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Abstract 
     In this paper, we propose alternating direction implicit formulation of the 
differential quadrature method (ADI-DQM) for calculating the numerical 
solutions of the two-dimensional unsteady state convection-diffusion equation 
with appropriate initial and boundary conditions. The results confirm that this 
method has a high accuracy, good convergence and less workload compared with 
the other numerical methods.   
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1      Introduction 
 
Consider the unsteady state two -dimensional convection-diffusion equation       
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�� ��, �, �	 + �� ��

�� ��, �, �	 + � ��
� ��, �, �	 

��, �, �	 ∈ �0, �� × �0, �� × �0, ��,                                                                           �1.1�	  

with the initial condition 

���, �, �	 = ∅��, �	                                                                                                     �1.1�	  

and the boundary conditions 

 ���, 0, �	 = ����, �	,         ���, �, �	 = ����, �	,   � ≥ 0 ,  
��0, �, �	 = !���, �	,         ���, �, �	 = !���, �	, � ≥ 0,                                      �1.1"	  

where   �� and � are arbitrary constants and represent convection coefficients,  

xα  and yα   are arbitrary functions and represent diffusion coefficients, , � is a 

transported variable, ∅, ��, ��, !� and !� are the known functions andT is the 
optimal time.  Convection-diffusion equation is a parabolic partial differential 
equation combining the diffusion equation and the advection equation, which 
always attracts the attention of many researchers its importance to academics. 
Processes involving a combination of convection and diffusion are found in 
physical and engineering problems. These problems arise in petroleum reservoir 
simulation, subsurface contaminant remediation, and many other applications    
[1-7,13]. Many researchers use the  Equation (1.1a) and mentioned in [4, 5, 6, 13]. 
We compare the numerical results of DAI-DQM for solving convection-diffusion 
problem (1.1) with the results of other numerical methods such as the differential 
quadrature method (DQM) , the finite difference method (FDM) [5] and the radial 
basis function based meshless method (RBFBMM) [4]. 
The purpose of this paper is to introduce and apply our newly developed of DQM 
that is known as the alternating direction implicit formulation of the differential 
quadrature method for solving unsteady state two-dimensional convection-
diffusion equation. The results that we obtain from using ADI-DQM will be saved 
and compared to prove the efficiency of the method in accuracy and stability. 
 

2 Differential Quadrature Method 
 
The differential quadrature is a numerical technique used to solve the initial and 
boundary value problems. This method was proposed by Bellman in the early 70s 
[2]. The essence of the method is that,  the partial (ordinary) derivatives of a 
function with respect to  variables in governing  equation are approximated by a 
weighted linear sum of function values at all discrete points in that direction 
((here, let ℎ = ∆� = ∆� denote the step size of spatial space and ∆� is the step 
size with respect to time)), then the equation can be transformed into a set of 
ordinary differential equations or algebraic equations. According to the DQM, the 

%�&  -order partial derivatives 
�'�
��' of a function ���, �	 at a point ��(, �)	 and the 

*�& -order partial derivatives 
�+�
�+ of a function ���, �	  at a point ��( , �)	 , can be 

approximated by the same formula given in [11],as: 
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where 3(4�.	 , <)=�:	 are the respective weighting coefficients for the %�& -order and *�&-order derivatives with respect to �  and �  respectively.  Bellman et al. [2] 

proposed two approaches to compute the weighting coefficients 3(4�.	 , <)=�:	. To 
improve Bellman’s approaches in computing the weighting coefficients, many 
attempts have been made by researchers. Quan and Chang [8, 9] introduce one of 
the most valuable attempts. After that, Shu’s [11] introduced a general approach, 
which was inspired from Bellman’s approach, was made available in the 
literature. Shu’s [11] give Shu’s recurrence formulation for higher order 
derivatives as, 

3(4�.	 = % A3((�.B�	3(4��	 − 3(4�.B�	
��( − �4	 D   ,   E, 6 = 1, … , 9,

2 ≤ % ≤ 9 − 1  ,   6 ≠ E                                                                              �2.3	  
and 

3((�.	 = − 2 3(4�.	  ,1 ≤ % ≤ 9 − 1 ,   6 ≠ E ,
5

40� 6 = 1,2, … , 9                                                                                       �2.4	 

where  3(4��	 are the weighting coefficients of the first order derivative given 
below   

3(4��	 = ?��	��(	��( − �4	?��	��4	                                      �J%    6
≠ E                                                 

where  

?��	 = �� − ��	�� − �K	 … �� − �5	  �LM  ?��	��(	 = ∏ O�( − �)P   6, E ≠ >5)0�   

The same formulas can be obtained for weighting coefficients of the high order 
derivatives with respect to �  . By using equations (2.1) and (2.2), we can 
approximate the partial derivatives of the convection-diffusion equation (1.1) to 
obtain the system of ordinary differential equations as: 

,-�-� /()
Q + 2 ��36E�1	�4)Q + 2 ��<>R�1	?

