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Abstract
The aim of this paper is to introduce and investigate some properties of

weakly δ-b-continuous functions. We also define the notion of δ-b-continuous
functions by using δ-b-open sets. We obtain that the notion of weak δ-b-
continuity is weaker than δ-b-continuity, but stronger than both the weak b-
continuity and weak e-continuity. In order to show coincidencies in functions
whose range space is regular, we introduce and investigate some properties of
the notions of faint δ-b-continuity and strong θ-δ-b-continuity. Finally, we
obtain some properties of weakly δ-b-continuous functions related to some
separation axioms and graphic functions for δ-b-open sets.

Keywords: δ-b-open sets, δ-b-continuity, faint δ-b-continuity, strong
θ-δ-b-continuity, weak δ-b-continuity.

1 Introduction

Of course, continuity is one of important topic for study in topological spaces.
This notion is based on open sets. So, generalizations of continuity are given
by using weaker types of open sets such as α-open sets [12], semi-open sets
[9], preopen sets [11], b-open sets [1]. On the other hand, the notion of weak
continuity is defined by Levine [8] and their modifications are studied by several
authors such as [4], [11], [14], [13], [20].

In this paper, first we introduce and give some characterizations of δ-
b-continuous functions. We also define and investigate some properties of
weakly δ-b-continuous functions weaker than this notation. Then, we con-
sider two types of continuous functions are called faintly δ-b-continuous and
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strongly θ-δ-b-continuous, respectively. In order to show coincidencies among
weak δ-b-continuity, δ-b-continuity, faint δ-b-continuity and strong θ-δ-b-
continuity. Finally, we investigate relations between weak δ-b-continuity and
covering properties (resp. connetedness).

2 Preliminaries

Throught in this paper, (X, τ) and (Y, ϕ) denote nonempty topological spaces
on which no separation axioms are assumed unless otherwise mentioned. For
a subset A of (X, τ), the closure of A and the interior of A are denoted by
Cl(A) and Int(A), respectively. τ (x) represents all open neighbourhoods of
the point x ∈ X.

A set A is called θ-open [10] (resp. δ-open [21]) if every point of A has an
open neighbourhood whose closure (resp. interior of closure) is contained in
A. The θ-interior [10] (resp. δ-interior [21]) of A in (X, τ) is the union of all
θ-open (resp. δ-open) subsets of A and is denoted by Intθ(A) (resp. Intδ(A)).
Of course, the complement of a θ-open (resp. δ-open) set is called θ-closed [10]
(resp. δ-closed [21]). That is, Clθ(A) = {x ∈ X | ∀U ∈ τ (x) , Cl(U)∩A 6= ∅}
(resp. Clδ(A) = {x ∈ X | ∀U ∈ τ (x) , Int(Cl(U)) ∩ A 6= ∅}).

A subset A of (X, τ) is called δ-semi-open [16] (resp. preopen [11], b-open
[1] or γ-open [6], e-open [5] and δ-b-open [7]) if A ⊆ Cl(Intδ(A)) (resp. A ⊆
Int(Cl(A)), A ⊆ Int(Cl(A)) ∪ Cl(Int(A)), A ⊆ Int(Clδ(A)) ∪ Cl(Intδ(A)),
A ⊆ Int(Cl(A)) ∪ Cl(Intδ(A))).

The complement of δ-semi-open (resp. preopen, γ-open, e-open and δ-b-
open) set is said to be δ-semi-closed [16] (resp. preclosed [11], γ-closed [6],
e-closed [5] and δ-b-closed [7]).

The family of all δ-b-open and δ-b-closed sets of (X, τ) are denoted by δSO
(X, τ) and δSC (X, τ), respectively. The family of all δ-b-open sets of (X, τ)
containing a point x ∈ X is denoted by δBO(X, x).

If A is a subset of a space (X, τ), then the δ-b-closure of A, denoted by
bClδ(A), is the smallest δ-b-closed set containing A. The δ-b-interior of A,
denoted by bIntδ(A), is the largest δ-b-open set contained in A.

We have the following statements related to two operators δ-b-closure, δ-
b-interior and δ-b-closed sets according to [7].

Lemma 2.1 For a subset A of a space (X, τ), the following properties are
hold:

(1) bClδ (A) = A ∪ (Int (Clδ (A)) ∩ Cl (Int (A)));
(2) bIntδ (A) = A ∩ (Int (Cl (A)) ∪ Cl (Intδ (A)));
(3) bClδ (X−A) = X-bIntδ (A);
(4) x ∈ bClδ (A) if and only if A ∩ U 6= ∅ for every U ∈ δBO(X, x);
(5) A ∈ δBC(X) if and only if A = bClδ (A).
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Definition 2.2 A function f : (X, τ) −→ (Y, ϕ) is said to be
(1) γ-continuous [6] ( resp. e-continuous [5] ) if f−1(V ) is b-open ( resp.

e-open ) in (X, τ) for every open set V of (Y, ϕ);
(2) weakly b-continuous [20] ( resp. weakly e-continuous [15] ) if for each

x ∈ X and each open set V of (Y, ϕ) containing f(x), there exists a b-open (
resp. an e-open ) set U of (X, τ) containing x such that f(U) ⊆ Cl(V ).

First of all, we define a new type of continuity whose name is δ-b-continuity
and give some characterizations of it.

Definition 2.3 A function f : (X, τ) −→ (Y, ϕ) is said to be δ-b-continuous
if f−1(V ) is δ-b-open in (X, τ) for every open set V of (Y, ϕ).

Theorem 2.4 For a function f : (X, τ) −→ (Y, ϕ), the following properties
are equivalent:

(1) f is δ-b-continuous;
(2) For each x ∈ X and each V ∈ ϕ(f(x)), there exists U ∈ δBO(X, x)

such that f(U) ⊆ V ;
(3) The inverse image of each closed set in (Y, ϕ) is δ-b-closed in (X, τ);
(4) Int (Clδ (f−1 (B)))∩Cl (Int (f−1 (B))) ⊆ f−1 (Cl(B)) for each B ⊆ Y ;
(5) f(Int (Clδ (A)) ∩ Cl (Int (A))) ⊆ Cl(f (A)) for each A ⊆ X.

