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Abstract
The sequence spaces cλ

0 , c
λ and `λ

∞ have been recently introduced and studied
by Mursaleen and Noman [On the spaces of λ− convergent and bounded se-
quences, Thai J. Math. 8(2)(2010),311-329]. The main purpose of the present
paper is to extend the results of Mursaleen and Noman to the paranormed case
and is to work the spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p). Let µ denote any of

the spaces c0, c and `∞. We prove that µλ(u, p) is linearly paranorm isomorphic
to µ(p) and determine the α−, β− and γ− duals of the µλ(u, p). Furthermore,
the basis of cλ

0(u, p) and cλ(u, p) are constructed. Finally, we characterize the
matrix transformations from the spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p) to the

spaces c0(q), c(q), `(q) and `∞(q).
Keywords: Paranormed sequence spaces, Matrix transformations, λ−

convergence.
2000 MSC No: 46A45, 40A05, 40C05.

1 Introduction
By ω, we shall denote the space of all real valued sequences. Any vector sub-
space of ω is called as a sequence space. We shall write `∞, c and c0 for the
spaces of all bounded, convergent and null sequences, respectively. Also by
bs, cs, `1 and `p ; we denote the spaces of all bounded, convergent, absolutely
and p− absolutely convergent series, respectively; 1 < p < ∞.
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A linear topological space X over the real �eld R is said to be a para-
normed space if there is a subadditive function g : X → R such that g(θ) =
0, g(x) = g(−x), g(x + y) ≤ g(x) + g(y) and scalar multiplication is continu-
ous,i.e., |αn − α| → 0 and g(xn − x) → 0 imply g(αnxn − αx) → 0 for all α′s
in R and all x's in X, where θ is the zero vector in the linear space X.

Assume here and after that u = (uk) be a sequence such that uk 6= 0 for all
k ∈ N and (qk), (pk) be the bounded sequences of strictly positive real numbers
with sup pk = H and L = max{1, H}, where N = {0, 1, 2, ...}. Then, the linear
spaces `∞(p), c(p), c0(p) and `(p) were de�ned by Maddox [11, 12] (see also
Simons [18] and Nakano [9]) as follows:

`∞(p) =

{
x = (xk) ∈ ω : sup

k∈N
|xk|pk < ∞

}
,

c(p) =
{

x = (xk) ∈ ω : lim
k→∞

|xk − l|pk = 0 for some l ∈ C
}

,

c0(p) =
{

x = (xk) ∈ ω : lim
k→∞

|xk|pk = 0
}

,

and

`(p) =

{
x = (xk) ∈ ω :

∑

k

|xk|pk < ∞
}

,

which are the complete paranormed spaces by

g1(x) = sup
k∈N

|xk|pk/L ⇐⇒ inf pk > 0 and g2(x) = (
∑

k

|xk|pk)1/L, (1)

respectively. For simplicity in notation, here and in what follows, the sum-
mation without limits runs from 0 to ∞. By F and Nk, we shall denote the
collection of all �nite subsets of N and the set of all n ∈ N such that n ≥ k.

Let λ, µ be any two sequence spaces and A = (ank) be an in�nite matrix
of real numbers ank,where n, k ∈ N. Then, we say that A de�nes a matrix
mapping from λ into µ, and we denote it by writing A : λ → µ, if for every
sequence x = (xk) ∈ λ the sequence Ax = ((Ax)n), the A-transform of x, is in
µ, where

(Ax)n =
∑

k

ankxk, (n ∈ N). (2)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right-hand side of (2) converges
for each n ∈ N and every x ∈ λ, and Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ. A
sequence x is said to be A- summable to α if Ax converges to α which is called
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the A- limit of x.

Let λ = (λk)
∞
k=0 be a strictly increasing sequence of positive reals tending

to in�nity, that is

0 < λ0 < λ1 < λ2 < ... and λk →∞ as k →∞.

We say that a sequence x = (xk) ∈ ω is λ− convergent to the number l ∈ C,
called the λ− limit of x, if Λn(x) → l as n →∞ where

Λn(x) =
1

λn

n∑

k=0

(λk − λk−1)xk; (n ∈ N). (3)

In particular, we say that x is a λ− null sequence if Λn(x) → 0 as n → ∞.
Further, we say that x is λ− bounded if supn∈N |Λn(x)| < ∞, [16].

