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Abstract 

     In this paper, a new formula of the spectral differentiation matrices is 
presented. Therefore, the numerical solutions for higher-order differential 
equations are presented by expanding the unknown solution in terms of monic 
Chebyshev polynomials. The resulting systems of linear equations are solved 
directly for the values of the solution at the extreme points of the Chebyshev 
polynomial of order N. The round-off errors during the calculations of 
differentiation matrices elements are studied. A number of numerical examples 
are provided in order to show the advantages of the suggested differentiation 
matrices through comparisons with other works. 

     Keywords: Monic Chebyshev polynomials, differentiation matrix, round-off 
error analysis. 
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1  Introduction 
 
The concept of the spectral methods is developed in the last few decades and it 
has proven to be a very useful tool in the numerical solution of differential 
equations (DEs) [6,18]. The high-order ordinary differential equations arise in 
many applications. Examples include the transverse vibration of a uniform beam 
that can be modeled by a fourth-order ODE; the vibration behavior of a ring-like 
structure by a sixth-order ODE [13,21]; the bending of a cylindrical barrel shell by 
an eighth-order ODE [14]; and the thermal instability of a horizontal layer of a 
fluid heated from below under the effect of rotation and a magnetic field by a 
higher order ODE [3,4,7]. In additional, many engineering problems, such as the 
deformation of a thin plate and the motion of a fluid, are governed by fourth-order 
partial differential equations (PDEs). Recently, such algorithms have been 
designed, both for higher-order differential equations and more general first-order 
systems [9,10]. Generally, problems involving high-order ODEs and PDEs are 
more difficult to solve than those with second-order ODEs and PDEs, 
respectively.  
The differentiation matrices are now a popular tool for the solution of many types 
of ordinary differential equations [12]. In recent formulation, the basic idea is to 
represent the solution �(�) by means of a truncated Chebyshev expansion, and to 
compute spatial derivatives of �(�) by analytic differentiation of the series [1].  
The difficulty with these problems lies not in the approximation of the differential 
equation, but in the fact that the resulting system of equations for the coefficients 
of the Chebyshev series of ��(�)/�� is dense. Gaussian elimination would 
require O(N3) operations, where N is the number of Chebyshev nodes used in the 
discretization. Unfortunately, for many situations of interest, complex behavior of 
the solution causes the condition number of the higher-order problem and the 
number of iterations to be large, so that direct methods would be preferable 
provided that an O(N) or O(N log N) operation count could be maintained. Also, 
there are a number of difficulties associated with its use. For boundary value 
problems, the set of the collocation points is related to the set of basis functions as 
nodes of the quadrature formula which are used in the computations of the 
spectral coefficients. Furthermore, this approach involves the solution of very ill-
condition linear systems of equations [12]. For instance, the condition number of 
the pseudospectral first-order operator is proportional with �	; while the 
condition number for the second-order operator typically scales like �
 [11]. 
The linear map �(�) is known as the spectral differentiation matrix. The process 
of obtaining approximations to the derivative of a function at collocation points �� 
can be expressed as a matrix-vector multiplication. Spectral 
collocation/pseudospectral methods [5, 18] are known to have the capability to 
proven an exponential rate of convergence as the grid is refined or the degree of 
the interpolation polynomial is increased.  
There are many works which have introduced an efficient differentiation matrices 
such as [1,2,17]. Recently, the authors in [10] introduce a new explicit expression 
of differentiation matrices by using an explicit formula for the derivatives of 
Chebyshev polynomials at Chebyshev Gauss- Lobatto (CGL) points. While the 
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authors in [9] have introduced an attempt to new differentiation matrix based on 
ultraspherical polynomials using two different sets of collocation points. 
In matrix-vector multiplication, the total number of operations are 2�	, while, the 
matrix product can be computed in �	 operations by using Solomonoff’s 
algorithm [16]. It is important to remark that for large � the direct implementation 
of �(�)presented in [1] suffers from cancellation, causing large errors in the 
elements of the matrix �(�).  
The authors in [1] show that the absolute error in the evaluation of element ��� is 
of order �(�
�), where � is the machine precision. In this work, we provide an 
improvement of order �(�	�). 
The aim of this work is to present a technique to reduce the condition number of 
higher-order differentiation matrices as well as rounding occurred in large scale 
of �(�). For this reason, this works present two main ideas: First, we investigate 
the monic Chebyshev approximations based on monic polynomials to avoid large 
quantity of the rounding in higher-order derivatives. Second, a direct 
implementation of  �(�)  are presented by using the previous implementation of  �(���) without using matrix-matrix multiplication. Regarding to these, the monic 
Chebyshev polynomials are used here as a basis function to obtain the monic 
Chebyshev approximations at Chebyshev Gauss- Lobatto (CGL) points ��. 
Moreover, the proposed method will be used to approximate the derivatives of 
some test functions and to obtain the numerical solutions of boundary value 
problems of higher-order differential equations. 
The rest of the paper is organized as follows. In section 2, the definitions of monic 
Chebyshev polynomials and some properties are introduced; also the monic 
Chebyshev differentiation matrices are presented. A new implementation of 
computing the higher orders of differentiation matrices are presented in section 3. 
The round off errors resulting during computing the entries of the first three 
differentiation matrices are analyzed, also we introduce some techniques to reduce 
the round off errors and test functions in section 4. Some illustrative numerical 
results of boundary value problems of higher-order differential equations are 
presented in section 5. The final section is for some concluding remarks. 

