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Abstract
In the present paper a numerical solution of the regularized long wave

(RLW) equation with a fully implicit finite difference method is deduced. Nu-
merical results for different particular cases of the problem are presented. Com-
parisons are made with published numerical and analytical solutions. The ac-
curacy of the numerical solutions showed that the present method is well suited
for the solution of the RLW equation.
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1 Introduction

The non-linear regularized long wave (RLW) equation, derived for long waves
propagating with dispersion processes, has the following form,

∂u

∂t
+
∂u

∂x
+ εu

∂u

∂x
− µ ∂

∂t

(
∂2u

∂x2

)
= 0 (1)

where u is the wave amplitude, µ and ε are positive parameters. Physical
boundary conditions require u −→ 0 as x −→ ±∞. The equation was first
obtained by Peregrine [23].
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In the literature, many numerical methods have been proposed and im-
plemented for approximating solution of the RLW equation. Gardner and
Gardner defined a scheme for the numerical solution of equation based on
Galerkin’s method using cubic splines as element shape functions [14] while
Gardner et al. presented a least-squares technique using linear space-time fi-
nite elements for solving RLW equation [15], Dağ [5] studied the least-squares
finite element technique which leads to a Petrov-Galerkin method, in which
quadratic B-splines as both shape and weight functions were employed over
elements. Dogan [9] has drived a Petrov-Galerkin method using quadratic
B-spline finite elements for the numerical solution of Eq. (1). Soliman and
Raslan [29] gave a collocation method using quadratic B-splines at the mid
points whereas Zaki [30] proposed a splitting technique together with cubic
B-splines as the element ”shape” and ”weight” functions throughout the so-
lution region. Dogan [10] defined Galerkin’s method for solving the RLW
equation using linear space finite elements. In comparison to Dağ et al. [6]
who obtained the numerical solution of the equation by using a splitting up
technique and both quadratic and cubic B-splines, Raslan [25] suggested a
collocation method using cubic B-spline finite elements at the points. Dağ et
al. [7] solved the RLW equation by using the quintic B-spline Galerkin finite
element method. A numerical method for solving the regularized long wave
equation set up based on a Galerkin method with quadratic B -spline finite
elements by Esen and Kutluay [13]. Saka and Dağ [27] studied the collocation
method based on quartic B-spline interpolation for solution of the RLW equa-
tion on one hand Saka et al. [28] presented both sextic and septic B-spline
collocation algorithms for the numerical solutions of the RLW equation on the
other hand Elibeck and McGuire developed various finite difference methods
for solving the RLW equation [11, 12]. Lin [21] used a numerical method based
on cubic splines in tension for solving the equation. Gheorghiu [16] construct
a stable spectral collocation method for solving the RLW equation. Jain et
al. [18] used the combined approach of quasilinearization and invariant imbed-
ding for computing solution of the nonlinear RLW equation. Bhardwaj and
Shankar [4] defined a finite difference scheme based on operator splitting and
quintic spline interpolation functions technique. Kutluay and Esen [19] gave
a linearized implicit finite difference method to obtain numerical solution of
the equation. Several finite difference methods were employed to study the
solitary waves of the EW and RLW equations by Ramos [24]. Lin et al. [20]
studied the RLW equation by high-order compact difference scheme, based
on the fourth-order compact scheme in space and fourth-order Runge-Kutta
method in time integration. Dağ et al. [8] applied the differential quadrature
method based on cosine expansion. Saka et al. [26] set up a space-splitting
technique and quadratic B-spline Galerkin finite element method. Araújo and
Durán [1] presented the error propagation of time integrators of solitary wave
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solutions for the equation by using a geometric interpretation of these waves
as relative equilibria.

