
rings to semiprime rings, and give a counter example to [ 5, Lemma 2 ] in
the semiprime ring case. In the second section we study commutativity for a
semiprime ringR admitting a semiderivation f associated with an epimorphism
g of R which satisfies [f(x), f(y)] = [x, y] for all x, y belonging to an ideal of
R, or satisfies f([x, y]) = ±[x, y] for all x, y ∈ R, or admits an additive map
f and a derivation d which satisfy [f(x), d(y)] = [x, y] for all x, y belonging to
an ideal of R.

In order to prove our aims we need the following results:

Theorem 1.1. [2, Theorem 2.3.2 ]. Let R be a semiprime ring, Q = Qmr(R),
the maximal right ring of quotients of R, RUR ⊆R QR a subbimodule of Q and
f :R UR →R QR a homomorphism of bimodules. Then there exists an element
λ ∈ C (the extended centroid of R) such that f(u) = λu for all u ∈ U .

Lemma 1.2. [8, Lemma1]. Let R be a semiprime ring and I a nonzero ideal
of R. If x in R centralizes the set [I, I], then x centralizes I.
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Lemma 1.3. [3, Lemma 1 ]. If R is a semiprime ring, the center of a nonzero
one-sided ideal is contained in the center of R; in particular, any commutative
one-sided ideal is contained in the center of R.

Remark 1.4. [2, Remark 2.1.4]. If U is an essential two-sided ideal of a
semiprime ring R, then l(U) = r(U) = (0).

2 Semiderivations on Semiprime Rings

In this section we begin with a theorem that extends Chang’s theorem ([
7, Theorem 2 ] ) from prime rings to semiprime rings, and also generalizes
Daif’s theorem ([ 9, Theorem 2.1 ]) for derivations to semiderivations. To
achieve this goal we modify Theorem 3 of [4] from the case of derivations to
the case of semiderivations. Also we extend two results of Bell and Martindale
([ 5, Lemma 4 ], [ 5, Lemma 5]) on derivations to semiderivations, and give a
counter example to [ 5, Lemma 2 ] in the semiprime ring case.

Lemma 2.1. Let R be a semiprime ring. If R admits a nonzero semiderivation
f with associated surjective map g of R which is commuting on R, then R
contains a nonzero central ideal.

Proof. We have for all x ∈ R that [x, f(x)] = 0. Replacing x by u+ v, we get

[u, f(v)] + [v, f(u)] = 0 for all u, v ∈ R. (2.1)

Replacing u by x and v by yx, and using our hypothesis and (2.1), we get

[x, g(y)]f(x) = 0 for all x, y ∈ R. (2.2)

Since g is onto we have

[x, y]f(x) = 0 for all x, y ∈ R. (2.3)

Replacing y by wy and using (2.3), we get [x,w]yf(x) = 0, which implies that

[x,w]Rf(x) = {0} for all x,w ∈ R. (2.4)

Since R is semiprime, consider the set {Pα} of prime ideals of R such that
∩Pα = {0}. Then for each Pα either

(a)
[x,w] ∈ Pα for all x,w ∈ R, (2.5)

or

(b)
f(x) ∈ Pα for all x ∈ R. (2.6)
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Call Pα a type-one prime if it satisfies (a), and call Pα a type-two prime if
it satisfies (b). Let P1 and P2 be, respectively, the intersections of all type-one
and type-two primes. Note that P1 ∩ P2 = {0}.

We now investigate a typical type-two prime P = Pα. From (b), we have

Rf(R) ⊆ P (2.7)

Now consider the left ideal V = Rf(R); we shall show that V is commutative,
hence a two-sided central ideal. A typical element of V is a sum of elements of
the form rf(s), where r, s ∈ R. Thus we need only show that commutators of
the form [r1f(s1), r2f(s2)] are all trivial, clearly this commutator is in P1 by
(a) and in P2 by (2.7), hence belongs to P1 ∩ P2 = {0} .

Assume that V = {0} in which case Rf(R) = {0}, hence f(R)Rf(R) =
{0}, since R is semiprime we have f(R) = {0} which is a contradiction. Hence
V 6= {0}. By Lemma 1.3, R contains a nonzero central ideal. �

Now, we are ready to prove the first theorem of this section.

Theorem 2.2. If R is a two torsion free semiprime ring and f is a nonzero
semiderivation of R associated with an epimorphism g of R such that [f(R), f(R)]
= {0}, then R contains a nonzero central ideal.

