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Abstract 

     In this paper, we have studied the nerve impulse (action potential impulse), 
and amplitude of the nerve impulse, and then we attempt to fit a catastrophic 
model for the differential equation which represents the Nerve cell behavior 
specially excitation of the nerve cell and its catastrophic phenomena by methods 
of catastrophe theory. The main aim of this paper is to find a catastrophe model 
to represent the catastrophic behavior of nerve cells, and we have shown that 
there is a catastrophic behavior of the nerve cell and that there is a mathematical 
model to represent a Nerve Cell behavior. Furthermore,   Nerve behavior is of 
Cusp type Catastrophe. 

     Keywords: Nerve Cell behavior, Mathematical Catastrophe, Catastrophic 
Model, Cell Membrane.   

 

1 Introduction 
 
In this paper, we have illustrated the synaptic and local potentials on the folding 
part of the cusp surface where x is the Nerve impulse parameter that control the 
frequency depending on the parameter “α” which appears in the differential 
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equation and control jumps of the excitation of Nerve cell when the parameter 
crosses the bifurcation set (BS). We divided this paper into seven sections the first 
section is the introductory, in section 2 we studied catastrophe theory-elementary 
catastrophes, In section 3 we studied application of catastrophic model to 
represent a nerve cell and we studied the Nerve cell and its behavior. Also we 
studied the nonlinear differential equation which has a relationship with Nerve 
cell behavior.  In Catastrophe Theory, manifolds are used to explain sudden 
changes in the course of an event due to shifts in environmental factors. In 
catastrophe theory: There are seven elementary types of catastrophes the first four 
catastrophe geometries [7] are: Fold, Cusp, Swallowtail, and Butterfly 
catastrophe. Without going into the mathematics of their geometry, we need only 
to observe that the Cusp manifold has one cusp point, which is the point of 
coming together of two folds in a sharp spike like intersection. The Swallowtail 
manifold has two cusp points and the Butterfly manifold has three.  Catastrophe 
theory, in mathematics, a set of methods used to study and classify the ways in 
which a system can undergo sudden large changes in behavior as one or more of 
the variables that control it, are changed continuously. Catastrophe theory is 
generally considered as a branch of geometry because the variables and resultant 
behaviors are usefully depicted as curves or surfaces, and the formal development 
of the theory is credited chiefly to the French topologist René Thom. 
Catastrophe theory is a branch of bifurcation theory in the study of dynamical 
systems. 
Bifurcation theory studies phenomena characterized by sudden jumps in behavior 
arising from small changes in parameters, analyzing how the qualitative nature of 
equation solutions depends on the parameters that appear in the equation.  
Catastrophe theory, which originated with the work of the French mathematician 
René Thom in the 1960s, and became very popular due to the efforts of 
Christopher Zeeman in the 1970s, considers the special case where the long-run 
stable equilibrium can be identified with the minimum of a smooth, well-defined 
potential function. 
Small changes in certain parameters of a nonlinear system can cause equilibriums 
to appear or disappear, or to change from attracting to repelling and vice versa 
[10], leading to large and sudden changes of the behavior of the systems. 
 

2      Elementary Catastrophes 
 
Catastrophe theory analyses degenerate critical points of the potential function 
i.e. points where not just the first derivative, but one or more higher derivatives of 
the potential function are also zero. These points are called germs. 
If the potential function depends on two or fewer active variables, and four or 
fewer active parameters, then there are only seven generic structures for these 
bifurcation geometries, with corresponding standard forms into which the Taylor 
series around the catastrophe germs can be transformed by diffeomorphism (a 
smooth transformation whose inverse is also smooth). There are seven 
fundamental types, with the names that system will make a transition to a new 
case, very different behavior[7]. 
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2.1 The Potential Function of Cusp Type Catastrophe 
 
The potential function of Cusp type catastrophe is of the form 
 
f(x)=x4+ax2+bx 
 
The parameters a and b are called splitting and normal factors (respectively) 
 

