

Gen. Math. Notes, Vol. 11, No. 2, August 2012, pp. 47-59 ISSN 2219-7184; Copyright © ICSRS Publication, 2012 www.i-csrs.org Available free online at http://www.geman.in

Intuitionistic Fuzzy Almost π Generalized Semi Open Mappings in Topological Spaces

S. Maragathavalli¹ and K. Ramesh²

¹Department of Mathematics, Sree Saraswathi Thyagaraja College Pollachi, Tamilnadu Email: smvalli@rediffmail.com ²Department of Mathematics, SVS College of Engineering Coimbatore, Tamilnadu Email: rameshfuzzy@gmail.com

(Received: 5-8-12/Accepted: 24-8-12)

Abstract

The purpose of this paper is to introduce and study the concepts of intuitionistic fuzzy almost π generalized semi open mappings and intuitionistic fuzzy almost π generalized semi closed mappings in intuitionistic fuzzy topological space and we investigate some of its properties. Also we provide the relations between intuitionistic fuzzy almost π generalized semi closed mappings and other intuitionistic fuzzy closed mappings.

Keywords: Intuitionistic fuzzy topology, intuitionistic fuzzy π generalized semi closed set, intuitionistic fuzzy almost π generalized semi closed mappings, intuitionistic fuzzy almost π generalized semi open mappings and intuitionistic fuzzy $\pi T_{1/2}$ (IF $\pi T_{1/2}$) space and intuitionistic fuzzy $\pi g T_{1/2}$ (IF $\pi g T_{1/2}$) space.

1 Introduction

The concept of fuzzy set was introduced by Zadeh in his classical paper [16] in1965. Using the concept of fuzzy sets, Chang [3] introduced the concept of

fuzzy topological space. In [1], Atanassov introduced the notion of intuitionistic fuzzy sets in 1986. Using the notion of intuitionistic fuzzy sets, Coker [4] defined the notion of intuitionistic fuzzy topological spaces in 1997. This approach provided a wide field for investigation in the area of fuzzy topology and its applications. One of the directions is related to the properties of intuitionistic fuzzy sets introduced by Gurcay [7] in 1997. Continuing the work done in the [10], [11], [12], [13], [14], [15] we define the notion of intuitionistic fuzzy almost π -generalized semi closed mappings and intuitionistic fuzzy almost π generalized semi closed mappings and open mappings. We also established their properties and relationships with other classes of early defined forms of intuitionistic fuzzy closed mappings.

2 Preliminaries

Definition 2.1 [1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), v_A(x) \rangle / x \in X\}$, where the functions $\mu_A(x): X \to [0, 1]$ and $v_A(x): X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $v_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + v_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2 [1] Let A and B be IFSs of the form

 $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \} and B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle / x \in X \}. Then$ (a) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$ (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$ (c) $A^c = \{ \langle x, \nu_A(x), \mu_A(x) \rangle / x \in X \}$ (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X \}$ (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X \}$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. Also for the sake of simplicity, we shall use the notation $A = \{ \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle \}$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$.

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3 [3] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms. (i) $0_{-r}, 1_{-r} \in \tau$

(ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$

(iii) $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4 [3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, v_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by $int(A) = \bigcup \{G/G \text{ is an IFOS in X and } G \subseteq A \},$

 $cl(A) = \bigcap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \}.$

Definition 2.5 [10] A subset of A of a space (X, τ) is called:

(*i*) regular open if A = int (cl(A)).

(ii) π open if A is the union of regular open sets.

Definition 2.6 [10] An IFS $A = \{ \langle x, \mu_A, v_A \rangle \}$ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy semi open set (IFSOS in short) if $A \subseteq cl(int(A))$,

(ii) intuitionistic fuzzy α -open set (IF α OS in short) if $A \subseteq int(cl(int(A)))$,

(iii) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),

(iv) intuitionistic fuzzy pre open set (IFPOS in short) if $A \subseteq int(cl(A))$.

(v) intuitionistic fuzzy semi-pre open set (IFSPOS) if there exists $B \in IFPO(X)$ such that B

 $\underline{\subset} A \underline{\subset} Cl(B).$

Definition 2.7 [10] An IFS $A = \langle x, \mu_A, v_A \rangle$ in an IFTS (X, τ) is said to be an (i) intuitionistic fuzzy semi closed set (IFSCS in short) if $int(cl(A)) \subseteq A$, (ii) intuitionistic fuzzy α -closed set (IF α CS in short) if $cl(int(cl(A)) \subseteq A$, (iii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)), (iv) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$.

