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Abstract
In this paper, we propose alternating direction lmmp formulation of the
differential quadrature method (ADI-DQM) for calating the numerical
solutions of the two-dimensional unsteady statevection-diffusion equation
with appropriate initial and boundary conditionshé results confirm that this
method has a high accuracy, good convergence asiwerkload compared with
the other numerical methods.
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1 Introduction

Consider thaunsteady state two -dimensional convection-diffagquation
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ou ou ou
E(x’ylt) +ﬁxa(x:y’t) +ﬁy5(x:y’t)

(x,y,t) € [0,L] X [0,L] X [0,T], (1.1a)
with the initial condition
u(x,y,t) = 0(x,y) (1.1b)

and the boundary conditions
u(xl 01 t) =f0(xr t), u(ler t) =f1(xr t)l t 2 01

'U,(O, Y, t) = 90()’: t), U(L, Y, t) = gl(Yf t), t=> 01 (11C)
where B, andp, are arbitrary constants and represent convectefficients,
a, anda, are arbitrary functions and represent diffusioefticients, ,u is a

transported variabled, f,, fi, go and g; are the known functions amds the
optimal time Convection-diffusion equatiors a parabolic partial differential
equation combining the diffusion equation and tldeeation equation, which
always attracts the attention of many researchsr@riportance to academics
Processes involving a combination of convection difflision are found in
physical andengineering problems. These problems arise in jeetno reservoir
simulation, subsurface contaminant remediation, arahy other applications
[1-7,13]. Many researchers use the Equation (ladd)mentioned in [4, 5, 6, 13].
We compare the numerical results of DAI-DQM forad) convection-diffusion
problem (1.1) with the results of other numericathods such as the differential
guadrature method (DQM) , the finite difference noet (FDM) [5] and the radial
basis function based meshless method (RBFBMM) [4].

The purpose of this paper is to introduce and apptynewly developed of DQM
that is known as the alternating direction implimtmulation of the differential
guadrature method for solving unsteady state twiedsional convection-
diffusion equation. The results that we obtain frasing ADI-DQM will be saved
and compared to prove the efficiency of the meihagtcuracy and stability.

2  Differential Quadrature Method

The differential quadrature is a numerical techaigged to solve the initial and
boundary value problem%his method was proposed by Bellman in the early 70
[2]. The essence of the method is that, the pafiainary) derivatives of a
function with respect to variables in governinguation are approximated by a
weighted linear sum of function values at all déerpoints in that direction
((here, leth = Ax = Ay denote the step size of spatial space &nis the step
size with respect to timg then the equation can be transformed into a ket o
ordinary differential equations or algebraic equagi According to the DQM, the

rt" -order partial derivative%;—l,f of a functionu(x,y) at a point(x;,y;) and the
st -order partial derivative%;—lj of a functionu(x,y) at a point(x;,y;) , can be
approximated by the same formula given in [11],as:
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axr x=x; ZA(” u(xy,y) , i=1.2,..,N (2.1)
0"u (s)

S .
ays| Y=V ZB ulx v j=12..,M (2.2)

=1

WhereAf,? ,B(s) are the respective weighting coefficients for #¥& -order and
sth-order derlvatives with respect toand y respectively. Bellman et al. [2]
proposed two approaches to compute the WeightirajfictentsAf,? ,B(s) To

improve Bellman’s approaches in computing the V\mit“thoefflments many
attempts have been made by researchers. Quan amg) (3 9] introduce one of
the most valuable attempts. After that, Shu’s [ibijoduced a general approach,
which was inspired from Bellman’s approach, was enaVailable in the
literature. Shu’s [11] give Shu’s recurrence foratidn for higher order
derivatives as,

) e AR Y
T r— i .
Ay =r\A; Ay ————= |, ki=1.,N,

(x; — xx)
2<r<N-1, i#k (2.3)
and
N
AE?z—ZAE,? 1<r<N-1, i#k,
k=1
i=12,..,N (2.4)
where AE,? are the weighting coefficients of the first orddgrivative given
below
(€8] i ,
A = or 1
= x)MD (x) /
+k
where