Let  0278 23 =+=∆ ba  
 
The bifurcation set is equal to the set[10]  

}0278:).{( 23 =+ baba  
 
The diagram of cusp type catastrophe is shown below.  
Thom gave them. We will study only cusp types 
If the factor a is slowly increased, the system can follow the stable minimum 
point. But at a=0, the stable and unstable extrema meet. This is the bifurcation 
point. At a>0 there is no stable solution. If a physical system is followed through a 
fold bifurcation, one therefore finds that as a reaches 0 the stability of the a<0 
solution is suddenly lost 
The potential function of the fold type catastrophe is of the form: 

V(x)=x3+ ax.   So ax
dx

dv += 23 .The equilibrium surface  

 

is 03..,0 2 =+= axei
dx

dV
.  Stable and unstable pair of extrema disappears at a  

fold bifurcation 
 

3 Applications 
 
Scientists often describe events by constructing a mathematical model. Indeed, 
when such a model is particularly successful, it is said not only to describe the 
events but also to explain them, if the model can be reduced to a simple equation. 
It may even be called a law of nature.  
Many phenomena of human behavior involve sudden changes, bimodality, 
hysteresis, and divergence. Catastrophe theory suggests several models for such 
behavior. A description of catastrophe theory is presented that includes points of 
special interest to psychologists and a section on mathematical considerations.  If 
we attempt to find results in science we will to fit a mathematical model to it and 
then we project them to science.   
 
Now we study a catastrophic model to represent a nerve cell as follows: 
 
 



38             Mohammed Nokhas Murad Kaki 
 

 

3.1 Catastrophic Model to Represent a Nerve Cell  
3.1.1 Nerve Cell 
 
The Main Parts of the Nerve Cell [9] 
 
The nerve cell may be divided on the basis of its structure and function into three 
main parts:  
(1) the cell body, also called the soma;  
(2) numerous short processes of the soma, called the dendrites; and,  
(3) the single long nerve fiber, the axon.  
 
These are described in Figure 1.  
 
3.1.2 Nervous System    
 
Nervous system, network of specialized tissue that controls actions and reactions 
of the body and its adjustment to the environment. Virtually all members of the 
animal kingdom have at least a rudimentary nervous system. Invertebrate animals 
show vertebrate varying degree of complexity in their nervous systems, but it is in 
the   vertebrate animals [phylum chordate, subphylum vertebrata] that the system 
reaches its greatest complexity. The nervous system is built up of nerve cells, 
called neurons, which are supported and protected by other cells. Of the 200 
billion or so neurons making up the human nervous system, approximately half 
are found in the brain. From the cell body of a typical neuron extend one or more 
outgrowths (dendrites), threadlike structures that divide and subdivide into ever-
smaller branches. The nervous system is divided into two parts: Central Nervous 
System (CNS) and Peripheral Nervous System. Unit bolding of nervous system is 
a neuron and the nervous system of human consists of two main types of cells: 
Glia cells and Neurons. Neuron consists of cell body and axon. cell body consists 
Nucleons and has dendrites which have relationship for transition or reception the 
impulse and the cell body receives the electrical impulse from other neurons by 
their dendrites .The body of a nerve cell (see also (Schadé and Ford, 1973)) is 
similar to that of all other cells. The cell body generally includes the nucleus, 
mitochondria, endoplasmic reticule, ribosome, and other organelles. Nerve cells 
are about 70 - 80% water; the dry material is about 80% protein and 20% lipid. 
The cell volume varies between 600 and 70,000 µm³. (Schadé and Ford, 1973) 
The short processes of the cell body, the dendrites, receive impulses from other 
cells and transfer them to the cell body. The effect of these impulses may be 
excitatory or inhibitory (see Fig 2). A cortical neuron may receive impulses from 
tens or even hundreds of thousands  
of neurons (Nunez, 1981). The long nerve fiber, the axon, transfers the signal 
from the cell body to another nerve or to a muscle cell. Mammalian axons are 
usually about 1 - 20 µm in diameter. Some axons in larger animals may be several 
meters in length. The axon may be covered with an insulating layer called the 
myelin sheath [Fig 1] illustrates the construction of  myelin sheath) which is 
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formed by Schwann cells(1) The myelin sheath is not continuous but divided into 
sections, separated at regular intervals by the nodes of Ranvier(2) 
 