Proof: (1) =⇒ (2) : Let x ∈ X and V ∈ ϕ(f(x)). Then f−1 (V ) ∈
δBO(X, x). If we consider U = f−1 (V ), we obtain f(U) ⊆ V .

(2) =⇒ (1) : Let V ⊆ Y be open and x ∈ f−1 (V ). Then f (x) ∈ V and thus
there exists Ux ∈ δBO(X, x) such that f(Ux) ⊆ V . Then x ∈ Ux ⊆ f−1 (V ),
and so f−1 (V ) = ∪x∈f−1(V )Ux. According to [7], since the union of any family
ofδ-b-open sets is a δ-b-open set, we have ∪x∈f−1(V )Ux ∈ δBO(X) and then
f−1 (V ) ∈ δBO(X). This shows that f is δ-b-continuous.

(1) =⇒ (3) : Obvious.
(3) =⇒ (1) : Obvious.
(3) =⇒ (4) : Let B ⊆ Y.Then, f−1 (Cl(B)) is δ-b-closed in (X, τ). Really,

we have
Int (Clδ (f−1 (B))) ∩ Cl (Int (f−1 (B))) ⊆ Int (Clδ (f−1 (Cl(B))))
∩Cl (Int (f−1 (Cl(B)))) ⊆ f−1 (Cl(B)) is obtained.
(4) =⇒ (5) : Let A ⊆ X.If we consider B = f (A) in (4), then we have

Int (Clδ (f−1 (f (A)))) ∩ Cl (Int (f−1 (f (A)))) ⊆ f−1 (Cl(f (A))). Since for
every subset A of X, A ⊆ f−1(f (A)) is true, we obtain Int (Clδ (A)) ∩
Cl (Int (A)) ⊆ f−1 (Cl(f (A))) and hence f (Int (Clδ (A)) ∩ Cl (Int (A))) ⊆
Cl(f (A)).

(5) =⇒ (1) : Let V ∈ ϕ. If we consider W = Y -V and A = f−1 (W ), we
have f (Int (Clδ (f−1 (Y−V ))) ∩ Cl (Int (f−1 (Y−V )))) ⊆ Cl(f (f−1 (Y−V ))) ⊆
Cl (Y−V ) = Y -V by using ” for every B ⊆ Y , f (f−1 (B)) ⊆ B” and V ∈ ϕ.
Therefore, f−1 (W ) = f−1 (Y−V ) is δ-b-closed in (X, τ). This shows that f is
δ-b-continuous.
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3 Weakly δ-b-Continuous Functions

Definition 3.1 A function f : (X, τ) −→ (Y, ϕ) is said to be weakly δ-
b-continuous (briefly w.δ.b.c. ) at x ∈ X if for each open set V of (Y, ϕ)
containing f(x), there exists a δ-b-open set U of (X, τ) containing x such that
f(U) ⊆ Cl(V ). The function f is w.δ.b.c. iff f is w.δ.b.c. for all x ∈ X.

We have the following Diagram from Definitions 1, 2 and 3.

e-continuity ←− δ-b-continuity −→ b-continuity
↓ ↓ ↓

weak e-continuity ←− weak δ-b-continuity −→ weak b-continuity

Diagram

We state that the converses of these implications are not true in generally,
as shown in the [5] and the following examples.

Example 3.2 Let (X, τ) and (Y, ϕ) are two topological space such that X =
{a, b, c, d}, τ = {∅, X, {a}, {d}, {a, d}, {a, c}, {a, c, d}}, Y = {a, b} and ϕ =
{∅, Y, {a}}. A function f : (X, τ) −→ (Y, ϕ) defined as follows: f(a) = f(b) =
a and f(c) = f(d) = b. Then, f is b-continuous but not δ-b-continuous.

Example 3.3 Let (X, τ) and (Y, ϕ) are two topological spaces such that
X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}}, Y = {a, b} and ϕ = {∅, Y, {a}}. A
function f : (X, τ) −→ (Y, ϕ) defined as follows: f(c) = a and f(a) = f(b) =
b. Then, f is e-continuous but not δ-b-continuous.

Example 3.4 Let (X, τ) and (X,ϕ) are two topological spaces such that
X = {a, b, c, d}, τ = {∅, X, {a}, {d}, {a, c}, {a, c, d}} and ϕ = {∅, X, {a, b}, {c, d}}.
Then, the identity function f : (X, τ) −→ (X,ϕ) is weakly b-continuous but
not weakly δ-b-continuous.

Example 3.5 Let (X, τ) and (X,ϕ) are two topological spaces such that
X = {a, b, c}, τ = {∅, X, {a}, {b}, {a, b}} and ϕ = {∅, X, {a}, {b, c}}. A
function f : (X, τ) −→ (X,ϕ) defined as follows: f(c) = a and f(a) = f(b) =
b. Then, f is weakly e-continuous but not weakly δ-b-continuous.

Example 3.6 Let X = {a, b, c, d, e}, τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}}
and ϕ = {∅, X, {b, c, d}}. Then, the identity function f : (X, τ) −→ (X,ϕ) is
weakly δ-b-continuous but not δ-b-continuous.

Now, we give some characterizations of weak δ-b-continuity at one point.
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Proposition 3.7 For a function f : (X, τ) −→ (Y, ϕ), the following prop-
erties are equivalent:

(1) f is w.δ.b.c. at x ∈ X;
(2) x ∈ Cl(Intδ(f−1(Cl(V ))))∪ Int(Cl(f−1(Cl(V )))) for each open neigh-

bourhood V of f(x);
(3) f−1(V ) ⊆ bIntδ(f

−1(Cl(V ))) for each V ∈ ϕ.

Proof: (1) =⇒ (2). Let V be any open subset of (Y, ϕ) such that containing
f(x). Since f is w.δ.b.c. at x, there exists U ∈ δBO(X, x) such that f(U) ⊆
Cl(V ) and hence U ⊆ f−1(Cl(V )). Since U is δ-b-open, x ∈ U ⊆ Cl(Intδ(U))∪
Int(Cl(U)) ⊆ Cl(Intδ(f

−1(Cl(V )))) ∪ Int(Cl(f−1(Cl(V )))).
(2) =⇒ (3). Let x ∈ f−1(V ). Then, we have f(x) ∈ V . Since V ⊆

Cl(V ) for every subset of (Y, ϕ), we have x ∈ f−1(Cl(V )). By hypoth-
esis since x ∈ Cl(Intδ(f

−1(Cl(V )))) ∪ Int(Cl(f−1(Cl(V )))), we have x ∈
(f−1(Cl(V )) ∩ [Cl(Intδ(f

−1(Cl(V )))) ∪ Int(Cl(f−1(Cl(V ))))]) and hence x ∈
bIntδ(f

−1(Cl(V ))). Consequently, we obtain f−1(V ) ⊆ bIntδ(f
−1(Cl(V ))).

