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Abstract

In this paper, the solution of a class of fractional Kinetic equation involv-
ing generalized I-function has been discussed. Special cases involving the I-
function, H-function, generalized M-series, generalized Mittag-Leffler func-
tions are also discussed. Results obtained are related to recent investigations
of possible astrophysical solutions of the solar neutrino problem.
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1 Introduction

Developments in the field of nuclear physics in the last few years makes it
possible to decide rather definitely which processes can and which cannot occur
in the interior of stars. The five different fusion paths can be divided into
two sets of processes for the evolution of energy in an ordinary star are pp
(proton-proton) chain and CNO (carbon, nitrogen and oxygen) cycle. The
pp chain is more important in the low-mass star like sun or less, where the
hydrogen converted to helium. CNO cycle depends on the amount of carbon,
nitrogen, and oxygen in addition to the amount of hydrogen and helium in
the star for the greater gravitational force. Theoretical models shows that the
CNO or Catalytic cycle is the dominant source of energy in the star which is
more massive, about 1.3 times the mass of the sun. The CNO process was
independently proposed by Weizsäcker and Bethe in the year 1938 and 1939
respectively. For more details we refer to [1, 2].
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A spherically symmetric, non-rotating, non-magnetic, self gravitating mod-
el of a star like sun assumed to be in thermal and hydrostatic equilibrium, with
a non-uniform chemical composition throughout. For thermal and hydrostatic
equilibrium there is no time dependence in the equation describing the internal
structure of star, the rate of change of chemical composition of a star species
in terms of reaction rates for destruction and production (Kourganoff 1973,
Perdang 1976, Clayton 1983). For details we refer to [3].

Due to the importance of kinetic equation in mathematical physics many
authors have generalized the standard kinetic equation time to time. In the
recent paper of Haubold and Mathai [3] have derived the fractional kinetic
equation and thermonuclear function in terms of well known Mittag-Leffler
function. As an extension of the work of Haubold and Mathai, Saxena et al.
[10] have generalized the standard kinetic equation with generalized Mittag-
Leffler functions. Further, Chaurasia and Kumar [15] generalized and studied
the kinetic equation with generalized M -series of Sharma [7].

Haubold and Mathai [3] have established a functional differential equation
between rate of change of reaction, the destruction rate and the production
rate as follows

dN

dt
= −d(Nt) + p(Nt), (1)

where N = N(t) the rate of reaction, d = d(N) the rate of destruction, p =
p(N) the rate of production and Nt denotes the function define by Nt(t

∗) =
N(t− t∗), t∗ > 0.

They have studied a the special case of (1), for spatial fluctuations or
inhomogeneities in the quantity N(t) are neglected, namely the equation

dNi

dt
= −ciNi(t), (2)

together with the initial condition that Ni(t = 0) = N0 is the number of
density of species i at time t = 0, ci > 0. Dropping the index i and integrate
the standard kinetic equation (2) we obtain

N(t)−N0 = −c0D−1t N(t), (3)

Replacing the Riemann integral operator D−1t by the fractional Riemann-
Liouville operator D−νt [14] in equation (3), we obtain

N(t)−N0 = −c0D−νt N(t), (4)

Haubold and Mathai in [3] found the solution of (4) as follows

N(t) = N0

∞∑
k=0

(−1)k

Γ(νk + 1)
(ct)νk. (5)



42 B.K. Dutta et al.

2 Preliminaries

In this section, we first recall some definitions and fundamental facts of special
function and fractional integral operator.

2.1 Aleph function

In the study of generalized fractional driftless Fokker-Planck equation with
power law diffusion constant, there arises a special function, which is a partic-
ular case of the Aleph function [9, 12]. The idea of Aleph function was first
introduced by Südland et al. [8]. In the recent paper of Saxena and Pogány
[13] studied the Mathieu-type Series for the Aleph-function.