R=1

9

E=1
�(=Q = 2 S�36E�2	�4)Q + 2 S� <>R�2	�(=Q

?

R=1

9

E=1
           �2.5	 

Approximating the first-order derivatives with respect to the temporal variable by 
using the forward differences and then arrangement the terms equation (2.5) ,we 
obtain the system of  algebraic equations as:   
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�()QU� − �()Q∆� + 2V��3(4��	 − S�3(4�K	W�4)Q + 2��<)=��	 − S
@

=0�

5

40�
<)=�K		�(=Q = 0       �2.6	 

 

3 Alternating Direction Formulation of the DQM 
 
Peaceman and Rachford [7] introduced the alternating direction implicit technique 
in the mid-50s for solving the system of algebraic equations, which results from 
finite difference discretization of partial differential equations (PDEs). From 
iterative method’s perspective, ADI method can be considered as a special 
relaxation method, where a big system is simplified into a number of smaller 
systems such that each of them can be solved efficiently and the solution of the 
whole system is got from the solutions of the sub-systems in an iterative method. 
Using alternating direction implicit method into equation (2.6), we get the 
following two systems of algebraic equations in the form: 
 

�()
QU�K − �()Q∆�2

+ 2 V��3(4��	 − S�3(4�K	W �4)
QU�K + 2��<)=��	 − S

@

=0�

5

40�
<)=�K		�(=Q = 0              �3.1	 

 
�()QU� − �()

QU�K
∆�2

+ 2 V��3(4��	 − S�3(4�K	W �4)
QU�K

5

40�
+ 2��<)=��	 − S

@

=0�
<)=�K		�(=QU� = 0      �3.2	 

Formula (3.1) is used to compute function values at all interval mesh points along 
rows and is known as a horizontal traverse or � −sweep. While, Formula (3.2) is 
used to compute function values at all interval mesh points along columns and is 
known as a vertical traverse or � −sweep. 
 

4 Numerical Experiments and Discussion   
 

In this section, we apply ADI-DQM on three test problems to demonstrate the 
efficiency of the ADI-DQM. Other researchers also consider these problems. 
 
Problem 1. ( Akman [1] ) 
       We consider convection-diffusion (1.1) with S� = S = 1    �� = � = 0  , � = 1 and initial condition in the following form:  ���, �, 0	 = *6L�Y�	sin(2πy) ,      0 ≤ �, � ≤ 1                                                      �4.1	 

The exact solution is given by 

���, �, �	 =    ZB[\]� sin�Y�	 sin�2πy	   ,         0 ≤ �, � ≤ 1 , � > 0                  �4.2	  

The boundary conditions can be obtained easily from (4.2) by using�, � = 0, 1. In 
this problem, we put ∆� = 0.0001 and use equally spaced grid points. In Table 1 
we show the errors obtained in solving problem 1 with the ADI-DQM and DQM 
at � = 0.01 and ��, �	 ∈  �0, 1� for different values of ℎ. In Fig. (1) we show the 
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exact and approximate solutions of the problem 1 . The results confirm that ADI-
DQM has a high accuracy, good convergence compared with DQM.    
     

Table  1. Errors obtained for problem 1 with � = 0.01  
h Max|Z%%J%| of DQM  Max|Z%%J%| of  ADI-DQM 
0.2 
0.111 
0.09 

6.729439E-03 
9.071963E-03 
2.272577E-03 

1.994167E-05 
1.337680E-05 
1.031041E-05 
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 Fig. 1  Exact and approximate solutions of the problem 1 with, t=0.01 and ∆� = 0.0001  
 
Problem 2 . ( Akman [1] ) 
        We consider convection-diffusion equation (1.1) with  �� = � = 0 , 

S� = �
e �1 − �K	 ,  S = �

e �1 − �K	 , � = 0.9 and initial condition in the following 

form: 
 ���, �, 0	 = �1 − �K	�1 − �K	          ,      0 ≤ �, � ≤ 0.9                                       �4.3	 
 
The exact solution is given by 
 ���, �, �	 =   �1 − �K	�1 − �K	 ZB� ,            0 ≤ �, � ≤ 0.9, � > 0                 �4.4	  
 