Definition 2.8 [10] An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy π generalized semi closed set (IF π GSCS in short) if scl(A) \subseteq U whenever A \subseteq U and U is an IF π OS in (X, τ) . An IFS A is said to be an intuitionistic fuzzy π generalized semi open set (IF π GSOS in short) in X if the complement A^c is an IF π GSCS in X.

The family of all $IF\pi GSCSs$ of an IFTS (X, τ) is denoted by $IF\pi GSC(X)$.

Result 2.9 [10] Every IFCS, IFGCS, IFRCS, IF α CS, IF α GCS, IFGSCS is an IF π GSCS but the converses may not be true in general.

Definition 2.10 [13] Let A be an IFS in an IFTS (X, τ) . Then π generalized Semi closure of A (π gscl(A) in short) and π generalized Semi interior of A (π gsint(A) in short) are defined by

 $\pi gsint(A) = \bigcup \{ G / G \text{ is an } IF \pi GSOS \text{ in } X \text{ and } G \subseteq A \}$ $\pi gscl(A) = \bigcap \{ K / K \text{ is an } IF \pi GSCS \text{ in } X \text{ and } A \subseteq K \}.$

Note that for any IFS A in (X, τ) , we have $\pi gscl(A^c) = [\pi gsint(A)]^c$ and $\pi gsint(A^c) = [\pi gscl(A)]^c$.

Definition 2.11 [7] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be intuitionistic fuzzy continuous (IF continuous) if $f^{-1}(B) \in$ IFO(X) for every $B \in \sigma$.

Definition 2.12 [12] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy generalized continuous (IFG continuous) if $f^{-1}(B) \in IFGCS(X)$ for every IFCS B in Y.

Definition 2.13 [14] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy almost π generalized semi continuous mappings (IFA π GS continuous) if $f^{-1}(B) \in IFGCS(X)$ for every IFRCS B in Y.

Definition 2.14 [15] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy α generalized continuous mappings (IF α G continuous) if $f^{-1}(B) \in IF\alpha$ GCS(X) for every IFRCS B in Y.

Definition 2.15 [15] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an intuitionistic fuzzy generalized semi closed mappings (IFGSCM) if $f^{-1}(B) \in IFGSCS(X)$ for every IFRCS B in Y.

Definition 2.16 Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be intuitionistic fuzzy almost closed mappings (IFACM) if $f^{-1}(B) \in IFC(Y)$ for every IFRCS B in X.

Definition 2.17 Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be intuitionistic fuzzy almost α generalized closed mappings (IFA α GCM) if $f^{-1}(B) \in IF\alpha$ GC(Y) for every IFRCS B in X.

Definition 2.18 [5] *The IFS* $c(\alpha, \beta) = \langle x, c_{\alpha}, c_{1-\beta} \rangle$ where $\alpha \in (0, 1], \beta \in [0, 1)$ and $\alpha + \beta \leq 1$ is called an intuitionistic fuzzy point (IFP) in X.

Note that an IFP $c(\alpha, \beta)$ is said to belong to an IFS $A = \langle x, \mu_A, \nu_A \rangle$ of X denoted by $c(\alpha, \beta) \in A$ if $\alpha \le \mu_A$ and $\beta \ge \nu_A$.

Definition 2.19 [5] Let $c(\alpha, \beta)$ be an IFP of an IFTS (X, τ) . An IFS A of X is called an intuitionistic fuzzy neighborhood (IFN) of $c(\alpha, \beta)$ if there exists an IFOS B in X such that $c(\alpha, \beta) \in B \subseteq A$.

Definition 2.20 [7] An IFS A is said to be an intuitionistic fuzzy dense (IFD for short) in another IFS B in an IFTS (X, τ) , if cl(A) = B.

Definition 2.21 [11] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi T_{1/2}$ (IF $\pi T_{1/2}$ in short) space if every IF $\pi GSCS$ in X is an IFCS in X.

Definition 2.22 [11] An IFTS (X, τ) is said to be an intuitionistic fuzzy $\pi_g T_{1/2}$ (IF $\pi_g T_{1/2}$ in short) space if every IF π GSCS in X is an IFGCS in X.

Result 2.23 [9] (i) Every IF π OS is an IFOS in (X, τ). (ii) Every IF π CS is an IFCS in (X, τ)

3 Intuitionistic Fuzzy almost π Generalized Semi Open Mappings

In this section we introduce intuitionistic fuzzy almost π generalized semi open mappings, intuitionistic fuzzy almost π generalized semi closed mappings and studied some of its properties.