 
2 The Monic Chebyshev Differentiation Matrices 
 
The classical expiration of differentiation matrix is: [15] 
 

                                   ���(�) =

��
��
�
���
�   2�	 + 16 ,              = ! = 0,

− 2�	 + 16 ,             = ! = �,
− ��2(1 − ��	) ,  = ! ≠ 0,

%�%�
12(�� − ��) ,     ≠ !,

                                        (1)     & 
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where �� = %'( �)�  ,  = 0,1, … , � is the Chebyshev Gauss-Lobatto (CGL) points 

and %� = %� = 2 and  %� = 1 for  = 1, … , � − 1. 
The monic Chebyshev polynomials of degree + (+ = 1,2, … ) on [−1,1] are 
defined by the formula: ./(�) = 2��/ %'((+%'(���). 
 
Clearly, |./(�)| ≤ 1 for � ∈ [−1,1]. 
By the definition, and using elementary trigonometric identities, the recurrence 
relation are given by  

                                   .�(�) = 1,   .�(�) = �,   .	(�) = �	 − �	 ,  
and         ./(�) = � ./��(�) − 1/4 ./�	(�),    + > 2. 
 
The first few monic Chebyshev polynomials are: 
                                              .5(�) = �5 − 3/4                                              .
(�) = �
 − �	 + 1/8 ,                                              .8(�) = �8 − 5 4: �5 + 5/16 � ,                                              .;(�) = �; − 3/2 �
 + 9/16 �	 −  1/32 . 
 
Therefore, the monic Chebyshev polynomials form a complete orthogonal set on 

the interval −1 ≤ � ≤ 1 with respect to the weighting function(�) = (1 − �	)�=> . 
The Rodrigue's formula of the monic Chebyshev polynomials given by 
 

./(�) = 2(−1)/+!(2+)! @1 − �	 �/
��/ (1 − �	)/� �	 .   

 
Let A	(−1,1) be the space of square integrable function defined on [−1,1]. The 
monic Chebyshev polynomials constitute an orthogonal basis with respect to the 
inner product: 

     〈.�, .�〉D = E .�(�).�(�)F(�)����� =  
���
�� 0                       ≠ !

2��	�G      = ! ≠ 0
G                 = ! = 0

&                         (3)                                        

for the continuous orthogonality, and 
 

 〈.�, .�〉D = H .�
���
IJ�

KLI,�M.�KLI,�M =
���
�� 0                          ≠ !

2��	��        = ! ≠ 0 
�                 = ! = 0.