(3) =⇒ (1). Let V be any open neighbourhood of f(x). Then, x ∈
f−1(V ) ⊆ bIntδ(f

−1(Cl(V ))). If we consider U = bIntδ(f
−1(Cl(V ))), we

have U ∈ δBO(X, x) and f(U) ⊆ Cl(V ). Consequently, this shows that f is
w.δ.b.c. at x ∈ X.

The following three theorems are related to some characterizations of weak
δ-b-continuity.

Theorem 3.8 For a function f : (X, τ) −→ (Y, ϕ), the following properties
are equivalent:

(1) f is w.δ.b.c.;
(2) bClδ(f

−1(Int(Cl(B)))) ⊆ f−1(Cl(B)) for every subset B of (Y, ϕ);
(3) bClδ(f

−1(Int(F ))) ⊆ f−1(F ) for every regular closed set F of (Y, ϕ);
(4) bClδ(f

−1(V )) ⊆ f−1(Cl(V )) for every open set V of (Y, ϕ);
(5) f−1(V ) ⊆ bIntδ(f

−1(Cl(V ))) for every open set V of (Y, ϕ);
(6) f−1(V ) ⊆ Cl(Intδ(f

−1(Cl(V ))))∪ Int(Cl(f−1(Cl(V )))) for every open
set V of (Y, ϕ).

Proof: (1) =⇒ (2). Let B be any subset of (Y, ϕ). Suppose that x ∈
(X−f−1(Cl(B))). Then, f(x) ∈ (Y−Cl(B)) and there exists an open set V
containing f(x) such that V ∩B = ∅; hence Cl(V )∩Int(Cl(B)) = ∅. Since f
is w.δ.b.c., there exists U ∈ δBO(X, x) such that f(U) ⊆ Cl(V ). Therefore, we
obtain U ∩ f−1(Int(Cl(B))) = ∅ and hence x ∈ (X−bClδ(f−1(Int(Cl(B))))).
So, we have (X−bClδ(f−1(Int(Cl(B)))) ⊆ f−1(Cl(B)).

(2) =⇒ (3). Let F be any regular closed set of (Y, ϕ). Then, we have
bClδ(f

−1(Int(F ))) = bClδ(f
−1(Int(Cl(Int(F ))))) ⊆ f−1(Cl(Int(F )))

= f−1(F ).
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(3) =⇒ (4). For any open set V of (Y, ϕ). Therefore, we have bClδ(f
−1(V ))

⊆ bClδ(f
−1(Int(Cl(V )))) ⊆ f−1(Cl(V )).

(4) =⇒ (5). Let V be any open set of (Y, ϕ). Then, (Y−Cl(V )) is open in
(Y, ϕ) and by using Lemma 1, we have (X−Intδ(f−1(Cl(V )))) = bClδ(f

−1(Y -
Cl(V ))) ⊆ f−1(Cl(Y -Cl(V ))) ⊆ (X−f−1(V )). Hence, we obtain f−1(V ) ⊆
bIntδ(f

−1(Cl(V ))).
(5) =⇒ (6). Let V be any open set of (Y, ϕ). By Lemma 1, we have

f−1(V ) ⊆ bIntδ(f
−1(Cl(V ))) ⊆ Cl(Intδ(f

−1(Cl(V ))))∪Int(Cl(f−1(Cl(V )))).
(6) =⇒ (1). Let x be any point of (X, τ) and V be any open set of (Y, ϕ)

such that containing f(x). Then, x ∈ f−1(V ) ⊆ Cl(Intδ(f
−1(Cl(V )))) ∪

Int(Cl(f−1(Cl(V )))). So, we obtain f is w.δ.b.c. from Proposition 3.

Theorem 3.9 For a function f : (X, τ) −→ (Y, ϕ), the following properties
are equivalent:

(1) f is w.δ.b.c.;
(2) bClδ(f

−1(Int(Cl(V )))) ⊆ f−1(Cl(V )) for every δ-b-open set V of (Y, ϕ);
(3) bClδ(f

−1(V )) ⊆ f−1(Cl(V )) for every preopen set V of (Y, ϕ);
(4) f−1(V ) ⊆ bIntδ(f

−1(Cl(V ))) for every preopen set V of (Y, ϕ).

Proof: (1) =⇒ (2). This is obvious from Theorem 4.2.
(2) =⇒ (3). Since every preopen set is δ-b-open set and V ⊆ Int(Cl(V )),

this is obvious.
(3) =⇒ (4). This proof is similar to the proof of the implication (4) =⇒ (5)

in Theorem 2.
(4) =⇒ (1). Since every open set is preopen, it is obtained from Theorem

4.

Theorem 3.10 For a function f : (X, τ) −→ (Y, ϕ), the following proper-
ties are equivalent:

(1) f is w.δ.b.c.;
(2) f( bClδ(A)) ⊆ Clθ(f(A)) for each subset A of (X, τ);
(3) bClδ(f

−1(B)) ⊆ f−1(Clθ(B)) for each subset B of (Y, ϕ);
(4) bClδ(f

−1(Int(Clθ(B)))) ⊆ f−1(Clθ(B)) for each subset B of (Y, ϕ).

Proof: (1) =⇒ (2). Let x ∈ bClδ(A), V be any open set of (Y, ϕ) con-
taining f(x). Then, there exists U ∈ δBO(X, x) such that f(U) ⊆ Cl(V ).
Then, we have U ∩ A 6= ∅ and ∅ 6= f(U) ∩ f(A) ⊆ Cl(V ) ∩ f(A), so that
f(x) ∈ Clθ(f(A)). The proof is completed.