Definition 3.1 A mapping $f: X \to Y$ is called an intuitionistic fuzzy almost π generalized semi open mappings (IFA π GSOM for short) if f(A) is an IF π GSOS in Y for each IFROS A in X.

Definition 3.2 A mapping $f: (X, \tau) \to (Y, \sigma)$ is called an intuitionistic fuzzy almost π generalized semi closed mappings (IFA π GSCM) if f(B) is an IF π GSCS in (Y, σ) for every IFRCS B of (X, τ) .

Example 3.3 Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.2_a, 0.2_b), (0.6_a, 0.7_b) \rangle$, $G_2 = \langle y, (0.4_u, 0.2_v), (0.6_u, 0.7_v) \rangle$. Then, $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFA π GSCM.

Theorem 3.4 (i) Every IFCM is an IFA π GSCM but not conversely. (ii) Every IF α GCM is an IFA π GSCM but not conversely. (iii) Every IFACM is an IFA π GSCM but not conversely. (iv) Every IFA α GCM is an IFA π GSCM but not conversely.

Proof (i) Assume that $f : (X, \tau) \to (Y, \sigma)$ is an IFCM. Let A be an IFRCS in X. This implies A is an IFCS in X. Since f is an IFCM, f (A) is an IFCS in Y. Every IFCS is an IF π GSCS, f (A) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Proof (ii) Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IF α GCM. Let A be an IFRCS in X. This implies A is an IFCS in X. Then by hypothesis f (A) is an IF α GCS in Y. Since every IF α GCS is an IFGSCS and every IFGSCS is an IF π GSCS, f(A) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Proof (iii) Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFACM. Let A be an IFRCS in X. Since f is IFACM, f(A) is an IFCS in Y. Since every IFCS is an IF π GSCS, f(A) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Proof (iv) Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an IFA α GCM. Let A be an IFRCS in X. Since f is IFACM. Then by hypothesis f(A) is an IF α GCS in Y. Since every IF α GCS is an IFGSCS and every IFGSCS is an IF π GSCS, f(A) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Example (i) Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.4_a, 0.2_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.3_u, 0.2_v), (0.6_u, 0.7_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then, f is an IFA π GSCM. But f is not an IFCM since $G_1^c = \langle x, (0.5_a, 0.4_b), (0.4_a, 0.2_b) \rangle$ is an IFCS in X but $f(G_1^c) = \langle y, (0.5_u, 0.4_v), (0.4_u, 0.2_v) \rangle$ is not an IFCS in Y.

Example (ii) Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.3_a, 0.4_b), (0.4_a, 0.5_b) \rangle$, $G_2 = \langle y, (0.7_u, 0.6_v), (0.3_u, 0.4_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_2, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then, f is an IFA π GSCM but not an IF α GCM since G1c = $\langle x, (0.4_a, 0.5_b), (0.3_a, 0.4_b) \rangle$ is an IFCS in X but f $(G_1^c) = \langle y, (0.4_u, 0.2_v), (0.3_u, 0.4_v) \rangle$ is not an IF α GCS in Y.

Example (iii) In example (i), f is an IFA π GSCM but f is not an IFACM since $G_1^c = \langle x, (0.5_a, 0.4_b), (0.4_a, 0.2_b) \rangle$ is an IFRCS in X but f $(G_1^c) = \langle y, (0.5_u, 0.4_v), (0.4_u, 0.2_v) \rangle$ is not an IFCS in Y.

Example (iv) In example (ii), f is an IFA π GSCM. But f is not an IFA α GCM since G1c = $\langle x, (0.4_a, 0.5_b), (0.3_a, 0.4_b) \rangle$ is an IFRCS in Y but f (G₁^c) = $\langle y, (0.4_u, 0.2_v), (0.3_u, 0.4_v) \rangle$ is not an IF α GCS in Y.

Theorem 3.5 A bijective mapping $f : X \to Y$ is an IFA π GS closed mapping if and only if the image of each IFROS in X is an IF π GSOS in Y.

Proof Necessity: Let A be an IFROS in X. This implies A^c is IFRCS in X. Since f is an IFA π GS closed mapping, f (A^c) is an IF π GSCS in Y. Since f (A^c) = (f (A))^c, f(A) is an IF π GSOS in Y.