The main purpose of this paper is to introduce the sequence spaces cλ
0(u, p),

cλ(u, p) and `λ
∞(u, p) of non-absolute type which are the set of all sequences

whose Λu− transforms are in the spaces c0(p), c(p) and `∞(p), respectively;
where Λu denotes the matrix Λu = (λu

nk) de�ned by

λu
nk =





λk − λk−1

λn

uk, (0 ≤ k ≤ n)

0, (k > n).

Besides this, we have constructed the basis of the spaces cλ
0(u, p) and cλ(u, p)

and computed the α−, β− and γ− duals of the spaces cλ
0(u, p), cλ(u, p) and

`λ
∞(u, p). Finally, a basic theorem is given and some matrix mappings from
the spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p) to the sequence spaces of Maddox are

characterized.

2 The Sequence Spaces cλ
0(u, p), cλ(u, p) and `λ

∞(u, p)

of non-absolute type
In this section, we de�ne the sequence spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p) and

prove that cλ
0(u, p), cλ(u, p) and `λ

∞(u, p) are the complete paranormed linear
spaces.

For a sequence space X, the matrix domain XA of an in�nite matrix A is
de�ned by

XA = {x = (xk) ∈ ω : Ax ∈ X}. (4)
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By using the matrix domain of a triangular in�nite matrix, the new se-
quence spaces have been de�ned by many authors. For example see [2, 3, 7, 8,
4, 14, 15] and the others.

Quite recently, Demiriz and Çakan have studied the sequence spaces er
0(u, p)

and er
c(u, p) in [17]. With the notation of (4), the spaces er

0(u, p) and er
c(u, p)

may be rede�ned as

er
0(u, p) = [c0(p)]Er,u , er

c(u, p) = [c(p)]Er,u ,

where the matrix Er,u = (er
nk(u)) is de�ned by

er
nk(u) =

{ (n

k

)
(1− r)n−krkuk, (0 ≤ k ≤ n)

0, (k > n).

The sequence spaces cλ
0 , c

λ and `λ
∞ of non-absolute type have been intro-

duced by Mursaleen and Noman [16] as follows:

cλ
0 =

{
x = (xk) ∈ ω : lim

n

1

λn

n∑

k=0

(λk − λk−1)xk = 0

}

cλ =

{
x = (xk) ∈ ω : lim

n

1

λn

n∑

k=0

(λk − λk−1)xk exists

}

and

`λ
∞ =

{
x = (xk) ∈ ω : sup

n

∣∣∣∣∣
1

λn

n∑

k=0

(λk − λk−1)xk

∣∣∣∣∣ < ∞
}

.

Following Choudhary and Mishra [4], Ba³ar and Altay [7], Ayd�n and Ba³ar
[5], Demiriz and Çakan [17], we de�ne the sequence spaces cλ

0(u, p), cλ(u, p)
and `λ

∞(u, p) as the set of all sequences such that Λu-transforms of them are
in the spaces c0(p), c(p) and `∞(p), respectively, that is

cλ
0(u, p) =

{
x = (xk) ∈ ω : lim

n

∣∣∣∣∣
1

λn

n∑

k=0

(λk − λk−1)ukxk

∣∣∣∣∣

pn

= 0

}

cλ(u, p) =

{
x = (xk) ∈ ω : lim

n

∣∣∣∣∣
1

λn

n∑

k=0

(λk − λk−1)ukxk

∣∣∣∣∣

pn

exists

}

and

`λ
∞(u, p) =

{
x = (xk) ∈ ω : sup

n∈N

∣∣∣∣∣
1

λn

n∑

k=0

(λk − λk−1)ukxk

∣∣∣∣∣

pn

< ∞
}

.
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In the case (uk) = (pk) = e = (1, 1, 1, ...), the sequence spaces cλ
0(u, p), cλ(u, p)

and `λ
∞(u, p) are , respectively, reduced to the sequence spaces cλ

0 , c
λ and `λ

∞
which are introduced by Mursaleen and Noman [16]. With the notation of (4),
we may rede�ne the spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p) as follows:

cλ
0(u, p) = [c0(p)]Λu , cλ(u, p) = [c(p)]Λu and `λ

∞(u, p) = [`∞(p)]Λu .

De�ne the sequence y = {yn(λ)}, which will be frequently used, as the
Λu-transform of a sequence x = (xk), i.e.

yn(λ) =
1

λn

n∑

k=0

(λk − λk−1)ukxk; (n ∈ N). (5)

Now, we may begin with the following theorem which is essential in the text.