(2) =⇒ (3). Let B be any subset of (Y, ϕ). Set A = f−1(B) in (2), then we
have f( bClδ(f

−1(B))) ⊆ Clθ(B) and bClδ(f
−1(B)) ⊆ f−1(f(bClδ(f

−1(B)))) ⊆
f−1(Clθ(B)).

(3) =⇒ (4). Let B be any subset of (Y, ϕ). Since Clθ(B) is closed in (Y, ϕ),
we have bClδ(f

−1(Int(Clθ(B)))) ⊆ f−1(Clθ(Int(Clθ(B)))) ⊆ f−1(Clθ(B)).
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(4) =⇒ (1). Let V be any open set of (Y, ϕ). Then, we have V ⊆
Int(Cl(V )) = Int(Clθ(V )) and so bClδ(f

−1(V )) ⊆ bClδ(f
−1(Int(Clθ(V )))) ⊆

f−1(Clθ(V )) ⊆ f−1(Cl(V )). Consequently, we obtain f is w.δ.b.c. from Theo-
rem 2.

We have the following two properties as results of Theorems 5 and 6.

Corollary 3.11 If f : (X, τ) −→ (Y, ϕ) is w.δ.b.c., then f−1(V ) is δ-b-
closed (resp. δ-b-open ) in (X, τ) for every θ-closed ( resp. θ-open ) set V of
(Y, ϕ).

Proof: (a) If V is θ-closed, we obtain bClδ(f
−1(V )) ⊆ f−1(Clθ(V )) =

f−1(V ) and hence f−1(V ) is δ-b-closed from Theorem 6.3.
(b) Although this is obvious considering complement of (a), we prove it

alternatively as the following.
If V is θ-open, then (Y−V ) is θ-closed and so bClδ(f

−1(Y -V )) ⊆ f−1(Clθ(Y -
V )) = f−1(Y -V ) from Theorem 5. Therefore, we have bClδ(X-f−1(V )) ⊆ X-
f−1(V ) and hence X-bIntδ(f

−1(V )) ⊆ X-f−1(V ). Consequently, we have
f−1(V ) ⊆ bIntδ(f

−1(V )) and f−1(V ) is δ-b-open.

Corollary 3.12 Let f : (X, τ) −→ (Y, ϕ) be a function. If f−1(Clθ(B)) is
δ-b-closed in (X, τ) for every subset B of (Y, ϕ), then f is w.δ.b.c..

Proof: Since f−1(Clθ(B)) is δ-b-closed in (X, τ), we have bClδ(f
−1(B)) ⊆

bClδ(f
−1(Clθ(B))) = f−1(Clθ(B)). So, f is w.δ.b.c. by using Theorem 6.

Now, we define a new type of faintly continuity by using δ-b-open sets.

Definition 3.13 A function f : (X, τ) −→ (Y, ϕ) is said to be faintly δ-b-
continuous if for each x ∈ X and each θ-open set V of (Y, ϕ) containing f(x),
there exists a δ-b-open set U of (X, τ) containing x such that f(U) ⊆ V .

We give some characterizations of faintly δ-b-continuity.

Proposition 3.14 For a function f : (X, τ) −→ (Y, ϕ), the following prop-
erties are equivalent:

(1) f is faintly δ-b-continuous;
(2) The inverse image of every θ-open set in (Y, ϕ) is δ-b-open set in (X, τ);
(3) The inverse image of every θ-closed set in (Y, ϕ) is δ-b-closed set in

(X, τ).

Proof: (1) =⇒ (2). Let V be any θ-open set of (Y, ϕ) and x ∈ f−1(V ).
Then, we have f(x) ∈ V and so there exists Ux ∈ δBO(X, x) such that
f (Ux) ⊆ V . Then, we have x ∈ Ux ⊆ f−1(V ) and so f−1(V ) = ∪x∈f−1(V )Ux.
Since the union of any family of δ-b-open sets is a δ-b-open set from Theorem
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2 in [7], we have
(
∪x∈f−1(V )Ux

)
∈ δBO(X). Therefore, we obtain f−1(V ) is a

δ-b-open set of (X, τ).

(2) =⇒ (1). Let x ∈ X and V be any θ-open subset of (Y, ϕ) containing
f(x). Then, we have f−1(V ) ∈ δBO(X, x). If we consider U = f−1(V ), then
we obtain f(U) ⊆ V . This shows that f is faintly δ-b-continuous.

(1) =⇒ (3). This proof is similar to the proof of (1) =⇒ (2).

(3) =⇒ (1). This proof is similar to the proof of (2) =⇒ (1).

(2) ⇐⇒ (3). Since the complement of every θ-closed set is θ-open, proofs
are obvious.

Now, we give a new type of strongly θ-b-continuous by using δ-b-open set.

Definition 3.15 A function f : (X, τ) −→ (Y, ϕ) is said to be strongly
θ-δ-b-continuous (briefly st.θ.δ.b.c.) if for each x ∈ X and each open set V
of (Y, ϕ) containing f(x), there exists a δ-b-open set U of (X, τ) containing x
such that f(bClδ(U)) ⊆ V .

Immediately, we give the following equivalence.

Proposition 3.16 Let f : (X, τ) −→ (Y, ϕ) be a function and (Y, ϕ) be a
regular space. Then f is st.θ.δ.b.c. if and only if f is δ.b.continuous.

Proof: Because of necessity is obvious, we only prove sufficiency. Let
x ∈ X and V be any open subset of (Y, ϕ) containing f(x). Since (Y, ϕ) is
regular, there exists an open set G such that f(x) ∈ G ⊆ Cl (G) ⊆ V . If f
is δ.b.continuous, there exists U ∈ δBO(X, x) such that f (U) ⊆ G. Now we
shall show that f(bClδ(U)) ⊆ Cl (G). Assume that y /∈ Cl (G). There exists
an open set W containing y such that W ∩G = ∅. Since f is δ.b.continuous,
f−1(W ) ∈ δBO(X) and f−1(W ) ∩ U = ∅, and hence f−1(W ) ∩ bClδ(U) = ∅.
Therefore, we have W ∩ f (bClδ(U)) = ∅ and y /∈ f (bClδ(U)). As a result, we
have f (bClδ(U)) ⊆ Cl (G) ⊆ V and f is st.θ.δ.b.c.