On the other hand, the fully implicit finite difference schemes are high-
accuracy schemes for the numerical solution of the nonlinear problems. Ba-
hadır employed the fully implicit finite difference method to compute an ap-
proximation to the solution of 1D [2] and 2D [3] Burgers’ equations. Moreover,
fully implicit finite difference method used for solving equal width wave equa-
tion by Inan and Bahadir [17]

In this paper, we develop a fully implicit finite difference scheme for solv-
ing the RLW equation. In here, as different from the previous finite difference
methods, fully implicit finite difference method is applied to directly the non-
linear RLW equation. Efficiency and validity of the method tested with several
different examples and comparisons with the solutions obtained by other meth-
ods.

This paper is organized in four sections. In Section 2, we defined the fully
implicit finite difference scheme for the RLW equation. Numerical examples
are given in Section 3. Section 4 contains some conclusions.

2 The Method of Solution

The discretization is done by the finite differences with the implicit approach
of solutions. Solution domain is discretized into cells defined as the nodes set
(xi, tn) in which xi = ih, (i = 0, 1, 2, ..., N) and tn = nk, (n = 0, 1, 2, ...), h is
the spatial mesh size and k is the time step.

Eq. (1) can be written in the following form:
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The derivatives in Eq. (2) can be approximated at x = xi and t = tn, to
second order in h and k, by
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Putting these approximations in (2), we get
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which is valid for values of i lying in the interval 1 ≤ i ≤ N − 1 and the
truncation error in Eq. (3) is O(k2) + O(h2). This means that the present
method is a first-order accurate method. Where Un

i denotes the finite difference
approximation at the grid point (xi, tn) to the exact solution u(x, t). Since Eq.

(3) contains
(
Un+1
i+1

)2
and

(
Un+1
i−1
)2

terms, this scheme is called fully implicit
finite difference scheme.

This equation is a system of nonlinear difference equations. Let us consider
this nonlinear system of equations in the form

F(V) = 0 (4)

where F = [f1, f2, . . . , fN−1]
T and V =

[
Un+1
1 , Un+1

2 , . . . , Un+1
N−1
]T
. Newton’s

method applied to Eq. (4) results in the following iteration:

1. Set V(0), an initial guess.

2. For m = 0, 1, 2, . . . until convergence do:

Solve J(V(m))∆(m) = −F (V(m));

Set V(m+1) = V(m)+∆(m) where J(V(m)) is the Jacobian matrix which
is evaluated analytically[2]. As the initial estimate taken the solution at the
previous time-step. Stopping Criteria for the Newton’s iteration at each time-
step taken as

∥∥F(V(m))
∥∥
∞ ≤ 10−5. The convergence of the newton method is

generally obtained in two or three iterations.

3 Test Problems and Discussion

In this section, some test problems have been considered to illustrate the per-
formance of the method defined in previous section.
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The accuracy of the method is measured by using the error norms L2 and
L∞ defined by

L2 = ‖u− U‖2 =

(
h

N∑
i=0

|ui − Ui|2
) 1

2

,

(5)

L∞ = ‖u− U‖∞ = max
0≤i≤N

|ui − Ui| .

where u and U represent the exact and approximate solutions, respectively.
We also examined our results by calculating the following three conserved
quantities corresponding to mass, momentum and energy [22], respectively
[30].
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To give a clear overview of the methodology, the following examples will
be discussed.

3.1 Motion of Single Solitary Wave

We first model the motion of a single solitary wave of the RLW equation. The
solitary wave analytical solution of the RLW equation (1) is

u(x, t) = 3c sech2(p(x− vt− x∗)) (7)

with amplitude 3c where v = 1 + εc is the wave velocity and p = ( εc
4µv

)1/2

measures width of the wave pulse. The initial and boundary conditions are set
to: u(x, 0) = 3c sech2(p(x− x∗)) and u −→ 0 as x −→ ±∞, respectively.