Theorem 2.1 cλ
0(u, p), cλ(u, p) and `λ

∞(u, p) are the complete linear metric
spaces paranormed by g, de�ned by

g(x) = sup
k∈N

∣∣∣∣∣
1

λk

k∑
j=0

(λj − λj−1)ujxj

∣∣∣∣∣

pk/M

.

g is a paranorm for the spaces `λ
∞(u, p) and cλ(u, p) only in the trivial case

inf pk > 0 when `λ
∞(u, p) = `λ

∞ and cλ(u, p) = cλ.

Proof. We prove the theorem for the space cλ
0(u, p). The linearity of cλ

0(u, p)
with respect to the co-ordinatewise addition and scalar multiplication follows
from the following inequalities which are satis�ed for x, z ∈ cλ

0(u, p) (see [10,
p.30])

sup
k∈N

∣∣∣∣∣
1

λk

k∑
j=0

(λj − λj−1)uj(xj + zj)

∣∣∣∣∣

pk/M

≤ sup
k∈N

∣∣∣∣∣
1

λk

k∑
j=0

(λj − λj−1)ujxj

∣∣∣∣∣

pk/L

+ sup
k∈N

∣∣∣∣∣
1

λk

k∑
j=0

(λj − λj−1)ujzj

∣∣∣∣∣

pk/L

(6)

and for any α ∈ R (see [12])

|α|pk ≤ max{1, |α|M}. (7)

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ cλ
0(u, p). Again the

inequalities (6) and (7) yield the subadditivity of g and

g(αx) ≤ max{1, |α|}g(x).
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Let {xn} be any sequence of the points xn ∈ cλ
0(u, p) such that g(xn−x) → 0

and (αn) also be any sequence of scalars such that αn → α. Then, since the
inequality

g(xn) ≤ g(x) + g(xn − x)

holds by the subadditivity of g, {g(xn)} is bounded and we thus have

g(αnxn − αx) = sup
k∈N

∣∣∣∣∣
1

λk

k∑
j=0

(λj − λj−1)uj(α
nxn

j − αxj)

∣∣∣∣∣

pk/M

≤ |αn − α| g(xn) + |α| g(xn − x)

which tends to zero as n → ∞. This means that the scalar multiplication is
continuous. Hence, g is a paranorm on the space cλ

0(u, p).
It remains to prove the completeness of the space cλ

0(u, p). Let {xi} be any
Cauchy sequence in the space cλ

0(u, p), where xi = {x(i)
0 , x

(i)
1 , x

(i)
2 , ...}. Then,

for a given ε > 0 there exists a positive integer n0(ε) such that

g(xi − xj) <
ε

2

for all i, j > n0(ε). By using the de�nition of g we obtain for each �xed k ∈ N
that

|(Λuxi)k − (Λuxj)k|pk/M ≤ sup
k∈N

|(Λuxi)k − (Λuxj)k|pk/M <
ε

2
(8)

for every i, j ≥ n0(ε) which leads us to the fact that {(Λux0)k, (Λ
ux1)k, (Λ

ux2)k, ...}
is a Cauchy sequence of real numbers for every �xed k ∈ N. Since R is complete,
it converges, say (Λuxi)k → (Λux)k as i →∞. Using these in�nitely many lim-
its (Λux)0, (Λ

ux)1, (Λ
ux)2, ..., we de�ne the sequence {(Λux)0, (Λ

ux)1, (Λ
ux)2, ...}.

From (8) with j →∞, we have

|(Λuxi)k − (Λux)k|pk/M ≤ ε

2
(i ≥ n0(ε)) (9)

for every �xed k ∈ N. Since xi = {x(i)
k } ∈ cλ

0(u, p) for each i ∈ N, there exists
k0(ε) ∈ N such that

|(Λuxi)k|pk/M <
ε

2

for every k ≥ k0(ε) and for each �xed i ∈ N. Therefore, taking a �xed i ≥ n0(ε)
we obtain by (9) that

|(Λux)k|pk/M ≤ |(Λux)k − (Λuxi)k|pk/M + |(Λuxi)k|pk/M < ε

for every k ≥ k0(ε). This shows that x ∈ cλ
0(u, p). Since {xi} was an arbitrary

Cauchy sequence, the space cλ
0(u, p) is complete and this concludes the proof.
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Note that the absolute property does not hold on the spaces cλ
0(u, p), cλ(u, p)

and `λ
∞(u, p), since there exists at least one sequence in the spaces cλ

0(u, p), cλ(u, p)
and `λ

∞(u, p) such that g(x) 6= g(|x|); where |x| = (|xk|). This says that
cλ
0(u, p), cλ(u, p) and `λ

∞(u, p) are the sequence spaces of non-absolute type.