The next theorem is important. If the range space (Y, ϕ) of a function
f : (X, τ) −→ (Y, ϕ) is regular, then it is stated that st.θ.δ.b.c., δ.b.c., w.δ.b.c.
and f .δ.b.c. are coincide each other.

Theorem 3.17 Let f : (X, τ) −→ (Y, ϕ) be a function and (Y, ϕ) be a
regular space. Then, the following properties are equivalent:

(1) f is st.θ.δ.b.c.;

(2) f is δ.b.c.;

(3) f−1(Clθ(B)) is δ-b-closed set in (X, τ) for every subset B of (Y, ϕ);

(4) f is w.δ.b.c.;

(5) f is f.δ.b.c..
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Proof: (1) =⇒ (2). Let x ∈ X and V be any open subset of (Y, ϕ)
containing f(x). Then, there exists U ∈ δBO(X, x) such that f(bClδ(U)) ⊆ V .
Since U ⊆ bClδ(U), we have f (U) ⊆ f(bClδ(U)) ⊆ V and hence f is δ-b-
continuous.

(2) =⇒ (3). Since Clθ(B) is closed in (Y, ϕ) for every subset B of (Y, ϕ),
f−1 (Clθ(B)) is δ-b-closed in (X, τ) by using Theorem 2.

(3) =⇒ (4). It is obvious from Corollary 8.
(4) =⇒ (5). It is obtained from Corollary 7 and Proposition 9.
(5) =⇒ (1). Let V be any open subset of (Y, ϕ). Since (Y, ϕ) is regular,

V is θ-open in (Y, ϕ). According to the faint δ-b-continuity of f , f−1(V )
is δ-b-open in (X, τ). Therefore, f is δ-b-continuous. Besides since (Y, ϕ) is
regular, f is st.θ.δ.b.c. by using Proposition 10.

We state that faint δ-b-continuity doesn’t imply strong θ-δ-b-continuity
as shown the following example.

Example 3.18 Let f : (X, τ) −→ (Y, ϕ) function is as same as in Example
5. Then, f is faintly δ-b-continuous but not strongly θ-δ-b-continuous.

4 Some Properties and Some Separation

Axioms

In this section, we investigate properties of w.δ.b.c. functions. Of course,
these properties are related to some separation axioms and graphic functions
for δ-b-open sets. So, we have recalled and introduced some definitions.

Theorem 4.1 Let g ◦ f : (X, τ) −→ (Z, ψ) be the composition for two
functions f : (X, τ) −→ (Y, ϕ) and g : (Y, ϕ) −→ (Z, ψ). Then, the following
properties are hold:

(1) If f is w.δ.b.c. and g is continuous, then the composition g◦f is w.δ.b.c..
(2) If f is open continuous surjection and g◦f is w.δ.b.c., then g is w.δ.b.c..

Proof: (1) Let x ∈ X and G be any open subset of (Z, ψ) containing
g(f(x)). Then, g−1(G) is an open set of (Y, ϕ) containing f(x) and there exists
U ∈ δBO(X, x) such that f (U) ⊆ Cl(g−1(G)) by using hypothesis. Since g
is continuous, we obtain (g ◦ f) (U) ⊆ g (Cl(g−1(G))) ⊆ g (g−1(Cl(G))) ⊆
Cl(G). This shows that g ◦ f is w.δ.b.c..

(2) Let G be an open set of (Z, ψ). By hypothesis because of g ◦ f :
(X, τ) −→ (Z, ψ) is w.δ.b.c. and f is continuous, it is obvios that
(g ◦ f)−1 (G) ⊆ Cl(Intδ((g ◦ f)−1 (Cl(G)))) ∪ Int(Cl((g ◦ f)−1 (Cl(G))) =
Cl(Intδ(f

−1(g−1(Cl(G))))) ∪ Int(Cl(f−1(g−1(Cl(G))))). Since f is open
continuous surjection, there exist the following relations:
g−1(G) = f(f−1(g−1(G)))
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⊆ f (Cl(Intδ(f
−1(g−1(Cl(G)))))) ∪ f (Int(Cl(f−1(g−1(Cl(G))))))

⊆ Cl(Intδ(f(f−1(g−1(Cl(G)))))) ∪ Int(Cl(f(f−1(g−1(Cl(G))))))
⊆ Cl(Intδ(g

−1(Cl(G)))) ∪ Int(Cl(g−1(Cl(G)))). Consequently, from
Theorem 2, we obtain g is w.δ.b.c.

Let {Xα | α ∈ ∆} and {Yα | α ∈ ∆} be any two families of spaces with
the some index set ∆. Let fα : Xα −→ Yα be a function for each α ∈ ∆. The
product space Π{Xα | α ∈ ∆} will be denoted by ΠXα and f : ΠXα −→ ΠYα
will be denote the product function defined by f ({xα}) = {fα (xα)} for every
{xα} ∈ ΠXα. Morever, let ρβ : ΠXα −→ Xβ and qβ : ΠYα −→ Yβ be the
natural projections.

As a result of Theorem 12, we give the following theorem.

Theorem 4.2 If a function f : ΠXα −→ ΠYα is w.δ.b.c., then fα : Xα −→
Yα for each α ∈ ∆.

Proof: Assume that f is w.δ.b.c.. Since qβ is continuous, we have qβ ◦
f = fβ ◦ ρβα is w.δ.b.c. by using Theorem 12.1. Besides, since ρβ is is open
continuous surjection, we have fβ is w.δ.b.c. from Theorem 12.2.

Definition 4.3 A topological space (X, τ) is said to be
(1) Urysohn [23] if for each pair of distinct points x and y in (X, τ), there

exist open sets U and V such that x ∈ U , y ∈ V and Cl(U) ∩ Cl(V ) = ∅;
(2) δ-b-T1 [3] if for each pair of distinct points x and y in (X, τ), there

exist δ-b-open sets U and V of (X, τ) containing x and y, respectively, such
that y /∈ U and x /∈ V ;

(3) δ-b-T2[3], [17] if for each pair of distinct points x and y in (X, τ), there
exist δ-b-open sets U and V of (X, τ) containing x and y, respectively, such
that U ∩ V = ∅.