Definition 2.1. The Aleph is define as Mellin-Barnes type contour inte-
grals:

ℵ[z] :=ℵ m,n
pi,qi,ci;r

[
z

∣∣∣∣ (aj, Aj)1,n, [ci(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [ci(bji, Bji)]m+1,qi;r

]
=

1

2πω

∫
L

Ω m,n
pi,qi,ci;r

(ζ)z−ζ dζ (6)

for all z 6= 0, where ω =
√
−1 and

Ω m,n
pi,qi,ci;r

(ζ) =

∏m
j=1 Γ(bj +Bjζ).

∏n
j=1 Γ(1− aj − Ajζ)∑r

i=1 ci
∏pi

j=n+1 Γ(aji + Ajiζ).
∏qi

j=m+1 Γ(1− bji −Bjiζ)
. (7)

The L = Lωγ∞ is a suitable contour of the Mellin-Barnes type which runs
from γ−ω∞ to γ+ω∞ with γ ∈ R, the integers m, n, p, q satisfy the inequality
0 ≤ n ≤ pi, 1 ≤ m ≤ qi, ci > 0; i = 1, · · · , r. The parameters Aj, Bj, Aji, Bji

are positive real numbers and aj, bj, aji, bji are complex numbers, such that the
poles of Γ(bj+Bjζ), j = 1, · · · ,m separating from those of Γ(1−aj−Ajζ), j =
1, · · · , n. All the poles of the integrand (6) are assumed to be simple, and empty
products are interpreted as unity. The existence conditions [12] for the Aleph
function (6) are given below:

ϕk > 0, | arg(z)| < π

2
ϕk; k = 1, · · · , r, (8)

ϕk ≥ 0, | arg(z)| < π

2
ϕk and <{Λk}+ 1 < 0, (9)

where

ϕk =
n∑
j=1

Aj +
m∑
j=1

Bj − ck

(
pk∑

j=n+1

Ajk +

qk∑
j=m+1

Bjk

)
, (10)

Λk =
m∑
j=1

bj −
n∑
j=1

aj + ck

(
qk∑
j=1

bjk −
pk∑

j=n+1

ajk

)
+

1

2
(pk − qk) . (11)
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For ci = 1, i = 1, · · · , r, in (2.1) the Aleph function coincide with the I-
function of Saxena [16, p. 30]. Again for r = 1 and c1 = 1 in (2.1) the Aleph
function reduces to Fox’s H-function. For more details we refer to [12, 9].

2.2 Fractional integral operator

Fractional calculus is a generalization of ordinary differentiation and integra-
tion to arbitrary (non-integer) order. The Riemann-Liouville fractional in-
tegral is the most useful definition of fractional calculus. The expression of
Riemann-Liouville definition will generally arrived from n-fold iterated inte-
gral.

Definition 2.2. The Riemann-Liouville fractional integral operator of order
α define by

0D−αt {f(t)} = 0I
α
t =

1

Γ(α)

∫ t

0

(x− t)α−1f(t)dt, <(α) > 0. (12)

Lemma 2.3. The Laplace transform of Riemann-Liouville fractional deriva-
tive (see in [5, p. 105]) is given by

L{0Dαt f(t); s} = sαF (s)−
n−1∑
k=0

sk
[
0Dα−k−1t f(t)

]
t=0

, n− 1 ≤ α < n. (13)

3 Generalized Fractional Kinetic Equation

Lemma 3.1. The Laplace transform of the ℵ-function as follows

L
{
xλ−1ℵ m,n

pi,qi,ci;r

[
ηxρ

∣∣∣∣ (aj, Aj)1,n, [ci(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [ci(bji, Bji)]m+1,qi;r

]}
= s−λℵ m,n+1

pi+1,qi,ci;r

[
η

sρ

∣∣∣∣ (1− λ, ρ), (aj, Aj)1,n, [ci(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [ci(bji, Bji)]m+1,qi;r

]
, (14)

where λ, s, η ∈ C;<(s) > 0, ρ > 0, ci > 0, i = 1, · · · , r and

<(λ) + ρ min
1≤j≤m

<(bj)

Bj

> 0, | arg(η)| < π

2
min
1≤k≤r

(Λk),

Λk defined in (11).