&                              (4) 
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for the discrete orthogonality, where LI,� = cos (	IQ�	� G) , R = 0,1, … , � − 1 are 

the � zeros of .�(�). 
Now, let �(�) is a smooth function approximated by the monic Chebyshev series 
as the following: 

                                        �(�) = H S/./(�),                                                           (5)∞

/J�
 

 
Then the m-th derivatives of �(�) has series expansion of the form: 
 

                              �(T)(�) = H S/(T)./(�),∞

/J�
                                                       (6) 

 

where the relation between the coefficients S/(T) and S/ is given by Doha [8], 
 

S/(T) = 2T
(U − 1)! %/ H (R + U − 2)! (+ + R + U − 2)! (+ + 2R + U − 2)(R − 1)! (+ + R − 1)!

∞

IJ�
 S/Q	IQT�	,  

(7) 
where %� = 2, %T = 1, U ≥ 1, + ≥ 0. 
The relation between the monic Chebyshev polynomials and their derivatives are 
presented in the next theorem. However, the author in [8] has been introduced the 
similar results but he used the ultraspherical polynomials as a basis function. 
 
Theorem 2.1 The derivatives of the monic Chebyshev polynomials are given by  
 

                               ./(T)(�) = H XI/T/�T
IJ�(IQ/�T)YZY/

.I(�),    R ≥ U,                         (8) 

with 

                        XI/T = 2T+( − 1)! %I
(( − R + U − 1)! (( + U − 1)!(()! (( − R)!                       (9) 

where  2( = + + R − U. 
 
Proof.     The m-th derivative of (5) is given by 
 

                                                            �(T)(�) = H S[.[(T)(�).∞

[JT
                               (10) 

From (7) and (6) we get: 
 �(T)(�) = 
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H 2T
(U − 1)! %I H (+ + U − 2)! (R + + + U − 2)! (R + 2+ + U − 2)(+ − 1)! (R + + − 1)!

∞

/J�
∞

IJ�
SIQ	/QT�	.I(�). 

 
 
If we set \ = R + 2+ + U − 2 and 2] = \ + R − U we get 
                                           �(T)(�)

= H 2T
(U − 1)! %I H Î[T.I(�),                     (11)∞

[JIQT([QI�T)YZY/

∞

IJ�
 

where  

Î[T = (] − R + U − 1)! (] + U − 1)!]! (] − R)!  \S[. 
We observe that 2T

(U − 1)! %I Î/T = S/XI/T  . 
 
Then from (10) and (11) we get 
 

H H XI[TS[
∞

[JIQT([QI�T)YZY/

∞

IJ�
.I(�) = H S[.[(T)(�).∞

[JT
 

 
By equating the coefficients of S[, \ ≥ U, so we get the proof.         □ 
 
In the next, the monic Chebyshev approximation has been introduced at (CGL) 
points to approximate the derivatives of the smooth functions �(�). Consider the 
differential equation in the form: ℒ(�) = `, 
where  ℒ is the differential operator. The solution �(�) can generally be 
approximated by a truncated expansion ��(�) given by 
 

                                             ��(�) = H ��a�(�),                                                  (12)�
�J�

 

 
the functions a�(�) form a complete set of all orthogonal polynomial b�, If ℒT 
corresponds to the projection of the operator ℒ onto b�, then the monic 
Chebyshev approximation method consists in enforcing the equation  
 ℒ�(��) = ` 
 
at a given set of (CGL) points. Then  
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ℒT�� = H ��a�(T)(��)�
�J�

. 
The interpolating polynomial ℒT��  can be expressed in terms of series expansion 
of the monic Chebyshev polynomials. By using theorem (1), the m-th derivatives 
of the interpolating polynomial will be as the follows: 
 

ℒT�� = 1� H H H [2	/��c�c/XI/T ./(��).I(�)]/�T
IJ�(IQ/�T)YZY/

�
/JT

��
�

�J�
. 