Sufficiency: Let A be an IFRCS in X. This implies A^c is an IFROS in X. By hypothesis, $f(A^c)$ is an IF π GSOS in Y. Since $f(A^c) = (f(A))^c$, f(A) is an IF π GSCS in Y. Hence f is an IFA π GS closed mapping.

Theorem 3.6 Let $f:(X, \tau) \to (Y, \sigma)$ be an IFA π GS closed mapping. Then f is an IFA closed mapping if Y is an IF π T_{1/2} space.

Proof Let A be an IFRCS in X. Then f(A) is an IF π GSCS in Y, by hypothesis. Since Y is an IF π T_{1/2} space, f(A) is an IFCS in Y. Hence f is an IFA closed mapping.

Theorem 3.7 Let $f: X \to Y$ be a bijective mapping. Then the following are equivalent.

- (i) f is an IFA π GSOM
- (ii) f is an IFA $\pi GSCM$

Proof Straightforward

Theorem 3.8 Let $f: X \to Y$ be a mapping where Y is an $IF_{\pi}T_{1/2}$ space. Then the following are equivalent.

- (i) f is an IFA π GSCM
- (ii) $scl(f(A)) \subseteq f(cl(A))$ for every IFSPOS A in X
- (iii) $scl(f(A)) \subseteq f(cl(A))$ for every IFSOS A in X

Proof (i) \Rightarrow (ii) Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. By hypothesis, f(cl(A)) is an IF π GSCS in Y. Since Y is an IF π T_{1/2} space. This implies scl(f(cl(A))) =f (cl(A)). Now scl(f(A)) \subseteq scl(f(cl(A))) = f(cl(A)). Thus scl(f(A)) \subseteq f(cl(A)). (ii) \Rightarrow (iii) Since every IFSOS is an IFSPOS, the proof directly follows. (iii) \Rightarrow (i) Let A be an IFRCS in X. Then A = cl(int(A)). Therefore A is an IFSOS in X. By hypothesis, scl(f(A)) \subseteq f(cl(A)) = f(A) \subseteq scl(f(A)). Hence f(A) is an IFSCS and hence is an IF π GSCS in Y. Thus f is an IFA π GSCM.

Theorem 3.9 Let $f: X \to Y$ be a mapping where Y is an $IF_{\pi}T_{1/2}$ space. Then the following are equivalent.

- (i) f is an IFA π GSCM
- (*ii*) $f(A) \subseteq sint(f(int(cl(A))))$ for every IFPOS A in X

Proof (i) \Rightarrow (ii) Let A be an IFPOS in X. Then A \subseteq int(cl(A)). Since int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an IF π GSOS in Y. Since Y is an IF π T_{1/2} space, f(int(cl(A))) is an IFSOS in Y. Therefore f(A) \subseteq f(int(cl(A))) \subseteq sint(f(int(cl(A)))). (ii) \Rightarrow (i) Let A be an IFROS in X. Then A is an IFPOS in X. By hypothesis, f(A) \subseteq sint(f(int(cl(A)))) = sint(f(A)) \subseteq f(A). This implies f(A) is an IFSOS in Y and hence is an IF π GSOS in Y. Therefore f is an IFA π GSCM, by Theorem 3.6.

Theorem 3.10 *The following are equivalent for a mapping* $f: X \to Y$ *, where* Y *is an* $IF \pi T_{1/2}$ *space.*

- (i) f is an IFA $\pi GSCM$
- (ii) $scl(f(A)) \subseteq f(acl(A))$ for every IFSPOS A in X
- (iii) $scl(f(A)) \subseteq f(acl(A))$ for every IFSOS A in X
- (iv) $f(A) \subseteq sint(f(scl(A)))$ for every IFPOS A in X

Proof (i) \Rightarrow (ii) Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. By hypothesis f(cl(A)) is an IF π GSCS in Y and hence is an IFSCS in Y, since Y is an IF π T_{1/2} space. This implies scl(f(cl(A))) = f(cl(A)). Now scl(f(A)) \subseteq scl(f(cl(A))) = f(cl(A)). Since cl(A) is an IFRCS, we have cl(int(cl(A))) = cl(A). Therefore scl(f(A)) \subseteq f(cl(A)) = f(cl(int(cl(A)))) \subseteq f(A \cup cl(int(cl(A)))) = f(\alpha cl(A)). Hence scl(f(A)) \subseteq f(α cl(A)).(ii) \Rightarrow (iii) Since every IFSOS is an IFSPOS, the proof is obvious.(iii) \Rightarrow (i) Let A be an IFRCS in X. Then A = cl(int(A)). Therefore A is an IFSOS in X. By hypothesis, scl(f(A)) \subseteq f(α cl(A)) \subseteq f(cl(A)) = f(A) \subseteq scl(f(A)). That is scl(f(A)) = f(A). Hence f(A) is an IFSCS and hence is an IF π GSCS in Y. Thus f is an IFA π GSCM.(i) \Rightarrow (iv) Let A be an IFPOS in X. Then A \subseteq int(cl(A)). Since int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an IF π GSOS in Y. Since Y is an IF π T_{1/2} space, f(int(cl(A))) is an IFSOS in Y. Therefore f(A) \subseteq f(int(cl(A))) \subseteq sint(f(int(cl(A)))) \subseteq sint(f(A \cup int(cl(A)))) = sint(f(scl(A))). That is f(A) \subseteq sint(f(scl(A))).