M(x) = (x — x1)(x — x2) .. (x — xy) and MDD (x) = [y (x; —x;) i,k #j

The same formulas can be obtained for weightindficaants of the high order
derivatives with respect toy. By using equations (2.1) and (2.2), we can
approximate the partial derivatives of the conweetiliffusion equation (1.1) to
obtain the system of ordinary differential equasias:

N M
ou|"
(1) (1) (2) (2)
E| T Z B A Ukj + Z B,B;; ujj = Z a Ay Uk + Z ay B} uj] (2.5)
Y =1 =1
Approximating the first-order derivatives with resp to the temporal variable by

using the forward differences and then arrangerttenterms equation (2.5) ,we
obtain the system of algebraic equations as:
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=

uitt - HZ ® @ N ® @)
"+ E ([S’xA 1) _ g, A% )u,’;,- + E BB —a, Bl =0  (26)
k=1

3  Alternating Direction For mulation of the DQM

Peaceman and Rachford [7] introduced the altergalirection implicit technique
in the mid-50s for solving the system of algebmguations, which results from
finite difference discretization of partial differgal equations (PDESs). From
iterative method’s perspective, ADlI method can lmmstwered as a special
relaxation method, where a big system is simplifietb a number of smaller
systems such that each of them can be solvedesftigiand the solution of the
whole system is got from the solutions of the sydtesms in an iterative method.
Using alternating direction implicit method into uegion (2.6), we get the
following two systems of algebraic equations in fibwen:

1
n+—

n N
B z AP — AP )u 2 + Z(ﬁyB(l) —ay BP)ug =0 (3.1)
_ k=1

n+—

=

n+1

2 (B:AP — 4, 4D ) u 2+2(ﬁy3(1)—ay BPngt =0 (32)

Formula (3.1) is used to compute function valuesllahterval mesh points along
rows and is known as a horizontal traverse ersweep. While, Formula (3.2) is
used to compute function values at all interval Imgsints along columns and is
known as a vertical traverse prsweep.

4  Numerical Experimentsand Discussion

In this section, we apply ADI-DQM on three test lgems to demonstrate the
efficiency of the ADI-DQM. Other researchers alsmsider these problems.

Problem 1. ( Akman [1] )

We consider convection-diffusion (1.1) with =a, =1 B, =p,=0 ,
L =1 and initial condition in the following form:
u(x,y,0) = sin(mx)sin(2ty), 0<x,y<1 (4.1)
The exact solution is given by
u(x,y,t) = e~5m’t sin(mx) sin(2my) , 0<x,y<1,t>0 (4.2)

The boundary conditions can be obtained easily ft4i2) by using,y = 0,1. In

this problem, we pust = 0.0001 and use equally spaced grid points. In Table 1
we show the errors obtained in solving problem thwhe ADI-DQM and DQM
att = 0.01 and(x,y) € [0, 1] for different values oh. In Fig. (1) we show the
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exact and approximate solutions of the problenThe results confirm that ADI-
DQM has a high accuracy, good convergence compeitacdDQM.

Table 1. Errors obtained for problem 1 with= 0.01

h Max|error| of DQM Maxerror| of ADI-DQM
0.2 6.729439E-03 1.994167E-05
0.111 9.071963E-03 1.337680E-05
0.09 2.272577E-03 1.031041E-05
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b- ADI-DQM 11-point a Bact 11-point

Fig. 1 Exact and approximate solutions of the problemthwi=0.01 and\t = 0.0001

Problem 2. ( Akman [1])

We consider convection-diffusion equatiohlf with g, =p,=0 ,
o, = i(l -y9),a, = i(l —y?), L = 0.9 and initial condition in the following
form:

u(x,y,0) = (1 —x2)(1 —y?) , 0<x,y<09 (4.3)

The exact solution is given by
ulx,y,t) = (1—-x>)1—-yHet , 0<x,y<09t>0 (4.4)

The boundary conditions can be obtained easily ffém) by usingr,y = 0, 0.9.