 
We approximate the derivative of �(�) at (CGL) points �� ,  = 0,1, … , � by  
 [�(T)] = �(T)[�],      U = 1,2, … , �  
 

where �(T) = d���(T)e,  , ! = 0,1, … , � are the square matrices of order (� + 1) 

and their entries are given by: 
 

���(T) = c�� H H 2	/��c/XI,/T ./K��M.I(��)/�T
IJ�(IQ/�T)YZY/

.  �
/JT

 

 
The first three derivatives of the matrix �(T) are given by: 
 

���(�) = c�� H H 2	/ c/+%I ./K��M.I(��) ,                                                      (13)/��
IJ�(/QI)fgg

�
/J�

 

 

���(	) = c�� H H 2	/��c/+(+	 − R	)%I ./K��M.I(��)/�	
IJ�(/QI)YZY/

�
/J	

 ,                                (14) 

 

���(5) = c�� H H H 2	/ c/+R(+	 − R	)%I%[ ./K��M.[(��) ,I��
[J�(IQ[)fgg

/�5
IJ�(/QI)YZY/

�
/J5

                  (15) 

 

where c� = c� = �	  , c� = 1 for ! = 1,2, … , � − 1. 
 

3 Computing of h(i) 
 
To get the higher orders of derivative matrices we can use explicit expressions 
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�(j) = ��j, 
 
which is not always satisfied, as was shown in [19]. In this section, a direct  
implementation of the higher derivatives [20] based on cardinal monic Chebyshev 
polynomial are investigated. The solution �(�) of a differential equation ℒ(�) =` can generally be approximated as the following expansion: 
 

��(�) = H S�k�,�
�

�J�
(�), 

where 

                                     k�,�(�) = c�� Hl2	/��c/./K��M./(�)m,�
/J�

                           (16) 

 
is the cardinal basis functions of monic Chebyshev polynomial which form a 
complete set of the approximating space b� and satisfy at (CGL) points the 
following relationship: 
 k�,�(�I) = nI,� ,      0 ≤ !, R ≤ � 
 
the coefficients ap are simply associated with the values of �� at ��. The discrete 
operator ℒ� can be represented by (� + 1) × (� + 1) matrix �(j) whose 
coefficients are given by: �I�(j) = k�,�(j)(�I),        0 ≤ R, ! ≤ �. 
 
We present a numerical method for computing �(j) based on the cardinal basis 
functions to avoid the rounding of errors as shown in the next theorem. 
 
Theorem  3.1  For ] ≥ 0 and 0 ≤ R, ! ≤ � we have 
 

�I�(jQ�) =
��
�
�� 2��� 

X�(] + 2) UjQ	K��M,                                           R = !
] + 1�I − ��  r(−1)��I XIX� �II(j) − �I�(j)s ,               R ≠ !.

& 
where 

Uj(�) = H t ]
R u (1 − �	)j�I �IQ�

��IQ�
j

IJ�
.�(�) 

 
and X� = 2 if ! = � and X� = 1 otherwise. 
 
Proof.     From [5] we get 
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                                       k�,�(�) = c�� H[2	/��c/./(��).I(�)]�
/J�

 

 

                                  = (−1)�Q� 2��� (1 − �	)X��	(� − ��)  �.�(�)��                          
 
Let 0 ≤ ! ≤ � and ] ≥ 0 . Since 
 2��� (−1)�Q�

X��	 (1 − �	) �.�(�)�� = K� − ��Mk�,�(�), 
we have K� − ��Mk�,�(jQ	)(�) + (] + 2)k�,�(jQ�)(�) 
 

=  2��� (−1)�Q�
X��	 r(1 − �	) �.�(�)�� s(jQ	)

 

 

                   = 2��� (−1)�Q�
X��	 H v] + 2

R w (1 − �	)j�IQ	 �IQ�
��IQ�

jQ	
IJ�

.�(�).          (17) 

 
For � = �� we get 
 

         2��� (−1)�Q�
X��	 UjQ	K��M = (] + 2)k�,�(jQ�)K��M = (] + 2)���(jQ�),          (18) 

where  

UjQ	(�) = H v] + 2
R w (1 − �	)j�IQ	 �IQ�

��IQ�
jQ	
IJ�

.�(�). 
 