(iv) \Rightarrow (i) Let A be an IFROS in X. Then A is an IFPOS in X. By hypothesis, $f(A) \subseteq sint(f(scl(A)))$. This implies $f(A) \subseteq sint(f(A \cup int(cl(A)))) \subseteq sint(f(A \cup A)) = sint(f(A)) \subseteq f(A)$. Therefore f(A) is an IFSOS in Y and hence an IF π GSOS in Y. Thus f is an IFA π GSCM, by Theorem 3.6.

Theorem 3.11 Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an $IF_{\pi}T_{1/2}$ space.

- (i) f is an IFA $\pi GSCM$
- (ii) f is an IFA $\pi GSOM$
- (iii) $f(int(A)) \subseteq int(cl(int(f(A))))$ for every IFROS A in X.

Proof (i) \Rightarrow (ii) It is obviously true.

(ii) \Rightarrow (iii) Let A be any IFROS in X. This implies A is an IFOS in X. Then int(A) is an IFOS in X. Then f(int(A)) is an IF π GSOS in Y. Since Y is an IF π T_{1/2} space, f(int(A)) is an IFOS in Y. Therefore f(int(A)) = int(f(int(A))) int(cl(int(f(A)))). (iii) \Rightarrow (i) Let A be an IFRCS in X. Then its complement A^c is an IFROS in X. By hypothesis f(int(A^c)) \subseteq int(cl(int(f(A^c)))). This implies f(A^c) \subseteq int(cl(int(f(A^c)))). Hence f(A^c) is an IF α OS in Y. Since every IF α OS is an IF π GSOS, f(A^c) is an IF π GSOS in Y. Therefore f(A) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Theorem 3.12 Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an $IF_{\pi}T_{1/2}$ space.

- (i) f is an IFA $\pi GSCM$
- (*ii*) $scl(f(A)) \subseteq f(scl(A))$ for every IFSCS A in X

Proof (i) \Rightarrow (ii) Assume that A is an IFSCS in X. By Definition, int(cl(A)) \subseteq A. This implies cl(A) is an IFRCS in X. By hypothesis f(cl(A)) is an IF π GSCS in Y and hence is an IF π CS in Y, since Y is an IF π T_{1/2} space. This implies scl(f(cl(A))) = f(cl(A)). Now scl(f(A)) \subseteq scl(f(cl(A))) = f(cl(A)). Since cl(A) is an

IFROS, int(cl(cl(A))) = cl(A). This implies $scl(f(A)) \subseteq f(cl(A)) = f(int(cl(cl(A))))$ $\subseteq f(A \cup int (cl (cl(A)))) = f(A \cup int (cl (A))) = f(scl(A))$. Hence $scl(f(A)) \subseteq f(scl(A))$. (ii) \Rightarrow (i) Let A be an IFRCS in X. Then A = cl(int(A)). Therefore A is an IFSCS in X. By hypothesis, $scl(f(A)) \subseteq f(scl(A)) \subseteq f(cl(A)) = f(A) \subseteq scl(f(A))$. That is scl(f(A)) = f(A). Hence f(A) is an IF π CS and hence is an IF π GSCS in Y. Thus f is an IFA π GSCM.

Theorem 3.13 Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an IF $\pi T_{1/2}$ space.