The analytical values of conservation quantities can be found as [30]

I1 =
6c

p
, I2 =

12c2

p
+

48pc2µ

5
, I3 =

36c2

p

(
1 +

4c

5

)
. (8)

To allow comparison with the previous method parameters are taken as
µ = 1 and ε = 1.
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The analytical invariants for c = 0.03 found using Eq. (8) are I1 =
2.109407, I2 = 0.127302 and I3 = 0.388806. Table 1 displays invariants and
error norms for c = 0.03, x∗ = 0, the space step h = 0.1 and the time step
k = 0.2 through the interval −40 ≤ x ≤ 60. The invariants and error norms
of the proposed scheme are given for times up to t = 20 in Table 1. Table 2
shows L2 and L∞ error norms for different values of h and k at t = 20. The
numerical solution of single solitary wave for c = 0.03 at different time is given
in Fig. 1. A comparison of invariants obtained by the present method and the
result of references [5, 8, 15, 20, 25] is listed in Table 3 for c = 0.03 at t = 20.

Table 1: Invariants and error norms for the single solitary
wave forh = 0.1, k = 0.2, −40 ≤ x ≤ 60 and c = 0.03.
t I1 I2 I3 L2 L∞

0 2.107027 0.127303 0.388805
2 2.107799 0.127303 0.388806 0.000070 0.000074
4 2.108424 0.127303 0.388806 0.000150 0.000123
6 2.108956 0.127303 0.388807 0.000237 0.000152
8 2.109408 0.127303 0.388807 0.000323 0.000166
10 2.109778 0.127303 0.388808 0.000401 0.000174
12 2.110046 0.127303 0.388808 0.000468 0.000179
14 2.110187 0.127303 0.388808 0.000524 0.000182
16 2.110173 0.127303 0.388808 0.000570 0.000184
18 2.109962 0.127303 0.388808 0.000608 0.000186
20 2.109491 0.127303 0.388807 0.000642 0.000233

Table 2: Error norms for the single solitary wave for different
values of h, k, −40 ≤ x ≤ 60 and c = 0.03 at t = 20.

h = 0.2 h = 0.1 h = 0.05
k L2 L∞ L2 L∞ L2 L∞
0.4 0.000427 0.000113 0.000682 0.000233 0.000949 0.000315
0.2 0.000322 0.000114 0.000642 0.000233 0.000924 0.000315
0.1 0.000304 0.000114 0.000638 0.000233 0.000922 0.000315

Table 3: Comparison of invariants for −40 ≤ x ≤ 60, c = 0.03 at t = 20.
Method I1 I2 I3
Analytical 2.109407 0.127302 0.388806
Present Method (h = 0.1, k = 0.2) 2.109491 0.127303 0.388807
[5] (h = 0.125, k = 0.1) 2.10769 0.127260 0.388677
[8] (h = 3, k = 0.1) 2.10471 0.127588 0.392029
[15] (h = 0.125, k = 0.1) 2.103622 0.1271840 0.3884398
[20] (h = k = 0.1) 2.1067778 0.1273011 0.3888043
[25] (h = k = 0.1) 2.10352 0.12730 0.38880



46 Bilge İnan et al.

Figure 1: The single solitary wave with c = 0.03.

The analytical invariants obtained from Eq. (8) are I1 = 3.979950, I2 =
0.810462 and I3 = 2.579007 for c = 0.1. Table 4 shows invariants and error
norms for c = 0.1, x∗ = 0 and h = k = 0.2 through the interval −40 ≤ x ≤ 60.
The invariants and error norms are given for times up to t = 20 in Table 4.
The profile of the solitary wave from t = 0 to t = 20 are compared in Fig. 2.
Table 5 gives a comparison of invariants obtained by the present method and
the other methods [5, 8, 15, 20, 25] for c = 0.1 at t = 20.