Proof. For convenience, we denote the left side of (14) by I. Using the
Definition 2.1, we have

I :=
1

2πω

∫ ∞
0

exp(−st)tλ−1
∫
L

Ω m,n
pi,qi,ci;r

(−ζ)(ηxρ)ζ dζdt
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Changing the order of integration, which is permissible under the stated con-
ditions and applying the formula of Laplace transform we have

I : =
s−λ

2πω

∫
L

Ω m,n
pi,qi,ci;r

(−ζ)ηζs−ρζΓ(λ+ ρζ)dζ

After simple adjustment we finally arrived at (14).

Lemma 3.2. From the Lemma 3.1 it is clear that

L−1
{
s−λℵ m,n

pi,qi,ci;r

[
ηsρ
∣∣∣∣ (aj, Aj)1,n, [ci(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [ci(bji, Bji)]m+1,qi;r

]}
= tλ−1ℵ m,n

pi+1,qi,ci;r

[
η

tρ

∣∣∣∣ (aj, Aj)1,n, [ci(aji, Aji)]n+1,pi;r, (λ, ρ)
(bj, Bj)1,m, [ci(bji, Bji)]m+1,qi;r

]
, (15)

where <(s) > 0, ρ > 0, ci > 0, i = 1, · · · , r and

<
(
λ+ ρ min

1≤j≤n

1− aj
Aj

)
> 0, | arg(t)| < π

2
Λk.

Theorem 3.3. If ν > 0, ε > 0, τi > 0, c > 0, d > 0, λ > 0,<(s) > 0, c 6= d
then the generalized fractional kinetic equation

N(t)−N0t
λ−1ℵ m,n

pi,qi,τi;r

[
dtν
∣∣∣∣ (aj, Aj)1,n, [τi(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [τi(bji, Bji)]m+1,qi;r

]
= −c 0D

−ε
t N(t), (16)

has a solution of the form

N(t) =N0t
λ−1

∞∑
k=0

(−ctε)k

ℵ m,n+1
pi+1,qi+1,τi;r

[
dtν
∣∣∣∣(1− λ, ν), (aj, Aj)1,n, [τi(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [τi(bji, Bji)]m+1,qi;r, (1− λ− εk, ν)

]
(17)

Proof. Taking Laplace transform on the both side of (16) and using
Lemma 2.3 and 3.1 and solving for N (s) = L[N(t); s] we get

N (s) =
N0s

−λ

1 + cs−ε
ℵ m,n+1
pi+1,qi,τi;r

[
d

sν

∣∣∣∣ (1− λ, ν), (aj, Aj)1,n, [τi(aji, Aji)]n+1,pi;r

(bj, Bj)1,m, [τi(bji, Bji)]m+1,qi;r

]
(18)

Taking inverse Laplace transform on both side of (18) and using Lemma 3.2
we get

N(t) = N0t
λ−1

∞∑
k=0

(−ctε)k

ℵ m,n+1
pi+1,qi,τi;r

[
ds−ν

∣∣∣∣(1− λ, ν), (aj, Aj)1,n, [τi(aji, Aji)]n+1,pi;r, (λ+ εk,−ν)
(bj, Bj)1,m, [τi(bji, Bji)]m+1,qi;r

]
After little arrangement we finally arrived at the desired result (17).
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3.1 Special case

When τi = 1, i = 1, · · · , r, then we arrive the result

Corollary 3.4. If ν > 0, ε > 0, d > 0, λ > 0,<(s) > 0, c 6= d then the
solution of integral equation

N(t)−N0t
λ−1Im,npi,qi+1;r

[
dtν
∣∣∣∣ (aj, Aj)1,n, (aji, Aji)n+1,pi

(bj, Bj)1,m, (bji, Bji)m+1,qi , (1− λ, ν)

]
= −c 0D

−ε
t N(t), (19)

there holds the formula

N(t) =N0t
λ−1

∞∑
k=0

(−ctε)k

Im,npi,qi+1;r

[
dtν
∣∣∣∣ (aj, Aj)1,n, (aji, Aji)n+1,pi

(bj, Bj)1,m, (bji, Bji)m+1,qi , (1− λ− εk, ν)

]
, (20)

For the existence conditions of I-function we refer to the book of Saxena [16].