Theorem 2.2 The sequence spaces cλ
0(u, p), cλ(u, p) and `λ

∞(u, p) of non-absolute
type are linearly isomorphic to the spaces c0(p), c(p) and `∞(p), respectively;
where 0 < pk ≤ H < ∞.

Proof. To avoid the repetition of the similar statements, we give the proof
only for cλ

0(u, p). We should show the existence of a linear bijection between the
spaces cλ

0(u, p) and c0(p). With the notation of (5), de�ne the transformation T
from cλ

0(u, p) and c0(p) by x 7→ y = Tx. The linearity of T is trivial. Further,
it is obvious that x = θ whenever Tx = θ and hence T is injective.

Let y ∈ c0(p) and de�ne the sequence x = {xk(λ)} by

xk(λ) =
k∑

j=k−1

(−1)k−j λj

(λk − λk−1)uk

yj; (k ∈ N).

Then, we have

g(x) = sup
k∈N

∣∣∣∣∣
1

λk

k∑
j=0

(λj − λj−1)ujxj

∣∣∣∣∣

pk/M

= sup
k∈N

∣∣∣∣∣
k∑

j=0

δkjyj

∣∣∣∣∣

pk/M

= sup
k∈N

|yk|pk/M = g1(y) < ∞.

Thus, we have that x ∈ cλ
0(u, p) and consequently T is surjective and paranorm

preserving. Hence, T is a linear bijection and this says us that the spaces
cλ
0(u, p) and c0(p) are linearly isomorphic, as was desired.

3 The basis for the spaces cλ
0(u, p) and cλ(u, p)

In the present section, we give two sequences of the points of the spaces cλ
0(u, p)

and cλ(u, p) which form the basis for those spaces.
Firstly, we give the de�nition of the Schauder basis of a paranormed space

and later give the theorem exhibiting the basis of the spaces cλ
0(u, p) and

cλ(u, p). Let (λ, h) be a paranormed space. A sequence (bk) of the elements
of λ is called a basis for λ if and only if, for each x ∈ λ, there exists a unique
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sequence (αk) of scalars such that

h

(
x−

n∑

k=0

αkbk

)
→ 0 as n →∞.

The series
∑

αkbk which has the sum x is then called the expansion of x with
respect to (bn), and written as x =

∑
αkbk.

Because of the isomorphism T is onto, de�ned in the Proof of Theorem
2.2, the inverse image of the basis of those spaces c0(p) and c(p) are the basis
of the new spaces cλ

0(u, p) and cλ(u, p), respectively. Therefore, we have the
following:

Theorem 3.1 Let νk(λ) = (Λux)k for all k ∈ N and 0 < pk ≤ H < ∞. De�ne
the sequence b(k)(λ) = {b(k)

n (λ)}n∈N of the elements of the space cλ
0(u, p) by

b(k)
n (λ) =





(−1)k−n λn

(λk − λk−1)uk

(n ≤ k ≤ n + 1),

0 (n < k or n > k + 1)
(10)

for every �xed k ∈ N. Then,
(a) The sequence {b(k)(λ)}k∈N is a Schauder basis for the space cλ

0(u, p) and
any x ∈ cλ

0(u, p) has a unique representation of the form

x =
∑

k

νk(λ)b(k)(λ). (11)

(b) The set {b, b(1)(λ), b(2)(λ), ...} is a basis for the space cλ(u, p) and any x ∈
cλ(u, p) has a unique representation of the form

x = lz +
∑

k

[νk(λ)− l]b(k)(λ); (12)

where b = { 1
uk
}∞k=0 and

l = lim
k→∞

(Λux)k. (13)

Proof. It is clear that {b(k)(λ)} ⊂ cλ
0(u, p), since

Λub(k)(λ) = e(k) ∈ c0(p), (k ∈ N) (14)

for 0 < pk ≤ H < ∞; where e(k) is the sequence whose only non-zero term is
a 1 in kth place for each k ∈ N.