which proves the theorem for the diagonal elements of �(jQ�) . 
If we apply (17) with (] + 1) instead of (] + 2) and � = �I with R ≠ ! we have 
 

             2��� (−1)�Q�
X��	 UjQ�(�) = K�I − ��Mk�,�(jQ�)(�I) + (] + 1)k�,�(j)(�I) 

                                                          = K�I − ��M�I�(jQ�) + (] + 1)�I�(j).                                 (19) 
 
By using (18) we have 
 

(−1)��I(] + 1) XIX� �II(j) = K�I − ��M�I�(jQ�) + (] + 1)�I�(j), 
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which proves the theorem for R ≠ !.     □ 
 

4 Error Analysis and Performance Improvement 
 
It is known that for the large �, the cancellation happened during the calculation 
of the elements of the differentiation matrix causing large errors [1]. The authors 
in [6] have presented the spacing of (CGL) points near the boundary of 
order �(1 �	)⁄ . This spacing gives a small truncation error but leads to large 
round off errors. In this section, the main advantage of using monic Chebyshev 
polynomials is that the truncation leads to decrease of round-off values. In Ref. 
[1], Baltensperger and Trummer show that the error in the element  ��� �  has the 
large effect on the round-off error is of order �(�
n). 
While in this paper, the round-off error has been studied in case of monic 
Chebyshev polynomials and compared with [1].  
Assume that �/∗ = �/ + n/, 
 
is the exact (CGL) points where �/ is the computed value and n/ is the 
corresponding error with n/ approximately equals to machine precision with n =US��|n/|�. The round-off error for the first three derivatives is summarized in 
Table (1) as the following: 
 

Table 1: Round-off error for the first three derivatives 

Error bound Ref.[1]. Monic Chebyshev polynomials 

For first derivatives 

 �01(1)∗ − �01(1) = 8�4
G4 n �01(1)∗ − �01(1) ≤ n3 (1 − 3� + 2�2) 

For second derivatives 

 �01(2)∗ − �01(2) = 64�8
G8 n 

�01(2)∗ − �01(2) ≤ n15 (−2 + 5� 

−5�5 + 2�
) 
For third derivatives 

 
�01(3)∗ − �01(3) = 512�12

G12 n 
�01(3)∗ − �01(3) ≤ 2n105 (6 − 14� − 

72 �2 + 35�3
2 − 7�4

2 − 7�5
2 + �6) 

 
The construction of spectral differentiation matrices has been the subject of much 
discussion since it is sensitive to rounding errors. In order to reduce the effects of 
rounding errors, several modifications to the monic Chebyshev matrix (13) has 
been presented as the following [11]. 
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Negative sum trick 
 
This trick comes from the observation that the derivative of a constant must be 
zero. This means that:  

H ���(�) = 0 ,      = 0,1, … , ��
�J�

 

To enforce that condition we compute the diagonal entries of the matrix to satisfy  
 

                                   ���(�) = − H ���(�)�
�J�

 .                                                            (20) 

The diagonal elements computed with (20) will not exactly be equal zero, but the 
overall effects of rounding errors are minimized. 
 
Flipping trick 
 
The error which incurred in the evaluation of differentiation matrix near � = −1 
is significantly larger when � = 1, even if the matrix is symmetric. In other words, 

if    and ! are small, then ���(�) can be computed accurately at the same time as if   
and ! are near �, then the evaluation of ���(�) is less accurate. This can be utilized 

by evaluating ���(�) in the upper half of the matrix and then by flipping it to take 
advantage of the following symmetry property [16]. 
 ���(�) = −����,���(�)  
Test functions 
 
Consider the test functions ��(�) = %'( (�) and �	(�) = �(1 − �	�), �5(�) =1 + ( +(2�	), � ∈ [−1,1]. In the following tables ‘‘maximum error’’ always 
refers to the maximum difference between approximation and exact values at the 
Gauss–Lobatto points.  Tables (2)-(4) represent the maximum absolute error 
obtained by using monic Chebyshev approximations for the first three derivatives 
of the three test functions compared with the classical method. 
 