The boundary conditions can be obtained easily from (4.4) by using �, � = 0, 0.9. 
In this problem we put ∆� = 0.0001 and use equally spaced grid points. In Table 
2 we show the errors obtained in solving problem 2 with the ADI-DQM and 
DQM at � = 0.1 and ��, �	 ∈  �0, 0.9� for different values of ℎ. In  Figs. (2) we 
show the exact and approximate solutions of the problem 2. The results confirm 
that ADI-DQM has a high accuracy, good convergence compare with DQM 
 

Table  2. Errors obtained for problem 2 with � = 0.1  
h Max|Z%%J%| of   DQM Max|Z%%J%| of ADI-DQM 
0.18 
0.11 
0.08 

1.636210E-03 
3.174482E-03 
3.142371E-03 

2.316217E-04 
4.667084E-04 
5.668763E-04 
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Fig. 2  Exact and approximate solutions of the problem 2 with, � = 0.1 and ∆� = 0.0001  

Problem  3. ( Dehghan and Mohebbi [5] ) 
       We consider convection-diffusion equation (1.1) with,   �� = � = −1 , S� = S = 0.01, 0.1   , � = 1 and initial condition in the following form:  
 ���, �, 0	 = �Oe�Bhi�	 + eOBhjPP,     0 ≤ �, � ≤ 1                                                �4.5	  
 

In which                     "� = Bki∓mki]Uenoi
Koi > 0,             " = Bkj∓mkj]Uenoj

Koj > 0 

The exact solution is given with 
 ���, �, �	 = � e�pq	�e�Bri�	 + eOBrstP	                  0 ≤ �, � ≤ 1, t > 0                 �4.6	  
 
The boundary conditions can be obtained easily from (4.6) by using�, � = 0, 1. In 
this problem we put � = 1, � = 0.1, ∆� = 0.001 and use equally spaced grid 
points. In Table 3 we show the errors obtained in solving problem 3 with the ADI-
DQM and DQM at � = 0.1, S� = S = 0.01  and ��, �	 ∈  �0, 1� for different 
values of ℎ. In  Figs. (3) and (4) we show the exact and approximate solutions for S� = S = 0.01  and S� = S = 0.1  respectively. In Table 4 we show the errors 
obtained in solving problem 3 with the present method � = 0.1, S� = S = 0.1  
and ��, �	 ∈  �0, 1� for different values of ℎ. The results confirm that ADI-DQM 
has a high accuracy, good convergence compare with DQM. 
 

Table  3. Errors obtained for problem 3 with � = 0.1, S� = S = 0.01 
h Max|Z%%J%| of DQM Max|Z%%J%| of ADI-DQM 
0.2 
0.111 
0.09 

4.693330E-26 
3.834508E-15 
5.667731E-13 

2.644524E -26 
2.720141E-15 
4.110175E -13 

                                                        
Table  4 . Errors obtained for problem 3 with � = 0.1, S� = S = 0.1 

h Max|Z%%J%| of DQM Max|Z%%J%| of ADI-DQM 
0.2 
0.111 
0.09 

1.617776E-06 
9.042375E-06 
1.471308E-05 

1.055500E-06 
6.623465E-06 
1.131288E-05 
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Fig. 3  Exact and  approximate solution  of the problem 3 with   S� = S = 0.01  
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Fig. 4  Exact and approximate solutions of the problem 3 with    S� = S = 0.1  
 
From Figs. 3 and 4, we note if case S� = S = 0.01 has a sharp discontinuity 
near the left boundary while if case S� = S = 0.1  is not able to capture a sharp 
discontinuity near the left boundary.    
 

5   Error Analysis and Stability of DQM 
 
We can resolve another mission of the truncation error in the differential 
quadrature method. Depending on the DQM is identical to Lagrange polynomial 
interpolation of order 1−N , Chen [3] has presented new formulas for the analysis 
of truncation error distribution of derivative in this method. The truncation error 
of the first-order derivative approximation by the DQ method at the grid point ix  

is given as;   
v��	��(	 ≤ w�?��	��(	9! = w�Z��	��(	                                                                      �5.1	 

 
where  w� = ?��yz��5	�{	z| ,ξ is unknown function of variable �, and Z��	��(	 
denotes the error distributions of the first- order derivative. For the truncation 
error of the second-order derivative approximation by DQM is given as, 
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zv�K	��(	z ≤ 2wK V1 + }3((��	}W ?��	��(	9! = wKZ�K	��(	                                          �5.2	 