- (i) f is an IFA π GSCM
- (*ii*) $f(A) \subseteq \pi int(f(scl(A)))$ for every IFPOS A in X

Proof (i) \Rightarrow (ii) Let A be an IFPOS in X. Then A \subseteq int(cl(A)). Since int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an IF π GSOS in Y. Since Y is an IF π T_{1/2} space, f(int(cl(A))) is an IF π OS in Y. Therefore f(A) \subseteq f(int(cl(A))) \subseteq π int(f(int(cl(A)))) \subseteq π int(f(A \cup int(cl(A)))) = \piint(f(scl(A))). That is f(A) \subseteq π int(f(scl(A))). (ii) \Rightarrow (i) Let A be an IFROS in X. Then A is an IFPOS in X. By hypothesis, f(A) \subseteq π int(f(scl(A))). This implies f(A) \subseteq π int(f(A \cup int(cl(A)))) \subseteq π int(f(A \cup A)) = π int(f(A)) \subseteq f(A). Therefore f(A) is an IF π OS in Y and hence an IF π GOS in Y. Thus f is an IFA π GS closed mapping.

Theorem 3.14 Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if Y is an IF π T_{1/2} space.

- (i) f is an IFA π GSCM
- (ii) If B is an IFROS in X then f (B) is an IF**π**GSOS in Y
- (iii) $f(B) \subseteq int(cl(f(B)) \text{ for every IFROS } B \text{ in } X.$

Proof (i) \Rightarrow (ii) obviously.

(ii) \Rightarrow (iii) Let B be any IFROS in X. Then by hypothesis f (B) is an IF π GSOS in Y. Since X is an IF π T_{1/2} space, f(B) is an IFOS in Y (Result 2.23). Therefore f (B) = int(f(B)) \subseteq int(cl(f(B))). (iii) \Rightarrow (i) Let B be an IFRCS in X. Then its complement B^c is an IFROS in X. By hypothesis f(B^c) \subseteq int(cl(f(B^c))). Hence f(B^c) is an IF π OS in Y. Since every IF π OS is an IF π GSOS, f(B^c) is an IF π GSOS in Y. Therefore f (B) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Theorem 3.15 Let $f: (X, \tau) \to (Y, \sigma)$ be a mapping. Then the following conditions are equivalent if Y is an $IF_{\pi}T_{1/2}$ space. (i) f is an $IFA\pi GSCM$. (ii) $int(cl(f(A))) \subseteq f(A)$ for every IFRCS A in X.

Proof (i) \Rightarrow (ii) Let A be an IFRCS in X. By hypothesis, f(A) is an IF π GSCS in Y. Since Y is an IF π T_{1/2}, f(A) is an IFCS in Y (Result 2.23).Therefore cl(f(A) = f (A). Now int(cl(f(A))) \subseteq cl(f(A)) \subseteq f (A). (ii) \Rightarrow (i) Let A be an IFRCS in X. By

hypothesis int(cl(f(A))) \subseteq f(A). This implies f(A) is an IF π CS in Y and hence f(A) is an IF π GSCS in Y. Therefore f is an IFA π GSCM.

Theorem 3.16 Let $f: (X, \tau) \to (Y, \sigma)$ be an IFA closed mapping and $g: (Y, \sigma) \to (Z, \delta)$ is IFA π GS closed mapping, then $g \circ f: (X, \tau) \to (Z, \delta)$ is an IFA closed mapping. if Z is an IF $\pi T_{1/2}$ space

Proof: Let A be an IFRCS in X. Then f(A) is an IFCS in Y. Since g is an IF π GS closed mapping, g(f(A)) is an IF π GSCS in Z. Therefore g(f(A)) is an IFCS in Z, by hypothesis.Hence g \circ f is an IFA closed mapping.

Theorem 3.17 Let $f: (X, \tau) \to (Y, \sigma)$ be an IFA closed mapping and $g: (Y, \sigma) \to (Z, \eta)$ be an IF π GS closed mapping. Then $g \circ f: (X, \tau) \to (Z, \eta)$ is an IFA π GS closed mapping.

Proof: Let A be an IFRCS in X. Then f(A) is an IFCS in Y, by hypothesis. Since g is an IF π GS closed mapping, g(f(A)) is an IF π GSCS in Z. Hence g \circ f is an IFA π GS closed mapping.

Theorem 3.18 If $f : (X, \tau) \to (Y, \sigma)$ is an IFA π GS closed mapping and Y is an IF $\pi_{g}T_{1/2}$ space, then f(A) is an IFGCS in Y for every IFRCS A in X.

Proof: Let $f : (X, \tau) \to (Y, \sigma)$ be a mapping and let A be an IFRCS in X. Then by hypothesis f(A) is an IF π GSCS in Y. Since Y is an IF π gT_{1/2} space, f(A) is an IFGCS in Y.