Let x ∈ cλ
0(u, p) be given. For every non-negative integer m, we put

x[m] =
m∑

k=0

νk(λ)b(k)(λ). (15)
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Then, we obtain by applying Λu to (15) with (14) that

Λux[m] =
m∑

k=0

νk(λ)Λub(k)(λ) =
m∑

k=0

(Λux)ke
(k)

and
{Λu(x− x[m])}i =

{
0, (0 ≤ i ≤ m),

(Λux)i, (i > m),

where i,m ∈ N. Given ε > 0, then there is an integer m0 such that

sup
i≥m

|(Λux)i|pk/M <
ε

2

for all m ≥ m0. Hence,

g(x− x[m]) = sup
i≥m

|(Λux)i|pk/M ≤ sup
i≥m0

|(Λux)i|pk/M <
ε

2
< ε

for all m ≥ m0 which proves that x ∈ cλ
0(u, p) is represented as in (11).

Let us show the uniqueness of the representation for x ∈ cλ
0(u, p) given

by (11). Suppose, on the contrary, that there exists a representation x =∑
k µk(λ)b(k)(λ). Since the linear transformation T from cλ

0(u, p) to c0(p), used
in Theorem 2.2, is continuous we have at this stage that

(Λux)n =
∑

k

µk(λ){Λub(k)(λ)}n =
∑

k

µk(λ)e(k)
n = µn(λ); (n ∈ N)

which contradicts the fact that (Λux)n = νn(λ) for all n ∈ N. Hence, the
representation (11) of x ∈ cλ

0(u, p) is unique. This completes the proof of Part
(a) of Theorem.

(b) Since {b(k)(λ)} ⊂ cλ
0(u, p) and b ∈ c0(p), the inclusion {b, b(k)(λ)} ⊂

cλ(u, p) is obviously true. Let us take x ∈ cλ(u, p). Then there uniquely exists
an l satisfying (13). We thus have z ∈ cλ

0(u, p) whenever we set z = x − lb.
Therefore, we deduce by Part (a) of the present theorem that the representation
of z is unique. This implies that the representation of x given by (12) is unique,
which concludes the proof.

Proposition 3.2 [1, Remark 2.4] The matrix domain XA of a normed se-
quence space X has basis if and only if X has a basis.

Since it is known that `∞(p) has no basis, we can deduce from this proposition
the following corollary.

Corollary 3.3 `λ
∞(u, p) has no Schauder basis.
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4 The α−, β− and γ− duals of the spaces cλ
0(u, p),

cλ(u, p) and `λ
∞(u, p)

In this section, we state and prove the theorems determining the α−, β− and
γ− duals of the sequence spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p) of non-absolute

type.
We shall �rstly give the de�nition of α−, β− and γ− duals of a sequence

spaces and later quote the lemmas which are needed in proving the theorems
given in Section 4.

For the sequence spaces λ and µ, de�ne the set S(λ, µ) by

S(λ, µ) = {z = (zk) : xz = (xkzk) ∈ µ for all x ∈ λ} (16)

With the notation of (16), the α−, β− and γ− duals of a sequence space λ,
which are respectively denoted by λα, λβ and λγ, are de�ned by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

Lemma 4.1 [13, Theorem 5.1.3 with qn = 1] A ∈ (`∞(p) : `1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

ankB
1/pk

∣∣∣∣∣ < ∞ for all integers B > 1. (17)

Lemma 4.2 [13, Theorem 5.1.9] A ∈ (c0(p) : c(q)) if and only if

sup
n∈N

∑

k

|ank|B−1/pk < ∞ (∃B ∈ N2) (18)

∃(αk) ⊂ R 3 lim
n→∞

|ank − αk|qn = 0 for all k ∈ N. (19)

∃(αk) ⊂ R 3 sup
n∈N

N1/qn
∑

k

|ank − αk|B−1/pk < ∞ (∃B ∈ N2 and ∀N ∈ N1).

(20)

Lemma 4.3 [6, Theorem 3] Let pk > 0 for every k. Then A ∈ (`∞(p) : `∞) if
and only if

sup
n∈N

∑

k

|ank|B1/pk < ∞ for all integers B > 1. (21)
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Theorem 4.4 Let K∗ = {k ∈ N : n−1 ≤ k ≤ n}∩K for K ∈ F and B ∈ N2.
De�ne the sets Λ1(u, p), Λ2(u) and Λ3(u, p) as follows:

Λ1(u, p) =
⋃
B>1

{
a = (ak) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣
∑

k∈K∗
(−1)n−k λk

(λn − λn−1)un

anB−1/pk

∣∣∣∣∣ < ∞
}

Λ2(u) =

{
a = (ak) ∈ ω :