Proof. We have [f(x), f(y)] = 0 for all x, y ∈ R, replacing y by yf(z), then
yields

[f(x), f(y)]f(z) + f(y)[f(x), f(z)] + g(y)[f(x), f 2(z)] + [f(x), g(y)]f 2(z)

= 0 for all x, y, z ∈ R.
(2.8)

Using our hypothesis, then [f(x), g(y)]f 2(z) = 0 for all x, y, z ∈ R. Since g is
onto, we have

[f(x), y]f 2(z) = 0 for all x, y, z ∈ R. (2.9)

Replacing y by yw and using (2.9), we get

[f(x), y]Rf 2(z) = {0} for all x, y, z ∈ R. (2.10)

Consider the set of prime ideals Pα of R such that ∩Pα = {0}. For each
Pα, from (2.10) we either have

(a) [f(x), y] ∈ Pα for all x, y ∈ R,

or

(b) f 2(R) ⊆ Pα.

Call Pα an (a)-prime ideal or a (b)-prime according to which of these conditions
is satisfied.
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Now consider a (b)-prime ideal Pα. Since f 2(xy) = f 2(x)g2(y)+f(x)f(g(y))+
f(x)f(g(y)) + xf 2(y), then 2f(x)f(g(y)) ∈ Pα, and since g is onto we get

2f(x)f(y) ∈ Pα, for all x, y ∈ R. (2.11)

Now replacing y by zy, we get 2f(x)f(z)g(y)+2f(x)zf(y) ∈ Pα, which implies

2f(x)zf(y) ∈ Pα, for all x, y, z ∈ R. (2.12)

Since Pα is prime, we either have 2f(x) ∈ Pα for all x ∈ R or f(y) ∈ Pα for all
y ∈ R. In either case, we have 2[f(x), y] ∈ Pα for all (b)-prime Pα. Also from
(a), 2[f(x), y] ∈ Pα for all (a)-prime Pα. So 2[f(x), y] ∈ ∩Pα = {0}. Since R is
two torsion free, then [f(x), y] = 0 for all x, y ∈ R, in particular [f(x), x] = 0
for all x ∈ R. By Lemma 2.1, R contains a nonzero central ideal. �

Lemma 2.3. [see 5, Lemma 1] Let R be a semiprime ring. If f 6= 0 is a
semiderivation on R associated with a function g of R, and U is an essential
ideal of R, then f 6= 0 on U .

Proof. Suppose f(U) = 0. Then for u ∈ U, x ∈ R we have 0 = f(ux) =
f(u)g(x) + uf(x) = uf(x), which implies 0 = Uf(x). From Remark 1.4, we
have f(x) = 0, which is a contradiction. �

Theorem 2.4. [see 5, Lemma 4] Let R be a semiprime ring, and f be a
semiderivation on R associated with an endomorphism g of R. If there ex-
ists a nonzero essential ideal U of R for which U ∩ g(R) = 0, then there exists
λ ∈ C (the extended centroid of R) such that f(x) = λ(x−g(x)) for all x ∈ R.

Proof. We let W be the ideal
∑
U(x−g(x))U and note that W 6= 0 (otherwise

g would be the identity mapping, contradicting that U ∩ g(R) = 0). We define
a mapping φ : W → R according to the rule

∑
ui(xi − g(xi))vi → uif(xi)vi

where ui, vi ∈ U and xi ∈ R. Of course our main problem is to prove that
φ is well-defined, consequently φ is an (R,R)− bimodule map of W into R.
Suppose that ∑

ui(xi − g(xi))vi = 0. (2.13)

We attempt to show that φ(
∑
ui(xi − g(xi))vi) = 0, i.e., uif(xi)vi = 0. Ap-

plying f to 2.13, we see that 0 = f(
∑
ui(xi − g(xi))vi)

=
∑

[uif(xivi) + f(ui)g(xivi)− f(uig(xi))g(vi)− uig(xi)f(vi)]
=

∑
[uif(xi)vi + uig(xi)f(vi) + f(ui)g(xi)g(vi)

− f(ui)g(xi)g(vi)− g(ui)f(g(xi))g(vi)− uig(xi)f(vi)]
=

∑
[uif(xi)vi − g(ui)f(g(xi))g(vi)]