Theorem 3.19 Let $c(\alpha, \beta)$ be an IFP in X. A mapping $f: X \to Y$ is an IF $a\pi GSOM$ if for every IFOS A in X with $f^{-1}(c(\alpha, \beta)) \in A$, there exists an IFOS B in Y with $c(\alpha, \beta) \in B$ such that f(A) is IFD in B.

Proof: Let A be an IFROS in X. Then A is an IFOS in X. Let $f^{-1}(c(\alpha, \beta)) \in A$, then there exists an IFOS B in Y such that $c(\alpha, \beta) \in B$ and cl(f(A)) = B. Since B is an IFOS, cl(f(A)) = B is also an IFOS in Y. Therefore int(cl(f(A))) = cl(f(A)). Now $f(A) \subseteq cl(f(A)) = int(cl(f(A))) \subseteq cl(int(int(cl(f(A)))) = cl(int(cl(f(A))))$. This implies f(A) is an IFSOS in Y and hence an IF π GSOS in Y. Thus f is an IFA π GSOM.

Theorem 3.20 Let $f: X \to Y$ be a bijective mapping. Then the following are equivalent.

- (i) f is an IFA π GSOM
- (ii) f is an IFA $\pi GSCM$
- (iii) f^{-1} is an IFA π GS continuous mapping

Proof (i) \Leftrightarrow (ii) is obvious from the Theorem 3.7.

(ii) \Rightarrow (iii) Let A \subseteq X be an IFRCS. Then by hypothesis, f(A) is an IF π GSCS in Y. That is (f⁻¹)⁻¹(A) is an IF π GSCS in Y. This implies f⁻¹ is an IFA π GS continuous mapping. (iii) \Rightarrow (ii) Let A \subseteq X be an IFRCS. Then by hypothesis (f⁻¹)⁻¹(A) is an IF π GSCS in Y. That is f(A) is an IF π GSCS in Y. Hence f is an IFA π GSCM.

Theorem 3.21 Let $f: X \to Y$ be a mapping. If $f(sint(B)) \subseteq sint(f(B))$ for every IFS *B* in *X*, then *f* is an IFA π GSOM.

Proof: Let $B \subseteq X$ be an IFROS. By hypothesis, $f(sint(B)) \subseteq sint(f(B))$. Since B is an IFROS, it is an IFSPOS in X. Therefore sint(B) = B. Hence $f(B) = f(sint(B)) \subseteq sint(f(B)) \subseteq f(B)$. This implies f(B) is an IFSOS and hence an IF π GSOS in Y. Thus f is an IFA π GSOM.

Theorem 3.22 Let $f: X \to Y$ be a mapping. If $scl(f(B)) \subseteq f(scl(B))$ for every IFS B in X, then f is an IFA π GSCM.

Proof: Let $B \subseteq X$ be an IFRCS. By hypothesis, $scl(f(B)) \subseteq f(scl(B))$. Since B is an IFRCS, it is an IFSCS in X. Therefore scl(B) = B. Hence $f(B) = f(scl(B)) \supseteq scl(f(B)) \supseteq f(B)$. This implies f(B) is an IFSCS and hence an IF π GSCS in Y. Thus f is an IFA π GSCM.

Theorem 3.23 Let $f: X \to Y$ be a mapping where Y is an $IF_{\pi}T_{1/2}$ space. If f is an *IFA* π *GSCM*, then $f(sint(B)) \subseteq cl(int(cl(f(B)))$ for every *IFROS B in X*.

Proof: This theorem can be easily proved by taking complement in Theorem 3.21.

Theorem 3.24 Let $f: X \to Y$ be an IFA π GSOM, where Y is an IF π T_{1/2} space. Then for each IFP $c(\alpha, \beta)$ in Y and each IFROS B in X such that $f^{-1}(c(\alpha, \beta)) \in B$, cl(f(cl(B))) is an IFSN of $c(\alpha, \beta)$ in Y.

Proof: Let $c(\alpha, \beta) \in Y$ and let B be an IFROS in X such that $f^{-1}(c(\alpha, \beta)) \in B$. That is $c(\alpha, \beta) \in f(B)$. By hypothesis, f(B) is an IF π GSOS in Y. Since Y is an IF π T_{1/2} space, f(B) is an IFSOS in Y. Now $c(\alpha, \beta) \in f(B) \subseteq f(cl(B)) \subseteq cl(f(cl(B)))$. Hence cl(f(cl(B))) is an IFSN of $c(\alpha, \beta)$ in Y.