In this problem we puAt = 0.0001 and use equally spaced grid points. In Table
2 we show the errors obtained in solving problerwith the ADI-DQM and
DQM att = 0.1 and(x,y) € [0,0.9] for different values oh. In Figs. (2) we
show the exact and approximate solutions of thélpro 2. The results confirm
that ADI-DQM has a high accuracy, good convergazmapare with DQM

Table 2. Errors obtained for problem 2 with= 0.1

h Max|error| of DQM Maxerror| of ADI-DQM
0.18 1.636210E-03 2.316217E-04
0.11 3.174482E-03 4.667084E-04
0.08 3.142371E-03 5.668763E-04
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b- ADI-DQM 11- point a- Exact 11-point

Fig. 2 Exact and approximate solutions of the problemnitB,w = 0.1 andAt = 0.0001

Problem 3. ( Dehghan and Mohebbi [5] )
We consider convection-diffusion equationljiwith, g, =pg,=-1,
a, = a, =0.01, 0.1 ,L =1 and initial condition in the following form:

u(x,y,0) = a(e("cxx) + e(_cyy)), 0<x,y<1 (4.5)
-BxF ’/3,%+4bax -B,F ,B2+4ba
In which cx=T>O, cy=%>0
x y
The exact solution is given with
u(x,y, t) = ae® (el 4 e(‘cyy)) 0<x,y<1Lt>0 (4.6)

The boundary conditions can be obtained easily ff4®) by using,y = 0,1. In
this problem we put =1,b = 0.1, At = 0.001 and use equally spaced grid
points. In Table 3 we show the errors obtainedirisg problem 3 with the ADI-
DQM and DQM att = 0.1, @, = a, = 0.01 and (x,y) € [0,1] for different
values ofh. In Figs. (3) and (4) we show the exact and apprate solutions for
a, = a, =0.01 anda, = a, = 0.1 respectively. In Table 4 we show the errors
obtained in solving problem 3 with the present mdth= 0.1, @, = a, = 0.1
and (x,y) € [0, 1] for different values oh. The results confirm that ADI-DQM
has a high accuracy, good convergence compareD/Qii.

Table 3. Errors obtained for problem 3 with= 0.1, a, = a,, = 0.01

h Max|error| of DQM Max|error| of ADI-DQM
0.2 4.693330E-26 2.644524E -26
0.111 3.834508E-15 2.720141E-15
0.09 5.667731E-13 4.110175E -13

Table 4. Errors obtained for problem 3 with= 0.1, a,, = a,, = 0.1

h Max|error| of DQM Max|error| of ADI-DQM
0.2 1.617776E-06 1.055500E-06
0.111 9.042375E-06 6.623465E-06

0.09 1.471308E-05 1.131288E-05
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Fig. 3 Exact and approximate solution of the problemitd «, = a, = 0.01
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Fig. 4 Exact and approximate solutions of the problemt8 a, = a, = 0.1

From Figs. 3 and 4, we note if casge = a,, = 0.01 has a sharp discontinuity
near the left boundary while if casg = a,, = 0.1 is not able to capture a sharp
discontinuity near the left boundary.

5 Error Analysisand Stability of DQM

We can resolve another mission of the truncatiororem the differential
guadrature method. Depending on the DQM is idehtwdagrange polynomial
interpolation of ordeN —1, Chen [3] has presented new formulas for the aisly
of truncation error distribution of derivative ihi$ method. The truncation error
of the first-order derivative approximation by th€ method at the grid point

IS given as;

KM®(x)

NI Kle(l)(xi) (5.1

eM(x;) <

where K; = Max{|T™(&)|} & is unknown function of variable, ande™ (x;)
denotes the error distributions of the first- orderivative. For the truncation
error of the second-order derivative approximabgrbDQM is given as,



48 A.SALSaif et al.

MD (x.
|£(2)(xi)| < 2K, (1 + |A(-1) )% = K,e® (x;) (5:2)

ii

where K, = Max{(|T™(&)|,|& TV} , e@(x;) denotes the error
distributions of the second- order derivatiWghile the stability,from equation
(2.5) we obtained the systems of ordinary diffesmquations in the form:

[Al{u} = {b} —{s} (5.3)

where [A] is the coefficient matrix containing the weightiegefficients the
dimension of the matrix[A]is (N —2)(M —2) by (N —=2)(M —2) f{u} is a
vector of unknown functional values at all the iie points {b} is a vector still
containing discretized time derivativesiofand{s} vector contains known values
of u at the boundary grid points. The stability anaysfithis equation is based on
the eigenvalue distribution of the DQ discretiaatimatrix [A] .If [A] has
eigenvalues!; and corresponding eigenvectgr (i=1,2,...,K) K being the size of
the matrix [A], the similarity transformation reduces the systB8)( of the
from[1] .

48 = D)y + (5} (5.4)
where[D] = [P]'[A][P] , {U} = [P]~'{u} and{S} = —[P]"*{s}

Since[D] is a diagonal matrix Equation (5.4) is an uncoupdetl of ordinary
differential equations and [P] is a nonsingular nmatontaining the eigenvectors
as columnsConsidering thét*equation of (5.4)

duU,
dt

This system has the solution

S.
[Ui(o)el"t + A—l (eMtVI¢,

2

FM =
=

K
(W} = [PV} = ) Ui =

and this solution is stable as> oo if
Re(2;,) <0 ., i=12..,K (5.6)

where Re(1;) denotes the real part @f.This is the stability condition for the
system (5.3).

We explain the stability condition (5.6) for probie 1,2 and 3 with using x 4
grid points. the eigenvalues of the matrix [A] are;

For problem 14, = —-18, 1, = =36, 1; = —36 and 1, = —54.
For problem 2, = —4.041,1, = —8.268, 1; = —8.61 and1, = —13.519
For problem 3}, = —-3.6, 4, = —=3.6, 43 = —3.6and 4, = —3.6.

This means the stability condition (5.6)skisfied
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Zong and Lam (2002)[14] have shown that too langealpers of grid points may

lead to instability. We conclude from the abovecdssion that accuracy requires
large number of grid points, but stability requitke opposite. The accuracy and
stability of the numerical solutions depend on theice of grid points selected.

Here we use equally spaced types, which are intexdilboy Shu and Richards
(1992) [10], Shu et al (2001) [12],

6  Comparison with Other Schemes

We compare the numerical results of ADI-DQM for tireblem 3 with the results
of other numerical methods such as DQM, High-o@@npact boundary value
method HOCBVM [5] and Radial basis function basesshless RBFBMM [4].
Tables 5 and 6 show the number of grid points aagimumabsolute error in the
numerical solutions resulted from using ADI-DQM kviather methods. The error
measurements resulted from ADI-DQM is more accuitze the methods DQM,
HOCBVM and RBFBMM. Moreover, the number of grid p by using ADI-
DQM is less than the other methods HOCBVM and RBIMBM

Table 5. Comparison of the numerical results of the probBefor different methods at
t=01and a, =a, =0.01

Method Number of grid points Max|error]|
ADI-DQM 11 x 11 4.110175E-13
DQM 11 x 11 5.667731E-13
HOCBVM [5] 100 x 100 9.4696E-04
RBFBMM. [4] 41 x 41 4.97E-02

Table 6. Comparison of the numerical results of the probBefor different method at
t=01and ay=a,=0.1

Method Number of grid points Max|error]|
ADI-DQM 11 x 11 1.131288E-05
DQM 11 x 11 1.471307E-05
HOCBVM [5] 25 x 25 2.4170E-05
RBFBMM.[4] 41 x 41 4.25E-04

7 Conclusions

In this work, we employed the ADI-DQM to solve thmsteady state two-
dimensional convection—diffusion equation. The nuoa results show that the
ADI-DQM has higher accuracy and good convergencewadl as a less
computation workload by using few grid pointie results show that ADI-DQM
has a good potential for solving convection-difeusiproblems. Moreover, the
efficiency of the method was proved in accuracy statility.
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