 (1) named for the German physiologist Theodor Schwann, 1810-1882, who first 
observed the myelin sheath in 1838). 
 
(2) named for the French anatomist Louis Antoine Ranvier, 1834-1922, who 
observed them in 1878. 

 

 

Fig. 1 

Nervous system, the system of cells , tissues , and organs that  regulates the body's 
responses to Nervous system internal and external stimuli vertebrates it consists of 
the brain, spinal cord, nerves, ganglia, and parts of the receptor and affect or 
organs.  Axon expands from cell body and transfers the electrical impulse from 
Neuron. The axon surrounded by Myelin sheaths which a nonconductor material 
and nessasur for transferring electrical impulse .The collection of axons with each 
other make the nerves, and nerves are divided into two types: Pre-Ganglion 
Nerves and Post-Ganglion Nerves.[9] 
Axons expend at their ends into synaptic terminals which make contact with 
nerves or other types of cells. if the nerves contacts a muscle cell the junction is 
called a nervous cular junction . Each nerve cell makes contacts with thousands of 
other nerves. Usually at the dendrites we note that the chemical transmitters carry 
the signal across synopses. At the synaptic gap the action potential ends. In most 
cases further transmission of the signals requires chemical transmitter. there are a 
few examples of electrical synapses known, but most are chemical, synapses 
delay the signal : chemical transmission is slower than electrical transmission, 
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chemical transmitters are made and stored in the presynaptic terminal .The nerve 
carrying the impulse into the synapse is called the presynaptic nerve  
The nerve leaving the synapse is called the postsynaptic nerve (the Fig below 
illustrates the Electrical and Chemical Transmission)  

 

 
 
* For transmission to occur the chemical transmitter must be made and stored at 
the presynaptic side. 
 
*1 Stored in membrane bound vesicles  
*2 Transmitter is ready to be released whenever an action potential arrive   
 
Excitatory postsynaptic potential: An electrical change in the membrane of a 
postsynaptic neuron caused by the binding of an excitatory neuron transmitter 
from a presynaptic receptor, makes it move likely for a postsynaptic neuron to 
generate an action potential because the transmitter is only on one side the 
impulse can go in only one direction [6]. 
 
3.1.3. Nerve and Muscle Cells: 
      
An important physical property [1] of the membrane is the change in sodium 
conductance due to activation, the higher the maximum value achieved by the 
sodium conductance, the higher value of the sodium ion current and the higher the 
rate of change in the membrane voltage .the result is a higher gradient of voltage, 
increased local currents, faster excitation, and increased conduction velocity. The 
decrease in the threshold potential facilitates the triggering of the activation 
process. 
The capacitance of the membrane per unit length determines the amount of 
change required to achieve a certain potential and therefore affects the time 
needed to reach the threshold. Large capacitance values, with other parameters 
remaining the same, mean a slower conduction velocity.  The velocity also 
depends on the resistivity of the medium inside and outside the membrane since 
these also affect the depolarization time constant. The temperature greatly affects 
the time constant of the sodium conductance; a decrease in temperature decreases 
the conduction velocity [1]. 
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The above effects are reflected in an expression derived by Muler and Markin 
(1978) using an idealized nonlinear ionic current function for the velocity of the 
propagating nerve impulse in unmyelinated axon, they obtained  
 

  
 
Where   v= velocity of the nerve impulse (m/s) . 
              iNa max  = maximum sodium current per length (A/m) . 
             Vth  = threshold voltage ( V ) . 
             ri  = axial resistance per unit length(  /m ) . 
             cm  = membrane capacitance per unit length ( F/m ) . 
 