Remark 3.25 If an IFS A in an IFTS (X, τ) is an IF π GSCS in X, then π gscl(A) = A. But the converse may not be true in general, since the intersection does not exist in IF π GSCSs.

Remark 3.26 If an IFS A in an IFTS (X, τ) is an IF π GSOS in X, then π gsint(A) = A. But the converse may not be true in general, since the union does not exist in IF π GSOSs.

Theorem 3.27 Let $f: X \to Y$ be a mapping. If f is an IFA π GSCM, then π gscl(f(A)) $\subseteq f(cl(A))$ for every IFSOS A in X.

Proof: Let A be an IFSOS in X. Then cl(A) is an IFRCS in X. By hypothesis f(cl(A)) is an IF π GSCS in Y. Then π gscl(f(cl(A)) = f(cl(A)). Now π gscl($f(A)) \subseteq \pi$ gscl(f(cl(A))) = f(cl(A)). That is π gscl($f(A)) \subseteq f(cl(A))$.

Corollary 3.28 Let $f: X \to Y$ be a mapping. If f is an IFA π GSCM, then π gscl($f(A) \subseteq f(cl(A))$ for every IFGSOS A in X.

Proof: Since every IFSOS is an IFGSOS, the proof is obvious from the Theorem 3.27.

Corollary 3.29 Let $f: X \to Y$ be a mapping. If f is an IFA π GSCM, then π gscl($f(A) \subseteq f(cl(A))$ for every IFGOS A in X.

Proof: Since every IFGOS is an IFGSOS, the proof is obvious from the Theorem 3.27.

Theorem 3.30 Let $f: X \to Y$ be a mapping. If f is an IFA π GSCM, then π gscl(f(A)) $\subseteq f(cl(sint(A)))$ for every IFSOS A in X.

Proof: Let A be an IFSOS in X. Then cl(A) is an IFRCS in X. By hypothesis, f(cl(A)) is an IF π GSCS in Y. Then π gscl $(f(A)) \subseteq \pi$ gscl $(f(cl(A))) = f(cl(A)) \subseteq f(cl(A))$, since sint(A) = A.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87-96.
- [2] B. Krsteska and E. Ekici, Intuitionistic fuzzy contra strong pre continuity, *Faculty of Sciences and Mathematics*, 21(2) (2007), 273-284.
- [3] C. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [4] D. Coker, An introduction to fuzzy topological space, *Fuzzy Sets and Systems*, 88(1997), 81-89.
- [5] Coker and M. Demirci, On intuitionistic fuzzy points, *Notes on IFS*, (1995), 79-84.
- [6] M.E. El-Shafhi and A. Zhakari, Semi generalized continuous mappings in fuzzy topological spaces, J. *Egypt. Math. Soc.*, 15(1) (2007), 57-67.
- [7] H. Gurcay, D. Coker and A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, *Jour. of Fuzzy Math.*, 5(1997), 365-378.
- [8] I.M. Hanafy, Intuitionistic fuzzy γ continuity, Canad. Math Bull., XX(2009), 1-11.

- [9] J.K. Jeon, Y.B. Jun and J.H. Park, Intuitionistic fuzzy alpha continuity and intuitionist fuzzy pre continuity, *International Journal of Mathematics and Mathematical Sciences*, 19(2005), 3091-3101.
- [10] S. Maragathavalli and K. Ramesh, Intuitionistic fuzzy π generalized semi closed sets, *Advances in Theoretical and Applied Sciences*, 1(2012), 33-42.
- [11] S. Maragathavalli and K. Ramesh, Intuitionistic fuzzy π generalized semi irresolute mappings, *International Journal of Mathematical Archive*, 3(2012), 1-7
- [12] S. Maragathavalli and K. Ramesh, Intuitionistic fuzzy π generalized semi continuous mappings, *International Journal of Computer Applications*, 37(2012), 30-34.
- [13] S. Maragathavalli and K. Ramesh, Intuitionistic fuzzy completely π generalized semi continuous mappings, (*Submitted*).
- [14] S. Maragathavalli and K. Ramesh, On almost π generalized semi continuous mappings in intuitionistic fuzzy topological spaces, *Mathematical Theory and Modeling*, 2(2012), 18-28.
- [15] S. Maragathavalli and K. Ramesh, π generalized semi closed mappings in intuitionistic fuzzy topological spaces, *Journal of Advanced Studies in Topology*, 3(2012), 111-118.
- [16] L.A. Zadeh, Fuzzy sets, *Information Control*, 8(1965), 338-353.