Table 2: The maximum absolute error of the first three derivatives of 
 ��(�) = %'( (�) 

N 
First derivative Second derivative  Third derivative 

Eq. 1 Eq.13 Eq.1 Eq.14 Eq.1 Eq.15 

12 2.1D-13 1.1D-13 1.8D-11 1.2D-11 7.5D-10 5.7D-10 

16 4.4D-14 2.1D-14 5.4D-13 1.2D-12 2.1D-10 8.7D-11 

32 3.1D-12 1.7D-12 1.3D-10 6.8D-10 3.0D-07 8.9D-07 
64 1.3D-11 1.3D-12 3.8D-08 7.2D-10 2.8D-05 1.1D-07 



32                                                                                                    M. El-Kady et al.   

128 3.5D-10 9.3D-13 2.5D-10 3.2D-10 9.1D-03 5.8D-08 
256 9.5D-09 1.6D-12 2.2D-04 2.3D-10 3.2D-00 4.3D-08 
512 9.7D-08 4.8D-13 2.1D-03 2.0D-10 5.3D+02 3.0D-08 

Table 3: The maximum absolute error of the first three derivatives of 
 �	(�) = �(1 − �	�) 

N 
First derivative Second derivative  Third derivative 

Eq. 1 Eq.13 Eq.1 Eq.14 Eq.1 Eq.15 

12 1.3D-07 1.3D-07 1.2D-05 1.2D-05 5.3D-04 5.3D-04 

16 3.2D-12 3.5D-12 5.7D-10 6.2D-10 4.6D-08 4.8D-08 

32 3.8D-11 2.3D-11 1.6D-08 7.0D-09 3.6D-06 8.8D-07 

64 1.5D-10 5.1D-12 3.3D-07 3.1D-09 3.3D-04 4.5D-07 

128 4.1D-09 4.5D-12 3.0D-05 1.3D-09 1.1D-01 2.1D-07 

256 8.9D-08 6.5D-13 2.6D-03 1.2D-09 3.8D+01 1.9D-07 

512 1.1D-06 4.9D-12 1.1D-01 1.4D-09 6.3D+03 2.0D-07 
 

Table 4: The maximum absolute error of the first three derivatives of 
 �5(�) = 1 + ( + (2�	) 

N 
First derivative Second derivative  Third derivative 

Eq. 1 Eq.13 Eq.1 Eq.14 Eq.1 Eq.15 

12 1.2D-04 1.2D-04 1.2D-02 1.2D-02 5.1D-01 5.1D-01 

16 6.1D-07 6.1D-07 1.0D-04 1.0D-04 8.0D-03 8.0D-03 

32 1.1D-11 5.0D-12 4.7D-09 2.3D-09 1.1D-06 2.9D-07 

64 4.5D-11 5.8D-12 9.8D-08 1.9D-09 9.8D-05 2.7D-07 

128 1.2D-09 4.5D-12 9.0D-06 1.4D-09 3.2D-02 1.8D-07 

256 1.3D-08 1.5D-12 3.7D-04 3.5D-10 5.4D-00 6.1D-08 

512 1.6D-07 4.3D-13 1.6D-02 3.1D-10 9.0D+02 4.8D-08 

 
From Tables (2)-(4) we observe that the use of the suggested matrix leads to 
highly accurate results better than those obtained by using classical matrix. Our 
proposed formulae show better results than those obtained via the classical 
formulae for large number of points. Also we note that, the higher derivatives 
approximated by using monic Chebyshev approximations more accurate than 
those computed by classical method. 
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5 Numerical Results 
 
In this section, we present some numerical results for boundary value problems 
obtained by using the monic Chebyshev approximations to show that the 
suggested method is more accurate than the classical method.  
 
Example 5.1 Consider the following linear second-order differential equation: 
 

�′′(�) − 4�′(�) + 4�(�) = ��] (�) − 4 ��]1 + ��]2 , 
 
with the Dirichlet boundary conditions 
 �(−1) = �(1) = 0 . 
 