=
∑
uif(xi)vi − g(

∑
uif(xi)vi). Therefore

∑
uif(xi)vi = g(

∑
uif(xi)vi) ∈

U ∩ g(R) = 0, which implies
∑
uif(xi)vi = 0, then φ is well-defined. Since

φ is an (R,R)−bimodule map of W into R, from Theorem 1.1, there exists
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λ ∈ C (the extended centroid of R) such that λw = φ(w) for all w ∈ W . Now,
regarding R as a subring of the central closure RC, we have for all u, v ∈ U
and x ∈ R that uλ(x− g(x))v = λ(u(x− g(x))v) = φ(u(x− g(x))v) = uf(x)v,
which implies u[λ(x − g(x)) − f(x)]v = 0 for all u, v ∈ U, x ∈ R, i.e.,
U [λ(x − g(x)) − f(x)]v = 0 for all v ∈ U, x ∈ R. From Remark 1.4, we have
[λ(x− g(x))− f(x)]v = 0 for all v ∈ U, x ∈ R, i.e., [λ(x− g(x))− f(x)]U = 0
for all x ∈ R. From Remark 1.4 we have λ(x−g(x))−f(x) = 0, which implies
f(x) = λ(x− g(x)), λ ∈ C. �

Theorem 2.5. [see 5, Lemma 5]Let R be a semiprime ring, and f 6= 0 be
a semiderivation of R associated with an endomorphism g of R. If g is not
one-one and V is an essential ideal of R contained in kerg, then

(a) f(V ) is a nonzero ideal of R, and

(b) there exists λ ∈ C such that f(x) = λ(x− g(x)) for all x ∈ R.

Proof. (a) For v ∈ V and r ∈ R, we see immediately from f(vr) = f(v)r +
g(v)f(r) = f(v)r and f(rv) = rf(v) + f(r)g(v) = rf(v) that f(V ) is an ideal
of R. Furthermore f(V ) 6= 0 in view of Lemma 2.3, and so (a) is proved.

(b) The argument establishing (a) also shows that f is an (R,R)−bimodule
map of V into R. From Theorem 1.1, there exists λ ∈ C such that λv = f(v)
for all v ∈ V . For v ∈ V and r ∈ R we then see that λvr = f(vr) =
vf(r) + f(v)g(r) = vf(r) + λvg(r). In other words, v(f(r) + λg(r) − λr) =
0, which implies V (f(r) + λg(r) − λr) = 0, and from Remark 1.4, we get
f(r) + λg(r)− λr = 0, which yields f(r) = λ(r − g(r)) for all r ∈ R. �

In the next remark we give a counter example to [ 5, Lemma 2 ] when R is
semiprime.

Remark 2.6. We notice that [ 5, Lemma 2 ] is not true in the case when R
is semiprime. Let R = R1

⊕
R2 where R1 and R2 are prime rings, R is a

semiprime ring. Let α : R1 → R2 be an additive map and β : R2 → R2 be
a nonzero left and right R2−module map which is not a derivation. Define
f : R → R such that f((r1, r2)) = (0, β(r2)) and g : R → R such that
g((r1, r2)) = (α(r1), 0), r1 ∈ R1, r2 ∈ R2. Then f is a semiderivation on
R. Consider the subset U = {(0, r2), r2 ∈ R2}, then U is an ideal of R. Let
a = (a1, 0) 6= 0 be an element of R, we see that af(U) = 0 but neither a nor
f(U) is zero.

3 Commutativity Results for Semiprime Rings

with Derivations and Semiderivations

In this section, we study commutativity for a semiprime ring R admitting
a semiderivation f associated with an epimorphism g of R which satisfies



78 H. Nabiel

[f(x), f(y)] = [x, y] for all x, y belonging to an ideal of R, or satisfies f([x, y]) =
±[x, y] for all x, y ∈ R, or admits an additive map f and a derivation d which
satisfy [f(x), d(y)] = [x, y] for all x, y belonging to an ideal of R. We generalize
[ 3, Theorem 1 ] of Bell and Daif and [ 8, Theorem 2 ] of Daif and Bell from
the case of derivations to the case of semiderivations.

Theorem 3.1. Let R be a semiprime ring admitting a semiderivation f as-
sociated with an epimorphism g of R. Suppose that U is a nonzero ideal of R
such that f is scp on U and g(U) = U . Then U ⊆ Z.