Table 4: Invariants and error norms for the single solitary
wave for h = k = 0.2 , −40 ≤ x ≤ 60 and c = 0.1.
t I1 I2 I3 L2 L∞

0 3.979926 0.810462 2.579007
2 3.979941 0.810462 2.579007 0.000234 0.000090
4 3.979951 0.810462 2.579007 0.000466 0.000182
6 3.979956 0.810462 2.579007 0.000696 0.000275
8 3.979965 0.810462 2.579007 0.000922 0.000366
10 3.979970 0.810462 2.579007 0.001146 0.000454
12 3.979974 0.810462 2.579007 0.001365 0.000538
14 3.979974 0.810462 2.579007 0.001580 0.000620
16 3.979972 0.810462 2.579006 0.001791 0.000698
18 3.979963 0.810462 2.579006 0.001997 0.000773
20 3.979942 0.810462 2.579006 0.002198 0.000844



A Fully Implicit Finite Difference Scheme for... 47

Table 5: Comparison of invariants for −40 ≤ x ≤ 60, c = 0.1 at t = 20.
Method I1 I2 I3
Analytical 3.979950 0.810462 2.579007
Present Method (h = k = 0.2) 3.979942 0.810462 2.579006
[5] (h = 0.125, k = 0.1) 3.98203 0.810467 2.57302
[8] (h = 3, k = 0.01) 3.990464 0.823457 2.673990
[15] (h = 0.125, k = 0.1) 3.978035 0.8097240 2.576573
[20] (h = k = 0.1) 3.9799065 0.8104625 2.5790074
[25] (h = k = 0.1) 3.97989 0.81046 2.57900

Figure 2: The single solitary wave with c = 0.1.

The analytical invariants for c = 0.3 obtained from Eq. (8) are I1 =
7.493998, I2 = 4.703925 and I3 = 16.726603. Invariants and error norms are
given in Table 6 for c = 0.3, x∗ = 40, h = 0.2 and k = 0.1 through the interval
0 ≤ x ≤ 80 for times up to t = 10. Fig. 3 indicates that the numerical
solution of single solitary wave with c = 0.3 at different time. A comparison
of invariants obtained by the present method and the results of reference[25]



48 Bilge İnan et al.

is given in Table 7 for c = 0.3 at t = 10.

Table 6: Invariants and error norms for the single solitary
wave for h = 0.2, k = 0.1, 0 ≤ x ≤ 80 and c = 0.3.
t I1 I2 I3 L2 L∞

0 7.493998 4.703923 16.726603
1 7.493998 4.703924 16.726603 0.000925 0.000448
2 7.493997 4.703924 16.726601 0.001838 0.000911
3 7.493997 4.703924 16.726600 0.002732 0.001363
4 7.493997 4.703924 16.726598 0.003601 0.001790
5 7.493997 4.703924 16.726596 0.004442 0.002189
6 7.493996 4.703925 16.726593 0.005251 0.002555
7 7.493994 4.703925 16.726591 0.006028 0.002892
8 7.493991 4.703925 16.726589 0.006774 0.003204
9 7.493986 4.703925 16.726586 0.007490 0.003493
10 7.493976 4.703926 16.726584 0.008177 0.003771

Table 7: Comparison of invariants for h = 0.2, k = 0.1,
0 ≤ x ≤ 80 and c = 0.3, at t = 10.
Method I1 I2 I3
Analytical 7.493998 4.703925 16.726603
Present Method 7.493976 4.703926 16.726584
[25] 7.493698 4.703578 16.725260

Figure 3: The single solitary wave with c = 0.3.
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3.2 Interaction of Two Solitary Waves

Secondly, the interaction process of two solitary waves traveling in the same
direction is studied using the initial condition

u(x, 0) = 3c1sech2(p1(x− x∗1)) + 3c2sech2(p2(x− x∗2)) (9)

where cj = 4p2j/
(
1− 4p2j

)
, j = 1, 2 and the boundary condition u −→ 0

as x −→ ±∞. To allow comparison with the previous method, parameters are
taken as µ = 1 and ε = 1.

The analytical values of the invariant quantities are [25]

I1 =
6c1
p1

+
6c2
p2
,

I2 =
12c21
p1

+
12c22
p2

+
48µ

5

(
p1c

2
1 + p2c

2
2

)
, (10)

I3 =
36c21
p1

(
1 +

4c1
5

)
+

36c22
p2

(
1 +

4c2
5

)
.