Theorem 4.4 Let f : (X, τ) −→ (Y, ϕ) be a w.δ.b.c. injective function.
Then, the following properties hold:

(1) If (Y, ϕ) is Urysohn, then (X, τ) is δ-b-T2;
(2) If (Y, ϕ) is Hausdorff, then (X, τ) is δ-b-T1.

Proof: (1) Let x1 and x2 be any distinct points in (X, τ). Then f (x1) 6=
f (x2) and there exist open sets V1 and V2 of (Y, ϕ) containing f (x1) and f (x2),
resectively, such that Cl (V1) ∩ Cl (V2) = ∅. Since f is w.δ.b.c., there exists
Ui ∈ δBO(X, xi) such that f (Ui) ⊆ Cl(Vi), for i = 1, 2. Since f−1 (Cl (V1))
and f−1 (Cl (V2)) are disjoint, we have U1∩U2 = ∅. Therefore, (X, τ) is δ-b-T2.

(2) Let x1 and x2 be any distinct points in (X, τ). Then f (x1) 6= f (x2) and
there exist open sets V1 and V2 of (Y, ϕ) such that f (x1) ∈ V1 and f (x2) ∈ V2.
Then, we have f (x1) /∈ Cl (V2) and f (x2) /∈ Cl (V1). Since f is w.δ.b.c., there
esists Ui ∈ δBO(X, xi) such that f (Ui) ⊆ Cl(Vi), for i = 1, 2. Therefore, we
obtain x1 /∈ U2 and x2 /∈ U1. Consequently, (X, τ) is δ-b-T1.
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Theorem 4.5 If f : (X, τ) −→ (Y, ϕ) is w.δ.b.c. and A is θ-closed set
of X × Y , then ρx (A ∩Gf ) is δ-b-closed in (X, τ) where ρx represents the
projection of X × Y onto (X, τ) and Gf denotes the graph of f.

Proof: Let A be a θ-closed set of X × Y and x ∈ bClδ (ρx (A ∩Gf )).
Let U be any open set of (X, τ) containing x and V any open set of (Y, ϕ)
containing f(x). Since f is w.δ.b.c., by Theorem 4, we have x ∈ f−1 (V ) ⊆
bIntδ (f−1 (Cl (V ))) and U ∩ bIntδ (f−1 (Cl (V ))) ∈ δBO(X, x). Since x ∈
bClδ (ρx (A ∩Gf )) by Lemma 1, [U ∩ bIntδ (f−1 (Cl (V )))] ∩ ρx (A ∩Gf ) con-
tains some points y of (X, τ). This shows that (y, f(y)) ∈ A and f (U) ⊆
Cl (V ). Hence we obtain ∅ 6= (U × Cl (V )) ∩ A ⊆ Cl (U × V ) ∩ A and
hence (x, f(x)) ∈ Clθ (A). Since A is θ-closed, (x, f(x)) ∈ (A ∩Gf ) and
x ∈ ρx (A ∩Gf ). Then by using Lemma 1, ρx (A ∩Gf ) is δ-b-closed.

Corollary 4.6 If f : (X, τ) −→ (Y, ϕ) has θ-closed graph and g : (X, τ) −→
(Y, ϕ) is w.δ.b.c., then the set {x ∈ X | f(x) = g(x)} is δ-b-closed in (X, τ).

Proof: Since Gf is θ-closed and ρx (Gf ∩Gg) = {x ∈ X | f(x) = g(x)},
we have that {x ∈ X | f(x) = g(x)} is δ-b-closed by using Theorem 15.

Definition 4.7 A function f : (X, τ) −→ (Y, ϕ) is said to have a δ-b-
strongly closed graph if for each (x, y) ∈ (X × Y )-Gf , there exist a δ-b-open
subset U of (X, τ) and an open subset V of (Y, ϕ) such that (x, y) ∈ (U × V )
and (U × Cl(V )) ∩Gf = ∅.

Theorem 4.8 If (Y, ϕ) is Urysohn space and f : (X, τ) −→ (Y, ϕ) is
w.δ.b.c., then Gf is δ-b-strongly closed.

Proof: Let (x, y) ∈ (X × Y )-Gf . Then y 6= f(x) and there exist open set
V1 and V2 of (Y, ϕ) containing f (x) and y, respectively, such that Cl (V1) ∩
Cl (V2) = ∅. Since f is w.δ.b.c., there exists a δ-b-open subset U of (X, τ)
containing x such that f(U) ⊆ Cl (V1). Hence, we have f(U) ∩ Cl (V2) = ∅
and hence (U × Cl(V2))∩Gf = ∅. This shows that Gf is δ-b-strongly closed.

Theorem 4.9 Let f : (X, τ) −→ (Y, ϕ) be a w.δ.b.c. function such that
have a δ-b-strongly closed graph Gf . If f is injective, then (X, τ) is δ-b-T2.

Proof: Let x1 and x2 be any distinct points in (X, τ). Since f is injective,
f (x1) 6= f (x2) and (x1, f(x2)) /∈ Gf . Since Gf is δ-b-strongly closed, there
exist U ∈ δBO(X, x1), and so f(U) ∩ Cl (V ) = ∅. Since f is w.δ.b.c., there
exists a G ∈ δBO(X, x2) such that f(G) ⊆ Cl (V ). Hence, we have f(U)∩
f(G) = ∅ and hence U ∩G = ∅. This shows that (X, τ) is δ-b-T2.

From now on, we investigate covering properties which is another separation
axiom. Recall that a Hausdorff space (X, τ) is called semicompact [24] at a
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point x if every neighbourhood Ux contains a Vx such that B (Vx), the boundary
of Vx, is compact. Of course, it is called semicompact, if it has this property
at every point.

Theorem 4.10 If f : (X, τ) −→ (Y, ϕ) be a w.δ.b.c. and (Y, ϕ) be a semi-
compact Hausdorff space, then f is δ.b.c..

Proof: Since every semicompact Hausdorff space is regular, we obtain f
is is δ.b.c. by using Theorem 11.

It is well known that Velićko [21] introduced the notion of H-set as the
following. A subset A of a space (X, τ) is said to be an H-set if for every cover
{Uα | α ∈ ∆} of A by open sets of (X, τ), there exists a finite subset ∆0 of ∆
such that A ⊆ ∪{Cl(Uα) | α ∈ ∆0}. This notion is renamed as quasi-H-closed
relative to X by Porter et al. [18].