 
where wK = ?��y�z��5	�{	z, z{���5U�	�{	z	| ,  Z�K	��(	 denotes the error 
distributions of the second- order derivative. While the stability, from equation 
(2.5) we obtained the systems of ordinary differential equations in the form: 
 �3�~�� = ~�� − ~*�                                                                                                       �5.3	 
 
where  �3� is the coefficient matrix containing the weighting coefficients, the 
dimension of the matrix  �3� is �9 − 2	�? − 2	 �� �9 − 2	�? − 2	  ,~�� is a 
vector of unknown functional values at all the interior points ,~�� is a vector still 
containing discretized time derivatives of �  and ~*� vector contains known values 
of �  at the boundary grid points. The stability analysis of this equation is based on 
the eigenvalue  distribution of the DQ discretization matrix �3� .If �3� has 
eigenvalues �( and corresponding eigenvector {(, (i=1,2,…,K) K being the size of 
the matrix �3�, the similarity transformation reduces the system(5.3) of the 
from[1] . 
 �~��

�� = ���~�� + ~��                                                                                                      �5.4	 

 
where ��� = ���B��3���� , ~�� = ���B�~��  and ~�� = −���B�~*� 
Since ���   is a diagonal matrix Equation (5.4) is an uncoupled set of ordinary 
differential equations and [P] is a nonsingular matrix containing the eigenvectors 
as columns. Considering the 6�&equation of (5.4) 
 M�(M� = �(�( + �(                                                                                                              �5.5	 

 
This system has the solution  
 

~�� = ���~�� = 2 �({( = 2 ��(�0	Z�1� + *(�( �Z�1�B�	� {(             
�

(0�

�

(0�
 

 
and this solution is stable as � → ∞ if  �Z��(	 < 0                                 , 6 = 1,2, … , w                                                               �5.6	  
 
where �Z��(	  denotes the real part of �(.This is the stability condition for the 
system (5.3).  
We explain the stability condition (5.6) for problems 1,2 and 3 with using 4 × 4 
grid points. the eigenvalues of the matrix [A] are; 
 
      For problem 1,  �� = −18 , �K = −36 ,  �� = −36 and  �e = −54.  
      For problem 2, �� = −4.041 , �K = −8.268, �� = −8.61  and �e = −13.519 
.     For problem 3, �� = −3.6, �K = −3.6, �� = −3.6 and  �e = −3.6.  
 
This means the stability condition (5.6) is satisfied. 
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Zong and Lam (2002)[14] have shown that too large numbers of grid points may 
lead to instability. We conclude from the above discussion that accuracy requires 
large number of grid points, but stability requires the opposite. The accuracy and 
stability of the numerical solutions depend on the choice of grid points selected. 
Here we use equally spaced types, which are introduced by Shu and Richards 
(1992) [10], Shu et al (2001) [12],  
 

6   Comparison with Other Schemes 
 
We compare the numerical results of ADI-DQM for the problem 3 with the results 
of other numerical methods such as DQM, High-order compact boundary value 
method HOCBVM [5] and Radial basis function based meshless RBFBMM [4].  
Tables 5 and 6 show the number of grid points and maximum absolute error in the 
numerical solutions resulted from using ADI-DQM with other methods. The error 
measurements resulted from ADI-DQM is more accurate than the methods DQM, 
HOCBVM and RBFBMM. Moreover, the number of grid points by using ADI-
DQM is less than the other methods HOCBVM and RBFBMM.  
 
Table  5. Comparison of the numerical results of the problem 3 for different methods at 
                 � = 0.1 and   S� = S = 0.01 

Max|Z%%J%|  Number of grid points Method 
4.110175E-13 
5.667731E-13 
9.4696E-04 
4.97E-02 

11 × 11  11 × 11 100 × 100  41 × 41   

ADI-DQM 
DQM 
HOCBVM   [5] 
RBFBMM. [4] 
 

Table  6. Comparison of the numerical results of the problem 3 for different method at 
                � = 0.1 and    S� = S = 0.1 

Max|Z%%J%|  Number of grid points Method 
1.131288E-05  
1.471307E-05 
2.4170E-05 
4.25E-04 

11 × 11  11 × 11  25 × 25 41 × 41   

ADI-DQM 
DQM  
HOCBVM   [5] 
 RBFBMM.[4] 
 

7   Conclusions 

In this work, we employed the ADI-DQM to solve the unsteady state two-
dimensional convection–diffusion equation. The numerical results show that the 
ADI-DQM has higher accuracy and good convergence as well as a less 
computation workload by using few grid points. The results show that ADI-DQM 
has a good potential for solving convection-diffusion problems. Moreover, the 
efficiency of the method was proved in accuracy and stability. 
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