∑
n

∣∣∣∣
an

un

∣∣∣∣ < ∞
}

Λ3(u, p) =
⋂
B>1

{
a = (ak) ∈ ω : sup

K∈F

∑
n

∣∣∣∣∣
∑

k∈K∗
(−1)n−k λk

(λn − λn−1)un

anB1/pk

∣∣∣∣∣ < ∞
}

Then
[
cλ
0(u, p)

]α
= Λ1(u, p),

[
cλ(u, p)

]α
= Λ1(u, p)∩Λ2(u) and

[
`λ
∞(u, p)

]α
= Λ3(u, p).

Proof. We give the proof only for the space `λ
∞(u, p). Let us take any a =

(ak) ∈ ω and de�ne the matrix Cλ = (cλ
nk) via the sequence a = (an) by

cλ
nk =





(−1)n−k λk

(λn − λn−1)un

an (n− 1 ≤ k ≤ n),

0 (0 ≤ k < n− 1 or k > n)

where n, k ∈ N. Bearing in mind (5) we immediately derive that

anxn =
n∑

k=n−1

(−1)n−k λk

(λn − λn−1)un

anyk = (Cλy)n, (n ∈ N). (22)

We therefore observe by (22) that ax = (anxn) ∈ `1 whenever x ∈ `λ
∞(u, p)

if and only if Cλy ∈ `1 whenever y ∈ `∞(p). This means that a = (an) ∈[
`λ
∞(u, p)

]α whenever x = (xn) ∈ `λ
∞(u, p) if and only if Cλ ∈ (`∞(p) : `1).

Then, we derive by Lemma 4.1 for all n ∈ N that
[
`λ
∞(u, p)

]α
= Λ3(u, p).

Theorem 4.5 De�ne the sets Λ4(u, p), Λ5(u, p), Λ6(u), Λ7(u), Λ8(u, p) and Λ9(u, p)
as follows:

Λ4(u, p) =
⋃
B>1

{
a = (ak) ∈ ω :

∑

k

∣∣∣∣∆̃
[

ak

(λk − λk−1)uk

]
λk

∣∣∣∣ B−1/pk < ∞
}

Λ5(u, p) =
⋃
B>1

{
a = (ak) ∈ ω :

{
λk

(λk − λk−1)uk

akB
−1/pk

}
∈ `∞

}
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Λ6(u) =

{
a = (ak) ∈ ω :

∑

k

∣∣∣∣∆̃
[

ak

(λk − λk−1)uk

]
λk

∣∣∣∣ < ∞
}

Λ7(u) =

{
a = (ak) ∈ ω : lim

k→∞

{
λk

(λk − λk−1)uk

ak

}
exists

}

Λ8(u, p) =
⋂
B>1

{
a = (ak) ∈ ω :

∑

k

∣∣∣∣∆̃
[

ak

(λk − λk−1)uk

]
λk

∣∣∣∣ B1/pk < ∞
}

Λ9(u, p) =
⋂
B>1

{
a = (ak) ∈ ω :

{
λk

(λk − λk−1)uk

akB
1/pk

}
∈ c0

}
.

Then,
[
cλ
0(u, p)

]β
= Λ4(u, p) ∩ Λ5(u, p),

[
cλ(u, p)

]β
=

[
cλ
0(u, p)

]β ∩ Λ6(u) ∩ Λ7(u)

and [
`λ
∞(u, p)

]β
= Λ8(u, p) ∩ Λ9(u, p).

Proof. We give the proof only for the space cλ
0(u, p). Consider the equation

n∑

k=0

akxk =
n∑

k=0

[
k∑

j=k−1

(−1)k−j λj

(λk − λk−1)uk

yj

]
ak

=
n−1∑

k=0

∆̃

[
ak

(λk − λk−1)uk

]
λkyk +

λn

(λn − λn−1)un

anyn = (Dλy)n; (23)

where Dλ = (dλ
nk) is de�ned by

dλ
nk =





∆̃

[
ak

(λk − λk−1)uk

]
λk (0 ≤ k ≤ n− 1),

λn

(λn − λn−1)un

an (k = n),

0, (k > n),

and

∆̃

[
ak

(λk − λk−1)uk

]
λk =

[
ak

(λk − λk−1)uk

− ak+1

(λk+1 − λk)uk+1

]
λk.