Definition 4.11 A topological space (X, τ) is said to be

(1) almost compact [13] or quasi-H-closed [18] (resp. almost lindelöf [13])
if every open cover of X has a finite resp. countable) subcover whose closures
cover X;

(2) δb-compact ( resp. δb-lindelöf ) if every δ-b-open cover of X has a finite
(resp. countable) subcover.

Now, we have the following theorem.

Theorem 4.12 For a w.δ.b.c. surjection function f : (X, τ) −→ (Y, ϕ),
then the following properties hold:

(1) If (X, τ) is δb-compact, then (Y, ϕ) is almost compact;

(2) If (X, τ) is δb-lindelöf , then (Y, ϕ) is almost lindelöf .

Proof: (1) Let {Vα | α ∈ ∆} be a cover of Y by open subset of (Y, ϕ). For
each point x ∈ X, there exists α (x) ∈ ∆ such that f (x) ∈ Vα(x). Since f is
w.δ.b.c., there exists a δ-b-open set Ux of X containing x such that f (Ux) ⊆
Cl

(
Vα(x)

)
. The family {Ux | x ∈ X} is a cover of X by δ-b-open subset of X,

and so there exists a finite subset X0 of X such that X = ∪x∈X0Ux. Hence,
we have Y = f (X) = ∪x∈X0Cl

(
Vα(x)

)
. Consequently, this shows that (Y, ϕ)

is almost compact.

(2) This proof is similar to the proof of (1).

Theorem 4.13 If a function f : (X, τ) −→ (Y, ϕ) has a δb-strongly closed
graph Gf , then f (A) is θ-closed in (Y, ϕ) for each subset A which is δ-b-
compact relative to X.
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Proof: Let A be δ-b-compact relative to X and y /∈ f (A). Then, y ∈
(Y−f (A)) and for each x ∈ A we have (x, y) /∈ Gf . So, there exist Ux ∈
δBO(X, x) and an open Vx of (Y, ϕ) containing y such that f (Ux) ⊆ Cl (Vx) =
∅. The collection {Ux | x ∈ A} is a cover of A by δ-b-open subsets of X. Since
A is δ-b-compact relative to X, there exists a finite subset A0 of A such that
A ⊆ ∪{Ux | x ∈ A0}. If we consider V = ∩x∈A0Vx, then we obtain that V is
an open set in (Y, ϕ), y ∈ V and f (A) ∩ Cl (V ) ⊆ [∪x∈A0f(Ux)] ∩ Cl (V ) ⊆
[∪x∈A0f(Ux) ∩ Cl (V )] = ∅. Hence y /∈ Clθ (f(A)) and hence f (A) is θ-closed
in (Y, ϕ).

Definition 4.14 A topological space (X, τ) is said to be δ-b-connected (resp.
γ-connected [6]) if it cannot be written as the union of two nonempty disjoint
δ-b-open (resp. γ-open) sets.

Lemma 4.15 [7] For a topological space (X, τ), the following properties are
equivalent:

(1) (X, τ) is γ-connected,
(2) X cannot be expressed as the union of two nonempty disjoint δ-b-open

sets.

It is obvious that Lemma 22 states a topological space is γ-connected if
and only if it is δ-b-connected.

Theorem 4.16 If f : (X, τ) −→ (Y, ϕ) is w.δ.b.c. surjection and (X, τ) is
δ-b-connected ( γ-connected ), then (Y, ϕ) is connected.

Proof: Assume that (Y, ϕ) is not connected. There exist nonempty open
sets V1 and V2 of (Y, ϕ) such that V1∪ V2 = Y and V1∩V2 = ∅. Then V1 and V2

are clopen in (Y, ϕ). In this state, we obtain f−1 (V1) ⊆ bIntδ (f−1 (Cl (V1))) =
bIntδ (f−1 (V1)) and hence f−1 (V1) is δ-b-open in (X, τ) by using Proposition
3.3. Similarly, we have f−1 (V2) is δ-b-open in (X, τ). Besides, we havef−1 (V1)∪
f−1 (V2) = X, f−1 (V1) ∩ f−1 (V2) = ∅ and f−1 (V1), f−1 (V2) are nonempty.
So, (X, τ) is not δ-b-connected.

We give the following result by using Theorem 23.

Corollary 4.17 If f : (X, τ) −→ (Y, ϕ) is δ.b.c. surjection and (X, τ) is
δ-b-connected ( γ-connected ), then (Y, ϕ) is connected.

Lemma 4.18 Let A and B be subsets of a space (X, τ). If A ∈ δBO (X)
and B ∈ δO(X) , then (A ∩B) ∈ δBO(B).

Proof: SinceA is δ-b-open set andB is δ-open set, we haveA ⊆ Int (Cl (A))∪
Cl (Intδ (A)) and B ⊆ Intδ (B). Then, we obtain

(A ∩B) ⊆ [Int (Cl (A)) ∪ Cl (Intδ (A))] ∩ Intδ (B)
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= [Int (Cl (A)) ∩ Intδ (B)] ∪ [Cl (Intδ (A)) ∩ Intδ (B)]
⊆ [(Int (Cl (A)) ∩ Int (B))] ∪ [Cl(Intδ (A) ∩ Intδ (B))]
= [Int(Cl (A) ∩ Int (B))] ∪ Cl(Intδ (A ∩B)
⊆ Int(Cl (A ∩ Int (B)) ∪ Cl(Intδ[(A ∩B) ∩B])
⊆ Int(Cl[(A ∩B) ∩B]) ∪ Cl(IntδB (A ∩B))
⊆ Int(ClB (A ∩B)) ∪ Cl[IntδB (A ∩B) ∩B]
⊆ Int[ClB (A ∩B) ∩B] ∪ ClB[IntδB (A ∩B)]
⊆ IntB[ClB (A ∩B)]∪ClB[IntδB (A ∩B)]. Of course, this shows

that (A ∩B) is δ-b-open set in subspace (B, τB) of (X, τ).