When r = 1 and τ1 = 1, p1 = p, q1 = q, then we arrive the result

Corollary 3.5. If ν > 0, ε > 0, d > 0, λ > 0,<(s) > 0, c 6= d then the
solution of integral equation

N(t)−N0t
λ−1Hm,n

p,q+1

[
dtν
∣∣∣∣ (aj, Aj)1,p

(bj, Bj)1,q, (1− λ, ν)

]
= −c 0D

−ε
t N(t), (21)

there holds the formula

N(t) = N0t
λ−1

∞∑
k=0

(−ctε)kHm,n
p,q+1

[
dtν
∣∣∣∣ (aj, Aj)1,p

(bj, Bj)1,q, (1− λ− εk, ν)

]
, (22)

For the existence conditions of H-function we refer to the book of Srivastava
et al. [4].

When r = 1 and τ1 = 1, p1 = p, q1 = q and replacing c, d by cν , dν

respectively, then we arrive the result

Corollary 3.6. If ν > 0, ε > 0, c > 0, d > 0, λ > 0,<(s) > 0, c 6= d then the
solution of integral equation

N(t)−N0t
λ−1

p

ν,λ

M q(a1, · · · , ap; b1, · · · , bq,−dνtν) = −cν0D−νt N(t), (23)

there holds the formula

N(t) = N0t
λ−1

∞∑
r=0

(−1)r(ct)νrp
ν,λ+rν

M q(a1, · · · , ap; b1, · · · , bq,−dνtν) (24)
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Which is the main result obtained by the Chaurasia and Kumar [15].

When r = 1, pi = qi = 0, τ1 = 1, ν = ε, and replacing c, d by cν , dν

respectively, then we arrive the results

Corollary 3.7. If ν > 0, d > 0, c > 0, λ > 0,<(s) > 0, c 6= d then the
solution of integral equation

N(t)−N0t
λ−1Eν,λ(−dνtν) = −cν0D−νt N(t), (25)

there holds the formula

N(t) = N0
tλ−ν−1

cν − dν
[Eν,λ−ν(−dνtν)− Eν,λ−ν(−cνtν)] (26)

Which is the result obtained by the Saxena et al. [10].

Corollary 3.8. If ν > 0, c > 0, λ > 0,<(s) > 0 then the solution of integral
equation

N(t)−N0t
λ−1Eν,λ(−cνtν) = −cν0D−νt N(t), (27)

there holds the formula

N(t) = N0
tλ−1

ν
[Eν,λ−1(−cνtν) + (1 + ν − λ)Eν,λ(−cνtν)] (28)

Which is the result obtained by the Saxena et al. [10].

When r = 1, pi = qi = 0, τ1 = 1, ν = ε, and replacing c, d by cν , dν

respectively, then we arrive the result

Corollary 3.9. If ν > 0, c > 0, λ > 0,<(s) > 0 then the solution of integral
equation

N(t)−N0t
λ−1Eγ

ν,λ(−c
νtν) = −cν0D−νt N(t), (29)

there holds the formula

N(t) = N0t
λ−1 [Eγ+1

ν,λ (−cνtν)
]
. (30)

Which is the result obtained by the Saxena et al. [11].

4 Conclusion

Aleph function is general in nature and includes a number of known and new
results as particular cases. This extended fractional kinetic equation can be
used to compute the particle reaction rate and may be utilized in other branch
of mathematics. Results obtained in this paper provide an extension of [3, 10,
11, 15].
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