Thus, we deduce from Lemma 4.2 with qn = 1 for all n ∈ N and (23) that
ax = (akxk) ∈ cs whenever x = (xk) ∈ cλ

0(u, p) if and only if Dλy ∈ c

whenever y = (yk) ∈ c0(p). This means that a = (an) ∈ [
cλ
0(u, p)

]β whenever
x = (xn) ∈ cλ

0(u, p) if and only if Dλ ∈ (c0(p) : c). Therefore we derive from
(18) with qn = 1 for all n ∈ N and some B ∈ N2 that

∑

k

∣∣∣∣∆̃
[

ak

(λk − λk−1)uk

]
λk

∣∣∣∣B−1/pk < ∞
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and {
λk

(λk − λk−1)uk

akB
−1/pk

}
∈ `∞.

This shows that
[
cλ
0(u, p)

]β
= Λ4(u, p) ∩ Λ5(u, p).

Theorem 4.6 De�ne the sets Λ10(u) and Λ11(u, p) as follows:

Λ10(u) =

{
a = (ak) ∈ ω :

{
λk

(λk − λk−1)uk

ak

}
∈ bs

}

and

Λ11(u, p) =
⋂
B>1

{
a = (ak) ∈ ω :

{
λk

(λk − λk−1)uk

akB
1/pk

}
∈ `∞

}
.

Then,
[
cλ
0(u, p)

]γ
= Λ4(u, p) ∩ Λ5(u, p),

[
cλ(u, p)

]γ
=

[
cλ
0(u, p)

]γ ∩ Λ10(u)

and [
`λ
∞(u, p)

]γ
= Λ8(u, p) ∩ Λ11(u, p).

Proof. This may be obtained by proceedings as in Theorems 4.4 and 4.5,
above. So we omit the details.

5 Certain Matrix Mappings on the spaces cλ
0(u, p),

cλ(u, p) and `λ
∞(u, p)

In this section, we characterize the matrix mappings from the sequence spaces
cλ
0(u, p), cλ(u, p) and `λ

∞(u, p) into any given sequence space. We shall write
throughout for brevity that

ãnk = ∆

[
ank

(λk − λk−1)uk

]
λk

=

[
ank

(λk − λk−1)uk

− an,k+1

(λk+1 − λk)uk+1

]
λk

for all n, k ∈ N. We will also use the similar notation with other letters and
use the convention that any term with negative subscript is equal to naught.

Suppose throughout that the entries of the in�nite matrices A = (ank) and
C = (cnk) are connected with the relation

cnk = ãnk

(
or equivalently ank =

∞∑

j=k

(λk − λk−1)

λk

ukcnj

)
(n, k ∈ N).

(24)
Now, we may give our basic theorem.
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Theorem 5.1 Let µ be any given sequence space. Then, A ∈ (cλ
0(u, p) : µ) if

and only if C ∈ (c0(p) : µ) and
{

λk

(λk − λk−1)uk

ankB
−1/pk

}
∈ c0, (∀n ∈ N,∃B ∈ N2). (25)

Proof. Suppose that (24) holds and µ be any given sequence space. Let
A ∈ (cλ

0(u, p) : µ) and take any y ∈ c0(p). Then, (ank)k∈N ∈ [cλ
0(u, p)]β which

yields that (25) is necessary and (cnk)k∈N ∈ `1 for each n ∈ N. Hence, Cy
exists and thus letting m →∞ in the equality

m∑

k=0

cnkyk =
m∑

k=0

m∑

j=k

(λk − λk−1)

λk

ukcnjxk, (n,m ∈ N)

we have that Cy = Ax which leads us to the consequence C ∈ (c0(p) : µ).
Conversely, let C ∈ (c0(p) : µ) and (25) holds, and take any x ∈ cλ

0(u, p).
Then, we have (ank)k∈N ∈ [cλ

0(u, p)]β for each n ∈ N. Hence, Ax exists. There-
fore, we obtain from the equality

m∑

k=0

ankxk =
m−1∑

k=0

cnkyk +
λm

(λm − λm−1)um

anmym; (n,m ∈ N)

as m → ∞ that Ax = Cy and this shows that A ∈ (cλ
0(u, p) : µ). This

completes the proof.

Theorem 5.2 Let µ be any given sequence space. Then,
(i) A ∈ (cλ(u, p) : µ) if and only if C ∈ (c(p) : µ) and (25) holds.
(ii)A ∈ (`λ

∞(u, p) : µ) if and only if C ∈ (`∞(p) : µ) and (25) holds.

