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Abstract
We consider a age-structured model with vaccination and define costs for

a vaccination strategy and effect. Two optimization problems in a free disease
pattern situation emmerge: to find the strategy with minimal costs at a given
level for the effect, and also to find the strategy with maximal effect at given
costs. It turns out that there is an optimal strategy that is nonzero in one or
two age classes, i.e., consists of a sum of at most two delta-peaks.
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1 Introduction

This paper investigates age strategies able to optimize the cost (impact and
effect[5]) of the vaccination on an hepatitis B model. Our model with applica-
tion on Hepatitis B (see Pasquini et al.[13] for a good and general description)
adds age structure a to the continuous time t and analyses then, some improve-
ments in the comprehension of the disease dynamics (please compare to A.A.
Elbab et al.[3] without age or J. Fu et al.[4] with diffusion). We follow meth-
ods of Castillo & Feng[2] with Hadeler & Muller[6] and Stoer & Witzgall[14].
The main result (see Theorem 4.3 therein) is that in a free disease pattern,
there is an optimal strategy that is nonzero in one or two age classes, i.e.,
consists of a sum of at most two delta-peaks. The paper is organised as follow:
second, third, fourth and last sections are devoted to problem formulations,
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primary material on the model, results on optimal vaccination strategies and
a discussion.

2 Problem Formulations

In this paper we will consider the following (chronological) age-structured
model with vaccination

(∂t + ∂a + Ψ(a) + µ) s(t, a) = −λ0(t, a)s(t, a),

(∂t + ∂a + µ) v(t, a) = Ψ(a)s(t, a)− δλ0(t, a)v(t, a),

(∂t + ∂a + (µI + µ)) i(t, a) = λ0(t, a)p(a) (s(t, a) + δv(t, a)) ,

(∂t + ∂a + νE) e(t, a) = λ0(t, a)q(a) (s(t, a) + δv(t, a)) ,

(∂t + ∂a + µ) r(t, a) = (µI − ε)i(t, a),

(1)

posed for time t > 0, (chronological) age a > 0, µI , νE, µ, ε ≥ 0, νE ≥ µ and
µI − ε ≥ 0. Here s(t, a) denotes the age-specific density of susceptibles, e(t, a)
and i(t, a) denotes respectively the the age-specific density of chronic carriers
and acute infected individuals (that can be symptomatic or asymptomatic)
while r(t, a) denotes the recovered individuals from acute infection. v(t, a) is
the density of vaccinated individuals. The term λ0(t, a) corresponds to the
age-specific force of infection and follows the usual law of mass-action, that
reads as

λ0(t, a) =

∫ ∞
0

[βi(a, a
′)i(t, a′) + βe(a, a

′)e(t, a′)] da′.

Here βi(a, a
′) and βe(a, a

′) respectively denote the contact transmission rate
between acute infected (resp. asymptomatic carriers) of age a′ with susceptible
of age a. Ψ(a) is the proportion of susceptibles vaccinated. 0 ≤ δ ≤ 1 is the
reduction in risk due to prior exposure to vaccination. That means: δ = 0
corresponds to a perfect vaccine and δ = 1 corresponds to a totally imperfect
vaccine. In addition p ∈ L∞+ (0,∞) is a given function such that 0 ≤ p(a) ≤ 1
a.e. while q(a) ≡ 1−p(a). Function q represents the age-specific probability to
become a chronic carrier when becoming infected at age a. Function p denotes
the probability to develop an acute infection when getting the infection at age
a. We refer to Nokes et al. [12] for more explanation on the age-dependence
susceptibility to the infection and Abboubakar [1] for their estimations from
data with maximum likewood or least mean square methods. This problem is
supplemented together with the boundary conditions:

s(t, 0) = Λ, (constant external influx)

i(t, 0) = e(t, 0) = 0, (no vertical transmission),

r(t, 0) = 0, (no immunity at birth),

(2)
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and initial data

s(0, a) = s0(a), i(0, a) = i0(a), e(0, a) = e0(a), r(0, a) = r0(a), v(0, a) = v0(a).
(3)

Note that the r component of the system is decoupled from the other compo-
nents and has therefore no impact upon the long time behaviour of the system.
To perform our analysis we shall assume that the contact between individuals
is homogeneous so that

βi(a, a
′) ≡ βI > 0 and βe(a, a

′) ≡ βE ≥ 0.