A myelinated axon can produce a nerve impulse only at the nodes of rangier. In 
these axons the nerve impulse propagates from one node to another. 
The membrane capacitance per unit length of a myelinated axon is much smaller 
than in an myelinated axon. Therefore, the myelin sheath [Fig 5] increases the 
conduction velocity. The resistance of the axoplansm per unit length is inversely 
proportional to the cross-sectional area of the axon and thus to the square of the 
diameter. the membrane capacitance per unit length is directly proportional to the 
diameter . Because the time constant formed from the product controls the nodal 
trans- membrane potential, it is reasonable to suppose that the velocity would be 
inversely proportional to the time constant. On this basis the conduction velocity 
of the myelinated axon should be directly proportional to the diameter of the axon. 
 
3.1.4 Bioelectric Function of the Nerve Cell  
 
The membrane voltage (Vm) of an excitable cell is defined as the potential at the 
inner surface (Φi) relative to that at the outer (Φo) surface of the membrane, i.e. Vm 
= (Φi) - (Φo). This definition is independent of the cause of the potential, and 
whether the membrane voltage is constant, periodic, or no periodic in behavior. 
Fluctuations in the membrane potential may be classified according to their 
character in many different ways. The classification for nerve cells developed by 
Theodore Holmes Bullock (1959)[9]. According to Bullock, these transmembrane 
potentials may be resolved into a resting potential and potential change due to 
activity. The latter may be classified into three different types [9]:  
 
1. Pacemaker potentials: the intrinsic activity of the cell which occurs without 
external excitation.  
2. Transducer potentials across the membrane, due to external events. These 
include generator potentials caused by receptors or synaptic potential changes 
arising at synapses. Both subtypes can be inhibitory or excitatory.  
3. As a consequence of transducer potentials, further response will arise. If the 
magnitude does not exceed the threshold, the response will be no propagating. If 
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the response is great enough, a Nerve impulse [9] will be produced which obeys 
the all-or-nothing law and proceeds unattenuated along the axon or fiber. 

 

Fig. 2 

3.1.5 The Cup Catastrophe and its Properties [9] 
 
The general form of the cusp catastrophe is[7]: 
 
            V: R3

→ R  
 
Such that 
 

bxaxxbaxV ++= 24),,(   
 
And a, b are parameters, depending on which the excitation value increases or 
decreases as the values of a and b varying.           
The set {(a, b) є R2} is called Control space (see Fig 3). The catastrophic surface 
(see Fig 3) is represented by the expression'[7]: 
 

                        
,  0 v =

∂

∂

x
 

That is,  
                        4x3 + 2a x +b = 0. 
 
We are considering (V) and (x) also to be functions of the control variables a, b. 
Note that a, b are called splitting factor, normal factor respectively and x is the 
state. The curve (the boundaries of excitation catastrophe) of folding part 
represented by the expressions [7]:  
 
 



Mathematical Catastrophe with Applications            43 

 

                                                                    

00
2

2

=
∂

∂
=

∂

∂

x
v

x
v and  

 
When we eliminate the variable x in these two equations we obtain the bifurcation 
set {(a, b) :8a3+27b2=0}  this curve is the boundaries of cell excitation 
catastrophe.  
• The input (control) space is two-dimensional; the two control parameters 

are named a and b.  
• The output space is one-dimensional (the nerve impulse). 
  
In a three-dimensional space data are put together on a surface which seems split. 
Above some parts of the control space, there are two sheets of the data surface 
(see Fig 3). When the representative point of the system 
 
• goes on the rip, it jumps from one sheet to the other one.  
• The fig. 3 describes the cusp surface. There are jumps but there is also 

continuous pathway from green to blue.  
• The green color is meant the maximum value of the excitation of nerve 

cell the blue color is meant the minimum value of the excitation, which 
jumps from one sheet to the other one. 