The exact solution is 
 

�(�) = ��] (�) − sinh (1)sinh (2) ��] (2�) − ��]1 + ��]	 . 
 
The monic Chebyshev approximation of this equation is: 
 

H � !2 �K�!M − 4 H � !1 �K�!M + 4�(� ) = ��] (� ) −�
!=0

�
!=0

4 ��]1 + ��]2 . 
 
Table (5) show that, the maximum absolute error of the monic Chebyshev 
approximations are compared with the result by using Eq. (1) and Ref. [10]  and  
it is shown that our method is more accurate. 
 

Table 5: The maximum absolute error for example (5.1) 

N Eq. (1) Ref. [10] monic Chebyshev 

16 1.5D-07 1.5D-07 1.5D-07 
32 1.4D-07 1.4D-07 1.5D-07 
64 1.2D-06 7.4D-07 1.4D-07 
128 7.3D-04 6.9D-04 1.4D-07 
512 8.2D-02 2.7D-03 5.8D-09 

 
The monic Chebyshev approximations are used to solve the example (5.1) at N 
=32 and obtain the results as shown in Fig.1 which confirms that the monic 
Chebyshev method gives almost the same solution as the analytic method 
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Fig.1. The solution of example (5.1) with N=32 
 
 
Example 5.2 Consider the following Robin boundary value problem: 
 �′′(�) + � ��] (−�)�(�) = ��] (�) + � ,    − 1 ≤ � ≤ 1 , 
 

�′(�) + �(�) = 2��]  ,      � = −1, 
 �′(�) − �(�) = 0 ,      � = 1, 
 
which has the exact solution �(�) = ��] (�) +. The monic Chebyshev 
approximation of this equation is: 
 

H ���	 �K��M + ����] (−��)�(��) = ��] (��) + �� ,    − 1 ≤ � ≤ 1 ,�
�J�

 

 
and the boundary conditions is given by 
 

H ���� �K��M + �(−1) = 2��] �
�J�

,    
 

H ���� �K��M + �(1) = 2��] �
�J�

. 
 
Fig.2. Presents the accuracy of the approximation solution with the exact for 
example (5.2) at N=32. 
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Fig.2. The solution of example (5.2) with N=32 
 

 
Example 5.3     Consider the following boundary value problem: 
 64�(5)(�) + 4(� + 1)�(�) = [�5 − �	 − 25� − 47]��] (0.5(� + 1)),   −1 ≤ � ≤ 1 , �(�) = �′(�) − 1 = 0 ,      � = −1, �′(�) + ��] = 0 ,            � = 1, 
 
which has the exact solution 
 �(�) = 4(1 − �	)��] (0.5(� + 1)). 
 
The monic Chebyshev approximation of this equation is: 
 

64 H ���5 �K��M + 4(�� + 1)�(��) = [��5 − ��	 − 25�� − 47]��] (0.5(�� + 1)),    �
�J�

 

−1 ≤ � ≤ 1 , 
the boundary conditions are given by 
 

H ���� �K��M − 1 = 0 �
�J�

,    
and 

H ���� �K��M + ��] = 0 �
�J�

. 
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The problem has been solved using monic Chebyshev approximations, classic 
pseudospectral approximations and by using method in Ref. [10] at N=32. The 
results are shown in Fig.3. 

 

Fig.3. The solution of example (5.3) with N=32 
 

6 Conclusion 
 
In this paper the differentiation matrix based on the monic Chebyshev 
polynomials ./(�) is presented. The main advantage of these polynomials is that 
the size of the monic polynomial is  1/2/�� , + ≥ 1 and this becomes smaller as 
the degree n increases. The degree + monic polynomial with the smallest 
maximum on [−1,1] is the modified Chebyshev polynomial �/(�). This result is 
used in approximate higher-order differential applications and can be applied to 
obtain an improvement interpolation scheme.   
The tables present a comparison of the maximum absolute error resulting from the 
proposed method and those obtained by Eq.(1) and Ref.[10]. It shows favorable 
agreement and it is always more accurate than other treatments. 
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