Case I: In this case, to compare with earlier studies we take following
parameters: p1 = 0.4, p2 = 0.6, x∗1 = 23 and x∗2 = 38 through the inter-
val 0 ≤ x ≤ 80. With these parameters, magnitude of the smaller solitary
wave is 5.333333, magnitude of the larger solitary wave is −9.818182 and peak
positions of them are located at x∗1 = 23 and x∗2 = 38. Table 8 displays nu-
merical invariants for the interaction of two solitary waves for h = 0.1 and
k = 0.05 with Case I. The analytical invariants obtained from Eq. (10) are
I1 = −6.060606, I2 = 382.859871 and I3 = −350.928198 for Case I. Compari-
son of invariants obtained from present method, analytical values and earlier
method was developed by Raslan[25] is given in Table 9. Fig. 4 presents
interaction of two solitary waves for Case I at t = 0 and t = 10.
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Table 8: Invariants for the interaction of two
solitary waves for Case I.
t I1 I2 I3

0 −6.060606 382.851454 −350.877818
1 −6.060606 382.849526 −350.864761
2 −6.060606 382.790118 −350.601913
3 −6.060606 381.807237 −349.257998
4 −6.060606 378.915497 −348.569184
5 −6.060606 378.151993 −348.861159
6 −6.060606 381.007422 −349.324782
7 −6.060605 382.193044 −350.452113
8 −6.060605 382.450093 −350.701980
9 −6.060605 382.554442 −350.632950
10 −6.060605 382.620734 −350.578870

Table 9: Comparison of invariants for Case I at t = 10.
Method I1 I2 I3
Analytical −6.060606 382.859871 −350.928198
Present Method (h = 0.1, k = 0.05) −6.060604 382.620734 −350.578870
[25] (h = 0.1, k = 0.01) −6.046971 382.2275 −351.0175

Figure 4: Interaction of two solitary waves for Case I.

Case II: In this case, parameters are p1 = 0.4, p2 = 0.3, x∗1 = 15 and
x∗2 = 35 through the interval 0 ≤ x ≤ 120. For Case II, the analytical
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invariants obtained from Eq. (10) are I1 = 37.916667, I2 = 120.518611 and
I3 = 744.042342. Numerical invariants for the interaction of two solitary waves
for h = 0.3 and k = 0.1 with Case II are shown in Table 10. A comparison
of invariants for this case is shown in Table 11. For Case II, magnitude of
the larger solitary wave is 5.333333, magnitude of the smaller solitary wave is
1.687500 and peak positions of them are located at x∗1 = 15 and x∗2 = 35. As is
well known, solitary waves with smaller amplitudes have a less velocity than
another of larger amplitudes. It is shown from Fig. 5 that the larger wave
catches up the smaller wave and passes it completely at t = 25.

Table 10: Invariants for the interaction of
two solitary waves for Case II.
t I1 I2 I3

0 37.916482 120.520529 744.081209
2 37.916850 120.515270 743.998856
4 37.916972 120.513172 743.956686
6 37.917095 120.511737 743.917027
8 37.917203 120.507671 743.793804
10 37.917283 120.491639 743.320545
12 37.917338 120.454901 742.228425
14 37.917373 120.443678 741.553520
16 37.917398 120.482803 742.495915
18 37.917417 120.505286 743.432006
20 37.917435 120.509536 743.789261
22 37.917450 120.509401 743.886886
24 37.917461 120.508706 743.908045
25 37.917464 120.508347 743.909776

Table 11: Comparison of invariants for Case II at t = 25.
Method I1 I2 I3
Analytical 37.916667 120.518611 744.042342
Present Method (h = 0.3, k = 0.1) 37.917464 120.508347 743.909776
[8] (h = 1, k = 0.1) 38.050100 119.835500 727.439200
[20] (h = 0.2, k = 0.1) 37.91812 120.51241 744.00543
[25] (h = 0.3, k = 0.1) 37.91702 120.52249 744.07479

3.3 Interaction of Three Solitary Waves

Thirdly, the interaction process of two solitary waves traveling in the same
direction is studied by using the initial condition
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Figure 5: Interaction of two solitary waves for Case II.

u(x, 0) = 3c1sech2(p1(x− x∗1)) + 3c2sech2(p2(x− x∗2))
+3c3sech2(p3(x− x∗3)) (11)

where pj =
√
cj/4µ (1 + cj), j = 1, 2, 3 and the boundary condition u −→ 0

as x −→ ±∞. To allow comparison with the previous method parameters are
taken as µ = 1 and ε = 1.