Note that: The condition g(U) = U may be sead as U is a g−ideal.
Proof. For x, y ∈ U , we have [x, xy] = [f(x), f(xy)], which yields

f(x)[f(x), g(y)] + [f(x), x]f(y) = 0 for all x, y ∈ U. (3.1)

Replacing y by yr, r ∈ R, gives

f(x)[f(x), g(y)]g(r)+f(x)g(y)[f(x), g(r)] + [f(x), x]f(y)g(r) + [f(x), x]yf(r)

= 0 for all x, y ∈ U, r ∈ R.
(3.2)

Comparing with (3.1) yields

f(x)g(y)[f(x), g(r)] + [f(x), x]yf(r) = 0 for all x, y ∈ U, r ∈ R. (3.3)

Since g(U) = U , letting x = g(x), we see that f(g(x))g(y)[f(g(x)), g(r)] +
[f(g(x)), g(x)]yf(r) = 0 for all x, y ∈ U, r ∈ R. Letting r = f(x), we see that

[f(g(x)), g(x)]yf 2(x) = 0 for all x, y ∈ U. (3.4)

Therefore (3.4) implies that

[f(g(x)), g(x)]URf 2(x) = {0} for all x ∈ U. (3.5)

Since R is semiprime, it must contain a family {Pα|α ∈ ∧} of prime ideals such
that ∩Pα = {0}. If P is a typical member of these and x ∈ U , (3.5) shows
that f 2(x) ∈ P or [f(g(x)), g(x)]U ⊆ P. For a fixed P , the sets of x ∈ U for
which these two conditions hold are additive subgroups of U whose union is
U ; therefore

f 2(U) ⊆ P or [f(g(x)), g(x)]U ⊆ P for all x ∈ U. (3.6)

Suppose that f 2(U) ⊆ P , then for each y ∈ U we get [x, yf(x)] = [f(x),
f(yf(x))], expanding this equation to y[x, f(x)] = [f(x), g(y)]f 2(x)+g(y)[f(x),
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f 2(x)] implies y[x, f(x)] ∈ P , then so UR[x, f(x)] ⊆ P . By the primeness of P
we reach to U ⊆ P or [x, f(x)] ∈ P for all x ∈ U . Either of these cases implies

[x, f(x)]U ⊆ P for all x ∈ U. (3.7)

From (3.6) now suppose that [f(g(x)), g(x)]U ⊆ P for all x ∈ U , since g(U) =
U we get

[f(x), x]U ⊆ P for all x ∈ U. (3.8)

From (3.7) and (3.8) we have [x, f(x)]U = {0} and from (3.3) we have

f(x)g(y)[f(x), g(r)] = 0 for all x, y ∈ U, r ∈ R. Since g is onto, f(x)g(y)[f(x), r] =
0. Moreover, since g(U) = U we have f(x)y[f(x), r] = 0, which implies

f(x)UR[f(x), r] = {0} for all x ∈ U, r ∈ R. (3.9)

Since R is semiprime, it must contain a family {Pα|α ∈ ∧} of prime ideals such
that ∩Pα = {0}. If P is a typical member of these and x ∈ U , (3.9) shows that
f(x)U ⊆ P for all x ∈ U or [f(x), r] ∈ P for all x ∈ U, r ∈ R. For a fixed P ,
the sets of x ∈ U for which these two conditions hold are additive subgroups
of U whose union is U ; therefore

f(U)U ⊆ P or [f(U), R] ⊆ P. (3.10)

Suppose that f(U)U ⊆ P , then f(U)RU ⊆ P , that is, f(U) ⊆ P or U ⊆ P .
In either event [f(U), f(U)] ⊆ P . Now (3.10) yields [f(U), f(U)] = {0}, then
[U,U]={0}, U is commutative, by Lemma 1.3, U ⊆ Z. �

The following two corollaries are immediate from the previous theorem.

Corollary 3.2. Let R be a semiprime ring. If R admits a semiderivation f
which is scp on R associated with an epimorphism g of R, then R is commu-
tative.

Corollary 3.3. Let R be a prime ring, U a nonzero ideal, and R admit a
semiderivation f which is scp on U associated with an epimorphism g of R. If
g(U) = U , then R is commutative.

Theorem 3.4. Let R be a semiprime ring and U a nonzero ideal of R. If R
admits an additive map f and a derivation d such that [f(x), d(y)] = [x, y] for
all x, y ∈ U , then U ⊆ Z.