Theorem 4.19 Let {Uα | α ∈ ∆} be any δ-open cover of a space (X, τ). If
a function f : (X, τ) −→ (Y, ϕ) is w.δ.b.c., then the restriction

Theorem 4.20 Let {Uα | α ∈ ∆} be any δ-open cover of a space (X, τ).
If a function f : (X, τ) −→ (Y, ϕ) is w.δ.b.c., then the restriction f |Uα :
(Uα, τUα) −→ (Y, ϕ) is w.δ.b.c. for each α ∈ ∆.

Proof: Let α be an arbitrary fixed index and Uα be δ-open in (X, τ). Let
x be any point of Uα and V be any open set of (Y, ϕ) containing (f |Uα) (x) =
f (x). Since f is w.δ.b.c., there exists U ∈ δBO(X, x) such that f (U) ⊆ Cl (V ).
Since Uα is open ( δ-open ) in (X, τ), by Lemma 22, (U ∩ Uα) ∈ δBO(X, x)
and (f |Uα) (U ∩ Uα) = f (U ∩ Uα) ⊆ f (U) ⊆ Cl (V ). This shows that f |Uα is
w.δ.b.c..

It is well-known that a topological space (X, τ) is said to be
(a) submaximal [19], [2] if every dense subset of (X, τ) is open,
(b) extremally disconnected [2] if the closure of each open set of (X, τ) is

open.

Theorem 4.21 Let (X, τ) be a submaximal, extremally disconnected space.
If
f : (X, τ) −→ (Y, ϕ) has δb-strongly closed graph, then f−1 (F ) is closed in
(X, τ) for each subset F which is H-set in (Y, ϕ).

Proof: Let F be H-set of (Y, ϕ) and x /∈ f−1 (F ). For each y ∈ F ,
we have (x, y) ∈ (X × Y ) \Gf and there exist a δ-b-open set Uy of (X, τ)
containing x and an open set Vy of (Y, ϕ) containing y such that f (Uy) ∩
Cl (Vy) = ∅ and hence Uy ∩ f−1(Cl (Vy)) = ∅. The collection {Vy | y ∈ F}
is a cover of F by open sets of (Y, ϕ). Since F is H-set in (Y, ϕ), there exists
a finite subset F0 of F such that F ⊆ ∪{Cl(Vy) | y ∈ F0}. Since (X, τ) is
submaximal and extremally disconnected space, for each Uy is an open in
(X, τ) we consider U = ∩y∈F0Uy. Then U is an open set containing x and
f (U) ∩ F ⊆ ∪

y∈F0
[f (U) ∩ Cl (Vy)] ⊆ ∪y∈F0 [f (Uy) ∩ Cl (Vy)] = ∅. Therefore,

we have U ∩ f−1 (F ) = ∅ and hence f−1 (F ) is closed in (X, τ).
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Recall that a topological space (X, τ) is said to be C-compact [22] if for
each closed subset A ⊆ X and each open cover {Uα | α ∈ ∆} of A, there exists
a finite subset ∆0 of ∆ such that A ⊆ ∪{Cl(Uα) | α ∈ ∆0}.

Corollary 4.22 Let f : (X, τ) −→ (Y, ϕ) be a function with a δb-strongly
closed graph, from a submaximal, extremally disconnected space (X, τ) into a
C-compact space (Y, ϕ). Then, f is continuous.

Proof: Let A be a closed subset in the C-compact space (Y, ϕ). Then,
A is an H-set and f−1(A) is closed in (X, τ) by Theorem 28. Hence, f is
continuous.
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[1] D. Andrijević, On b-open sets, Mat. Vesnik, 48(1996), 59-64.

[2] N. Bourbaki, General Topology (Part I), Reading, MA, Addison Wesley,
(1966).

[3] M. Caldas, S. Jafari and T. Noiri, On Λb-sets and the associated topology
τΛb , Acta Math. Hungar., 110(4) (2006), 337-345.

[4] J. Dontchev and M. Przemski, On the various decompositions of continu-
ous and some weakly continuous functions, Acta Math. Hungar., 71(1-2)
(1996), 109-120.

[5] E. Ekici, On e-open sets, DP ∗-sets and DPε∗-sets and decompositions of
continuity, Arab. J. Sci. Eng., 33(2A) (2008), 269-281.

[6] A.A. El-Atik, A study on some types of mappings on topological spaces,
M. Sc. Thesis, Tanta University, Egypt, (1997).

[7] A.K. Kaymakci, On δ-b-open sets, (Submitted).

[8] N. Levine, A decomposition of continuity in topological spaces, Amer.
Math. Monthly, 68(1961), 44-46.

[9] N. Levine, Semi-open sets and semi-continuity in topological spaces,
Amer. Math. Monthly, 70(1963), 36-41.

[10] P.E. Long and L.L. Herrington, The Tθ-topology and faintly continuous
functions, Kyunpook Math. J., 22(1982), 7-14.

[11] A.S. Mashhour, M.E.A. El-Monsef and S.N. El-Deeb, On precontinu-
ous and weak precontinuous mappings, Proc. Math. Physc. Soc., Egypt,
53(1982), 47-53.



Weakly δ-b-Continuous Functions 39

[12] O. Njastad, On some classes of nearly open sets, Pasific J. Math.,
15(1965), 961-970.

[13] T. Noiri, Between continuity and weak continuity, Boll. Unione Mat. Ital.,
9(4) (1974), 647-654.

[14] T. Noiri, Weakly α-continuous functions, Int. J. Math. & Math. Sci.,
10(1987), 483-490.

[15] M. Ozkoc and G. Aslim, On weakly e-continuous functions, Hacettepe J.
of Mathematics and Statistics, 40(6) (2011), 781-791.

[16] J.H. Park, B.Y. Lee and M.J. Son, On δ-semiopen sets in topological
spaces, J. Indian Acad. Math., 19(1) (1997), 59-67.

[17] J.H. Park, Strongly θ-b-continuous functions, Acta Math. Hungar., 110(4)
(2006), 347-359.

[18] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces,
Trans. Amer. Math. Soc., 118(1974), 159-170.

[19] I.L. Reilly and M.K. Vamanamurthy, On some questions concerning pre-
open sets, Kyungpook Math. J., 30(1990), 87-93.

[20] U. Sengul, Weakly b-continuous functions, Chaos, Solitons and Fractals,
41(2009), 1070-1077.
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