Proof. This may be obtained by proceedings as in Theorem 5.1, above. So,
we omit the details.

Now, we may quote our corollaries on the characterization of some ma-
trix classes concerning with the sequence spaces cλ

0(u, p), cλ(u, p) and `λ
∞(u, p).

Before giving the corollaries, let us consider the following conditions:

sup
n∈N

[∑

k

∣∣∣∣∆
(

ank

(λk − λk−1)uk

)∣∣∣∣ λkB
1/pk

]qn

< ∞, (∀B ∈ N), (26)

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

∆

[
ank

(λk − λk−1)uk

]
λkB

1/pk

∣∣∣∣∣

qn

< ∞, (∀B ∈ N), (27)

sup
n∈N

∑

k

∣∣∣∣∆
[

ank

(λk − λk−1)uk

]
λk

∣∣∣∣ B1/pk < ∞, (∀B ∈ N), (28)
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∃(αk) ⊂ R 3 lim
n→∞

[∑

k

∣∣∣∣∆
(

ank

(λk − λk−1)uk

)
λk − αk

∣∣∣∣ B1/pk

]qn

= 0, (∀B ∈ N),

(29)

sup
n∈N

[∑

k

∣∣∣∣∆
(

ank

(λk − λk−1)uk

)
λk

∣∣∣∣ B−1/pk

]qn

< ∞, (∃B ∈ N), (30)

sup
n∈N

∣∣∣∣∣
∑

k

∆

[
ank

(λk − λk−1)uk

]
λk

∣∣∣∣∣

qn

< ∞, (31)

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

∆

[
ank

(λk − λk−1)uk

]
λkB

−1/pk

∣∣∣∣∣

qn

< ∞, (∃B ∈ N), (32)

∑
n

∣∣∣∣∣
∑

k

∆

[
ank

(λk − λk−1)uk

]
λk

∣∣∣∣∣

qn

< ∞, (33)

∃α ∈ R 3 lim
n→∞

∣∣∣∣∣
∑

k

∆

[
ank

(λk − λk−1)uk

]
λk − α

∣∣∣∣∣

qn

= 0, (34)

∃(αk) ⊂ R 3 lim
n→∞

∣∣∣∣∆
[

ank

(λk − λk−1)uk

]
λk − αk

∣∣∣∣
qn

= 0, (∀k ∈ N), (35)

∃(αk) ⊂ R 3 sup
n∈N

N1/qn
∑

k

∣∣∣∣∆
[

ank

(λk − λk−1)uk

]
λk − αk

∣∣∣∣ B−1/pk < ∞, (∀N, ∃B ∈ N).

(36)

Corollary 5.3 (i) A ∈ (`λ
∞(u, p) : `∞(q)) if and only if (25) and (26) hold.

(ii) A ∈ (`λ
∞(u, p) : `(q)) if and only if (25) and (27) hold.

(iii) A ∈ (`λ
∞(u, p) : c(q)) if and only if (25), (28) and (29) hold.

(iv)A ∈ (`λ
∞(u, p) : c0(q)) if and only if (25) holds and (29) also holds with

αk = 0 for all k ∈ N.

Corollary 5.4 (i) A ∈ (cλ(u, p) : `∞(q)) if and only if (25),(30) and (31)
hold.
(ii) A ∈ (cλ(u, p) : `(q)) if and only if (25),(32) and (33) hold.
(iii) A ∈ (cλ(u, p) : c(q)) if and only if (25),(34),(35) and (36) hold, and (30)
also holds with qn = 1 for all n ∈ N.
(iv) A ∈ (cλ(u, p) : c0(q)) if and only if (25) holds, and (34),(35) and (36) also
hold with α = 0, αk = 0 for all k ∈ N, respectively.

Corollary 5.5 (i) A ∈ (cλ
0(u, p) : `∞(q)) if and only if (25) and (30) hold.

(ii) A ∈ (cλ
0(u, p) : `(q)) if and only if (25) and (32) hold.

(iii) A ∈ (cλ
0(u, p) : c(q)) if and only if (25), (35) and (36) hold and (30) also

holds with qn = 1 for all n ∈ N.



On Some New Paranormed Sequence Spaces 41

(iv) A ∈ (cλ
0(u, p) : c0(q)) if and only if (25) holds and (29) also holds with

αk = 0 for all k ∈ N.
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