• One can fit a cup catastrophic model in the Brain.  
• Now, we have to interpret this split surface.  

 

Fig. 3 The cusp as a model for the nerve impulse behavior 

The excitation potential V is a function of x and controlled by a and b, what we 
write Va,b(x). The system may only choose x. We know that the system have two 
possible behavior for some inputs; so we are searching for excitation potential 
Va,b(x) which may have two minima (see Fig 6).   
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3.1.6 Nonlinear Differential Equation and Nerve System: 
 
The general form of the nonlinear differential equation of the nerve impulse 
considered here is written as follows:- 

    +
••

y ε α +
•

y y + ε α y
3
=ε(1-α)cosωt  .              ( ≡• d/dt )                    (6.1) 

 
Where ε is very small parameter. 
 
If ε=0 then we have the linear form in which case we are note interested because 
catastrophic behavior of the nerve cell appear only in the nonlinear differential 
equation.  
For ε≠0 , we proceed to obtain the approximate solution of equation (6.1) as 
follows  

        Let =
•

y v                                                                                            (6.2) 

 
And, from equations 6.1 and 6.2, we have  

        −=•
v  ε α −

•

y  y - ε α y
3
+ε(1-α)cosωt                                               (6.3) 

 
 
To satisfy equations 6.2 and 6.3, we further assume that  
 
    y(t)=A cos(ωt+¢)                                                                                     (6.4)a 

    v(t)=-A sin(ωt+¢)                                                                                     (6.4)b 
 
where A is considered as a nerve impulse amplitude.  
 
Substitute eq.s (6.4)a  and (6.4)b into (6.2) and (6.3) we can find two 
simultaneous equations ,solving them we can find the non-autonomous systems  

A
•

  and φ
•

 and  integrating w.r.t the time t from 0 to 2π/ω. 

 
We get  the following response equation[8]:  
 

     A2(¾αA2-2ω)2=(1-α)2-α2A2                                                                    (6.5) 
 
let x = A2  then after some calculation  we get  
 
     3/4αx3 – 3αωx2 + (4ω2 + α2)x - (1 – α)2 =0                                              (6,6) 
 
By some change of coordinate we can eliminate the term which contains x2 then 
(6.6) becomes  
 
       x3 –16/3[ω2- (ω2/α) – 1/4α] x + 16/9(ω2 + ωα) = 0                                  (6.7) 
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Here we note that the change in α cause the change in frequency value. 
 
Or         x3 + ax + b =0                                                                                     (6.8) 
 
Where  
         a= –16/3[ω2- (ω2/α) – 1/4α]    and         b= 16/9(ω2 + ωα) 
The cubic equation (6,8)  can  have one  or three real roots (synaptic or Local 
potentials as shown on Fig 4 ) and the condition for the existence of  three real 
roots is[8]  

0274 23 <+ ba  

 

 
Fig. 4 

The surface represented by equation (6.8) can be plotted as shown on figure 5  

 

Fig 5 Illustrates the Nerve impulse (triple curve) as shown on Fig 4 
 
Now, after integration of equation (6.8) with respect to x , the excitation potential 
function is obtained  as follows:  
 V(x,a,b) = 1/4x4 + 1/2ax2 + bx                                                                    (6.9)                                      
x is the amplitude of the Nerve impulse  
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Fig 6 Discuses the catastrophic surface and behavior of potential function (6.9) 

 

4 Conclusion 
 
There are the main results of the paper 
 
Proposition 1 There is a catastrophic behavior of the nerve cell 
Proposition 2 There is a mathematical model to represent a Nerve cell behavior 
Proposition 3 Nerve behavior is of Cusp type Catastrophe 
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