In this case, the following parameters are used: c1 = 0.6, c2 = 0.3, c3 =
0.15, x∗1 = 15, x∗2 = 35 and x∗3 = 60.

The analytical values of the invariant quantities are [25]
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6c2
p2

+
6c3
p3

,
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12c21
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+
12c22
p2

+
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p3

+
48µ

5

(
p1c

2
1 + p2c

2
2 + p3c

2
3

)
, (12)

I3 =
36c21
p1

(
1 +

4c1
5

)
+

36c22
p2

(
1 +

4c2
5

)
+

36c23
p3

(
1 +

4c3
5

)
.

Thus I1 = 24.235523, I2 = 21.405362 and I3 = 84.394679 are obtained
from Eq. (12) for these parameters. In Table 12, we recorded invariants for
the interaction of three solitary waves for h = 0.5 and k = 0.25 through the
interval 0 ≤ x ≤ 350. It is shown from Fig. 6 that initial solitary waves have
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amplitudes 1.800242, 0.900250 and 0.450022. Fig. 6 illustrates how the larger
waves overtakes and passes through the smaller ones.

Table 12: Invariants for the interaction of
three solitary waves.
t I1 I2 I3

0 24.234123 21.428863 84.504718
25 24.237740 21.428939 84.442842
50 24.237753 21.426899 84.265979
75 24.237876 21.429242 84.265328
100 24.237920 21.430516 84.427213
125 24.237378 21.430104 84.455941
150 24.237405 21.428956 84.462757
175 24.237574 21.427739 84.468773
200 24.133487 21.425923 84.455704

Figure 6: The three solitary waves at different times.

3.4 The Undular Bore

To model the development of an undular bore we use the initial condition given
by

u(x, 0) =
u0
2

(1− tanh(
x− x∗

d
)) (13)
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with the boundary conditions u(a, t) = u0 and u(b, t) = 0. Under the boundary
conditions the invariants I1, I2 and I3 are not constant but increase linerarly
throughout the simulation at the following rates [30]

M1 =
dI1
dt

= u0 +
ε

2
u20,

M2 =
dI2
dt

= u20 +
2ε

3
u30, (14)

M3 =
dI3
dt

= 3u20 + (1 + 2ε)u30 +
3ε

4
u40.

The theorical values for the growth rates in I1, I2 and I3 are found M1 =
0.107500,M2 = 0.011000 and M3 = 0.034112 from Eq. (14). To compare
with the previous methods, parameters are taken as µ = 1

6
, ε = 1.5, u0 = 0.1,

x∗ = 0, a = −36, b = 300 and d = 2 and d = 5. The numerically growth rates
in invariants can be computed from following equation [27].

Mj =
Ij(t = 800)− Ij( t = 0)

time
, j = 1, 2, 3 (15)

Table 13 displayed I1, I2 and I3, the position and amplitude for h = 2.4,
k = 1.0 and the gentle slope d = 2. The behavior of the wave with time for
the gentle slope d = 2 is shown in Fig. 7.