By setting

I(t) :=

∫ ∞
0

i(t, a)da and E(t) :=

∫ ∞
0

e(t, a)da,

one obtains that (s, v, I, E) satisfies the following system of equations:

(∂t + ∂a + µ) s(t, a) = −λ(t)s(t, a), t > 0, a > 0,

s(t, 0) = Λ,

(∂t + ∂a + µ) v(t, a) = Ψ(a)s(t, a)− δλ(t)v(t, a),

I ′(t) = λ(t)

∫ ∞
0

p(a) (s(t, a) + δv(t, a)) da− νII(t),

E ′(t) = λ(t)

∫ ∞
0

q(a) (s(t, a) + δv(t, a)) da− νEE(t), t > 0,

(4)

with
λ(t) = βII(t) + βEE(t), (5)

The disease free equilibrium is defined as xΨ
F =

(
sΨ
F , v

Ψ
F , 0, 0

)T
wherein we

have set sΨ
F (a) = Λe−(µa+

∫ a
0 Ψ(s)ds) and vΨ

F (a) = sF (a) − sΨ
F (a). One can see

that
sΨ
F (a) ≤ sF (a) = Λe−µa,∀a ≥ 0

It traduces the benefit of vaccination for population because it reduces popu-
lation of susceptibles to HBv (Hepatitis B virus).

Like Cameroon Government (see [9]) we choose the situation with no new-
born baby vaccination: v(t, 0) = 0.

3 Preliminary Materials

We denote by RΨ
0 the basic reproduction rate for the new partial model (4).

Clearly it is

RΨ
0 :=

[∫ ∞
0

(
βI
νI
p(a) +

βE
νE
q(a)

)(
sΨ
F (a) + δvΨ

F (a)
)
da

]
(6)
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With
(
sΨ
F (a) + δvΨ

F (a)
)

= sF (a)− (1− δ)
(
sF (a)− sΨ

F (a)
)
. We recall the basic

reproduction rate for our previous model (1) without vaccination

R0 :=

[∫ ∞
0

(
βI
νI
p(a) +

βE
νE
q(a)

)
sF (a)da

]
= R0

0 (7)

The wellposedness of this model is studied as in Inaba[7] or Kouakep et al.[8].
It can be show that there is a unique positive nontrivial stationary solution if
the reproduction number R0 is greater than one, while for R0 < 1 there is only
the noninfected stationary solution.

We see that R0 ≥ RΨ
0 . As mentioned by Castillo & Feng[2], ”the infection-

free state may be locally/globally asymptotically stable if RΨ
0 < 1 and unstable

if RΨ
0 > 1. Also an endemic steady state exists when RΨ

0 > 1. We have not
shown whether or not endemic steady states exist for parameters that satisfy
RΨ

0 < 1 < R0. This may suggest the existence of a backwards bifurcation of
nontrivial equilibria for some parameter values in that range”.

We define F (Ψ) = R0 −RΨ
0 and C (Ψ) =

∫ +∞
0

u(a)Ψ(a)sΨ
F (a)da with u(a)

is a positive function representing the cost associated with one vaccination at
age a. We define also a useful function in the next lines:

φ(a) = − d

da

(
e−

∫ a
0 Ψ(s)ds

)
It follows that 1− e−

∫ a
0 Ψ(s)ds =

∫ a
0
φ(x)dx and Ψ(a) = φ(a)

1−
∫ a
0 φ(s)ds

.

We set also F̄ (φ) := F (Ψ) and C̄(φ) := C (Ψ).

4 Optimization Problems and Results

Two optimization problems can be defined as follows. Let R∗ and C∗ be two
constants.

(I) Find a vaccination strategy Ψ(a) that minimizes C (Ψ) constrained by

RΨ
0 ≤ R∗

(II) Find a vaccination strategy Ψ(a) that minimizes RΨ
0 constrained by

C (Ψ) ≤ C∗

Hadeler and Muller[6] and Castillo & Feng[2] show how to transform the non-
linear maps F (Ψ) and C (Ψ) respectively into linear functionals F̄ (φ) and
C̄(φ). One can easily see possibly with an integral transformation:

F̄ (φ) =

∫ +∞

0

K(a)φ(a)da
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and

C̄(φ) =

∫ +∞

0

B(a)φ(a)da

if we set

K(a) =

∫ +∞

a

(1− δ) sF (s)

[
βI
νI
p(s) +

βE
νE
q(s)

]
ds

and

B(a) = u(a)Λe−µa

Remark 4.1 It is possible to generalise the concept of δ by considering it
as a positive function of age.

Letting Q(φ) =
∫ +∞

0
φ(a)da and ρ = R0−R∗. We observe also that Q(φ) ≤ 1.

We see that:

(I)⇔ (I’) minimize C̄(φ) when f(φ) ≤ 0 and φ ≥ 0 where we have set
f(φ) ≡

(
ρ− F̄ (φ);Q(φ)− 1

)
. f(φ) ≤ 0 means that fi(φ) ≤ 0, (i = 1, 2).

Remark 4.2 One can follow ideas in Muller[10] in order to prove existence
of optimal stategies for (I), (I’) or (II) (by a property of a continue fonction
on a compact set in a ”good” space) and caracterizes some of them as extremal
points in suitable spaces with convexity and Krein-Milman Theorem.[[15], p.
362]

Like Castillo and Feng[2], one can use the Saddle Point Theorem of Kuhn
and Tucker for the convex optimization problem (see Ref.[14]) we can show
that (I’) is mathematically equivalent to (P1) in Ref.[6]. Hence, using the
same arguments we arrive at the following conclusion.