Proof. For x, y ∈ U , we have [x, xy] = [f(x), d(xy)], which yields

d(x)[f(x), y] + [f(x), x]d(y) = 0 for all x, y ∈ U. (3.11)

Replacing y by yr gives

d(x)[f(x), yr] + [f(x), x]d(yr) = 0 for all x, y ∈ U, r ∈ R. (3.12)
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Comparing with (3.11) yields

d(x)y[f(x), r] + [f(x), x]yd(r) = 0 for all x, y ∈ U, r ∈ R. (3.13)

Letting r = f(x), we see that [f(x), x]yd(f(x)) = 0 for all x, y ∈ U , which
implies

[f(x), x]Ud(f(x)) = 0 = [f(x), x]URd(f(x)) for all x ∈ U. (3.14)

Since R is semiprime, it must contain a family {Pα|α ∈ ∧} of prime ideals
such that ∩Pα = {0}. If P is a typical member of these and x ∈ U , (3.14)
shows that d(f(x)) ∈ P or [f(x), x]U ⊆ P . For a fixed P , the sets of x ∈ U
for which these two conditions hold are additive subgroups of U whose union
is U . Therefore,

d(f(U)) ⊆ P or [f(x), x]U ⊆ P for all x ∈ U. (3.15)

Suppose that d(f(U)) ⊆ P , for x, y ∈ U , we get [x, yf(x)] = [f(x), d(yf(x))],
which implies U [x, f(x)] ⊆ P and UR[x, f(x)] ⊆ P , by the primness of P we
reach to U ⊆ P or [x, f(x)] ∈ P for all x ∈ U . In either case

[x, f(x)]U ⊆ P for all x ∈ U. (3.16)

From (3.15) we have [x, f(x)]U = {0} and from (3.13) we have d(x)y[f(x), r] =
0 and

d(x)UR[f(x), r] = {0} for all x ∈ U, r ∈ R. (3.17)

Since R is semiprime, it must contain a family {Pα|α ∈ ∧} of prime ideals
such that ∩Pα = {0}. If P is a typical member of these and x ∈ U , (3.17)
shows that d(x)U ⊆ P or [f(x), R] ⊆ P . For a fixed P , the sets of x ∈ U for
which these two conditions hold are additive subgroups of U whose union is
U . Therefore,

d(U)U ⊆ P or [f(U), R] ⊆ P. (3.18)

Suppose that d(U)U ⊆ P , then d(U)RU ⊆ P . By the primeness of P we
reach to d(U) ⊆ P or U ⊆ P , in either case Ud(U) ⊆ P , then y[f(x), d(z)] ∈ P
for all x, y, z ∈ U . By our hypothesis, then y[x, z] ∈ P which implies that
UR[U,U ] ⊆ P , by the primness of P we reach to U ⊆ P or [U,U ] ⊆ P . In
either case [U,U ] ⊆ P . By our hypothesis [f(U), d(U)] ⊆ P . From (3.18) we
have [f(U), d(U)] = {0}, then [U,U ] = {0}, U is commutative, by Lemma 1.3,
U ⊆ Z. �

The following three corollaries are immediate from the previous theorem.

Corollary 3.5. Let R be a semiprime ring and U a nonzero ideal of R. If R
admits a semiderivation f and a derivation d such that [f(x), d(y)] = [x, y] for
all x, y ∈ U , then U ⊆ Z.
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Corollary 3.6. Let R be a semiprime ring .If R admits a semiderivation f
and a derivation d such that [f(x), d(y)] = [x, y] for all x, y ∈ R, then R is
commutative.

Corollary 3.7. Let R be a prime ring and U a nonzero ideal of R. If R
admits a semiderivation f and a derivation d such that [f(x), d(y)] = [x, y] for
all x, y ∈ U , then R is commutative.

In the next theorem, we prove Daif and Bell result ([ 8, Theorem 2 ]) in
the setting of semiderivations.

Theorem 3.8. Let R be a semiprime ring admitting a semiderivation f asso-
ciated with an epimorphism g of R for which either xy + f(xy) = yx + f(yx)
for all x, y ∈ R, or xy − f(xy) = yx − f(yx) for all x, y ∈ R. Then R is
commutative.

Proof. Suppose first

xy + f(xy) = yx+ f(yx) for all x, y ∈ R. (3.19)

This can be written as

[x, y] = −f([x, y]) for all x, y ∈ R. (3.20)

From (3.19) replace x by [x, y] and y by z and using (3.20) and our hypothesis
we get, [g(x), g(y)]f(z) = f(z)[g(x), g(y)]. Since g is onto we have [x, y]f(z) =
f(z)[x, y], which shows that f(z) centralizes [R,R]. From Lemma 1.2, f(z)
centralizes R. By using (3.19), we get

[x, y] ∈ Z(R) for all x, y ∈ R. (3.21)

From Lemma 1.2, R centralizes R, which implies that R is commutative. �
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