Table 13: Invariants for the undular bore with d = 2.
t I1 I2 I3 x U

0 3.480000 0.338156 1.047022
50 8.854958 0.887423 2.752474 43.200000 0.133713
100 14.231579 1.437263 4.459113 96.000000 0.140891
150 19.605281 1.986525 6.163933 148.800000 0.148837
200 24.980616 2.536100 7.869790 201.600000 0.154721
250 30.355434 3.085564 9.575358 256.800000 0.158563

Table 14: Comparison of the growth rates in invariants
for the undular bore with d = 2.
Method M1 M2 M3

Analytical 0.107500 0.011000 0.034112
Present Method (h = 2.4, k = 1.0) 0.107502 0.010990 0.034113
[13] (h = 0.24, k = 0.1) 0.1075 0.010999 0.034092
[19] (h = 0.24, k = 0.1) 0.107499 0.011 0.034095
[27] (h = 0.24, k = 0.1) 0.107500 0.010992 0.034096
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Figure 7: The undular bore with d = 2.

The invariants, the position and amplitude for h = 2.4, k = 1.0 and the
gentle slope d = 5 recorded in Table 15. Fig. 8 shows the undular bore profiles
at different time for d = 5. It can be seen clearly from both Fig. 7 and Fig.
8, the number of the produced waves increase when value of t increased. It
is observed from Table 14 and Table 16 that the numerically growth rates in
invariants is achieved to remain almost the same with analytical ones for the
undular bore with the gentle slope d = 2 and d = 5.

Table 15: Invariants for the undular bore with d = 5.
t I1 I2 I3 x U

0 3.480000 0.323110 1.000050
50 8.855016 0.872790 2.705652 43.200000 0.120832
100 14.230100 1.422439 4.411334 96.000000 0.131956
150 19.604965 1.972000 6.116889 148.800000 0.142092
200 24.980024 2.521560 7.822574 201.600000 0.150291
250 30.354917 3.071068 9.528198 254.400000 0.153833
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Table 16: Comparison of the growth rates in invariants
for the undular bore with d = 5.
Method M1 M2 M3

Analytical 0.107500 0.011000 0.034112
Present Method (h = 2.4, k = 1.0) 0.107500 0.010992 0.034113
[13] (h = 0.24, k = 0.1) 0.1075 0.010999 0.034097
[19] (h = 0.24, k = 0.1) 0.107499 0.011 0.034099
[27] (h = 0.24, k = 0.1) 0.107500 0.010992 0.034101

Figure 8: The undular bore with d = 5.

4 Conclusion

In this paper, a numerical solution algorithm for RLW equation has been con-
sidered using a fully implicit finite difference scheme. Numerical tests for single
solitary wave, two solitary waves and interaction of three solitary waves are
given. We also have examined two development of an undular bore. The
numerical results demonstrate that the present method is quite accurate and
readily implemented in the solution of the RLW equation. Thus, for the nu-
merical solution of the RLW equation has defined an alternative method by
this paper.
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[8] İ. Dağ, A. Korkmaz and B. Saka, Cosine expansion-based differential
quadrature algorithm for numerical solution of the RLW equation, Nu-
mer. Meth. Part. Differ. Equat., 26(2010), 544-560.

[9] A. Dogan, Numerical solution of regularized long wave equation using
Petrov-Galerkin method, Commun. Numer. Meth. Engrg., 17(2001), 485-
494.

[10] A. Dogan, Numerical solution of RLW equation using linear finite elements
within Galerkin’s method, Appl. Math. Model., 26(2002), 771-783.

[11] J.C. Elibeck and G.R. McGuire, Numerical study of the regularized long-
wave equation I: Numerical methods, J. Comput. Phys., 19(1975), 43-57.

[12] J.C. Elibeck and G.R. McGuire, Numerical study of the regularized
long-wave equation II: Interaction of solitary waves, J. Comput. Phys.,
23(1977), 63-73.

[13] A. Esen and S. Kutluay, Application of a lumped Galerkin method to the
regularized long wave equation, Appl. Math. Comput., 174(2006), 833-845.



58 Bilge İnan et al.
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ement scheme for the RLW equation, Commun. Numer. Meth. Engrg.,
12(1996), 795-804.

[16] C.I. Gheorghiu, Stable spectral collocation solutions to a class of Benjamin
Bona Mahony initial value problems, Appl. Math. Comput., 273(2016),
1090-1099.
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