Theorem 4.3 Letting δ∗ := R∗
R0

for R0 6= 0, we assume that R0 = 0 or
δ∗ > δ. There are two possible optimal vaccination strategies in (I):

(i) one-age strategy: vaccinate the susceptible population at exactly age A;

(ii) two-age strategy: vaccinate part of the susceptible population at age A1

and the remaining susceptibles at a later age A2.

For the two vaccination strategies, the optimal ages can be calculated in the
following way: Note that K(a) is a strictly decreasing function with K(0) =
(1− δ)R0 > ρ and K(a) → 0 when a → ∞. Hence, we can find A∗ > 0

such that K(A∗) = ρ. Let A be the minimum of the quotient B(a)
K(a)

. (See [6]

for discussions about the existence of A.) If A ∈ [0;A∗], then it gives an
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optimal age for the one-age strategy. If A ∈ (A∗; +∞), then the optimal two-
age strategy is found by minimizing the expression CR∗ (A1;A2) on A1 ∈ [0;A∗]
and A2 ∈ (A∗; +∞), where

CR∗ (A1;A2) =
ρ−K(A2)

K(A1)−K(A2)
B(A1) +

K(A1)− ρ
K(A1)−K(A2)

B(A2)

For (II), a similar conclusion to Result above can be obtained; i.e., the
optimal vaccination strategy is either one- or two-age, and the optimal ages
can be determined.

Remark 4.4 We think that K(0) = (1− δ)R0. For us argument ”K(0) =
R0 > ρ” of Castillo & Feng[2] fails in page 149 for general cases. It surely holds
for perfect vaccine (δ = 0). There is a level of ”inefficacity” for δ precisely
δ∗ = R∗

R0
if R0 6= 0, above wich all strategies seems to be inefficient.

5 Discussion and Conclusion

The fact that we found one or two age strategies could be explained also by
the fact that we neglect vertical transmission. Cameroon Ministry of Public
Health[9] chooses a three ages strategy at 6th, 10th and 14th weeks after
birth. For most studies (see D. Greenhalgh[5] for a good review), it seems
to be enough even if we consider vertical transmission. We expect to include
vertical transmission and study a model similar to the first model with

s(t, 0) = Λ, (constant external influx)

i(t, 0) = Λ2(t), (vertical transmission),

e(t, 0) = Λ3(t), (vertical transmission),

r(t, 0) = 0, (no immunity at birth),

(8)

and maybe include v(t, 0) = Λ4(t).
Another remark on this note is the fact that we have not proved that

optimal ages are consistent with human life time or life expectancy to avoid
cases where for example ages go beyond 200 years.

Moreover we see the link between ”level of inefficiency” δ∗ for the vaccine
and the security upper bound R∗ condition for the effect. It partially explains
why a bad quality vaccine could not protect a population with an optimal n-
age strategy with n not big at all. We understand also that there is a tradeoff
between minimizing the cost C (Ψ) and setting the effect’s upper bound R∗.
In a forthcoming work, we will study discrete structures of optimal vaccination
strategies in the endemic pattern case for our model using methods similar to
J. Muller [11].
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University of Ngaoundere, Cameroon, (2010).

[2] C. Castillo-Chavez and Z. Feng, Global stability of an age-structure
model for TB and its applications to optimal vaccination strategies, Math.
Biosci., 151(1998), 135-154.

[3] A.A. Elbab, K.M. Hemida and M. Elsaid, On the behavior of numerical
solutions with natural of stability and controllability of viral dynamical
models, Gen. Math. Notes, 9(2) (2012), 42-55.

[4] J. Fu, R. Chen and X. Hou, An optimal distributed control for age-
dependent population diffusion system, Gen. Math. Notes, 6(1) (2011),
73-85.

[5] D. Greenhalgh, Age-structured models and optimal control in mathemat-
ical epidemiology: A survey, In: Optimal Control of Age-Structured Popu-
lations in Economy, Demography and the Environment, Routledge Explo-
rations in Environmental Economics, Routledge, Taylor & Francis Group,
(2010).

[6] K.P. Hadeler and J. Muller, Vaccination in age structured populations
II: Optimal vaccination strategies, In: V. Isham and G. Medley (Eds.),
Models for Infectious Human Diseases: Their Structure and Relation to
Data, Cambridge University, Cambridge, (1996).

[7] H. Inaba, Threshold and stability results for an age-structured epidemic
model, J. Math. Biol., 28(1990), 411-434.

[8] T.Y. Kouakep, A. Ducrot and D.D.E. Houpa, A model for Hepatitis B
with chronological and infection ages, Appl. Math. Sci., 7(117) (2013),
5977-5993, http://dx.doi.org/10.12988/ams.2013.37420.

[9] Ministry of Public Health of Cameroon, Plan D’introduction du
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