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Abstract

Lie symmetry group method is applied to study the Fisher-Kolmogorov equa-
tion. The symmetry group is given, and travelling wave solutions are obtained.
Finally the conservation laws are determined.
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1 Mathematical Formulation

In mathematics, Fisher’s equation, also known as the Fisher-Kolmogorov equa-
tion and the Fisher-KPP equation, named after R. A. Fisher and A. N. Kol-
mogorov, is the partial differential equation which describe the spatial spread
of an advantageous allele and explored its travelling wave solutions. The aim
is to analysis the Lie point symmetry structure of this equation, which is

∆FK(u) := ut − u(1− u)− uxt = 0, (1)

where u is a smooth function of (x, t).

In this paper we give a method for finding travelling solutions for the Fisher-
Kolmogorov equation based on some rational function which is applicable for
any kind of partial differential equations, then we determine conservation laws
of the Fisher-Kolmogorov equation using Lie point symmetries.
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2 Transformed Rational Function Method

As we know a lots of physical phenomena could be discussed with differential
equations, specially partial differential equations. Furthermore these phenom-
ena are following from a non-linear structure, such as fluid dynamics, optical
fibers, plasma physics, acoustics, solid state physics, mechanics and etc., [2]. In
this article we found a special kind of solutions called similarity solutions, but
obviously it is a part of solutions space of equation (1). Thus, it is significantly
important to investigate for exact solutions of equation (1).

A direct approach to exact solutions of non-linear partial differential equa-
tions is recommended by using rational function transformations. This is a
systematical method for finding the solutions of non-linear equations, pro-
vides a unigeniture between tanh−function type method, the homogeneous
balance method, the exp−function method, the mapping method and the
F−expansion type methods. This method is based on finding rational so-
lutions for ordinary differential equations which generated by reducing of a
system of partial differential equations. But we know it is a hard job to find
all exact solutions for non-linear partial differential equations, but it a success-
ful idea to generate exact solution of non-linear wave equations by reducing
partial differential equation into ordinary differential equations.

There is a lots of literature about above-mentioned method but Ma and Lee,
[12], propose a direct and systematical approach to exact solutions of non-linear
equations by using rational function transformations, a suitable and effective
method for obtaining the exact solutions. Their method carry out the solution
process of non-linear wave equation more systematically and conveniently by
softwares such as Maple and Mathematica, so it is an encouragement for us for
finding exact solutions of equation (1). Finally we can use linear superposition
principle, [11], for partial differential equations for this equation to classify a
vast line of exact solutions. In the next subsection we will use some transfor-
mations mentioned above for finding travelling wave solution for the equation
(1).

To describe our solution process, let us focus on a scalar 1+1 dimensional
partial differential equation

∆(x, t, u, ux, ut, uxx, uxt, utt, ...) = 0, (2)

though the solution process also works for systems of non-linear equations. We
assume that there are exact solutios to the differential equation (2):

u(x, t) = u(ζ), ζ = ζ(x, t). (3)

Usually we have travelling wave solution ζ(x, t) = ax−ωt, [3], where a and
ω are arbitrary constants, also in non-constant coefficients we have ζ(x, t) =
a(t)x−ω(t). Under the transformation (3), the partial differential equation (2)
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reduced to an ordinary differential equation: Γ(x, t, u′, u′′, u′′′, ...) = 0, where

u(i) = diu
dζi

. To keep the solution process as simple as possible, the function
Γ should not be total ζ−derivative of another function. Otherwise, taking
integration with respect to ζ further reduces the transformed equation.

An important step for finding solution is to introduce a new variable η =
η(ζ) by an integrable oprdinary differential equation, such as:

η′ = τ = τ(ζ, η), (4)

for a smooth function τ . The prime is the derivative respect to ζ. In case
that we have a general second-order differential equation to begin with, we
shoul first obtain its first integrals [13], and then use the method of planar
dynamical system to solve [6]. Two simple solvable cases of the above function
τ are τ = τ(η) = η, and τ = τ(η) = α + η2, where α is a constant. The
corresponding first-order equations have a particular solution η = eζ and

η =


−1
ζ
, when α = 0,

−
√
−α tanh

√
−αζ or −

√
−α coth

√
−αζ, when α < 0,√

α tan
√
αζ or −

√
α cot

√
αζ, when α > 0,

(5)

respectively. Those two cases corresponds to the exp−method and the ex-
tended tanh−function method, respectively.

More general assumption that τ can engenders special function solutions
to non-linear wave equation. For instance, taking (η′)2 = T (η) with some
fourth-order polynomials T (η) in η (or equivalently, η′′ = S(η) with some
third-order polynomials S(η) in η) can yield Jacobi elliptic function solutions;
and such assumptions are the bases for the extended tanh−function method,
the F−expansion method and the extended F−expansion method, and work
for many particular non-linear wave equations.

To generate travelling wave solution using the solution process described
above, consider the solution

u(x, t) = u(ζ), ζ = ax− ωt, (6)

where a is the angular wave number and ω is the wave frequency, we only need
to solve the reduced Fisher-Kolmogorov equation

a2u′′ + ωu′ + u(1− u) = 0, (7)

where the prime denotes the derivatives with respect to ζ. Set u′ = v, and
then, we have the transformed Fisher-Kolmogorov equation

a2τv′ + ωv + η(1− η) = 0. (8)
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2.1 The case η′ = η

In this case the transformed Fisher-Kolmogorov equation becomes

a2ηv′ + ωv + η(1− η) = 0. (9)

A direct computation tells that there is a solution

v(η) = η
( η

2a2 + ω
− 1

a2 + ω

)
+ cη
− ω
a2 , c = constant. (10)

Accordingly we have the travelling wave solutions to the Fisher-Kolmogorov
equation:

u(x, t) =
1

2

e2ζ

2a2 + ω
+

eζ

a2 + ω
− c1e

−ζ
ω

a2 (2a6 + 3a4ω + a2ω)

ω(2a2 + ω)(a2 + ω)
+ c2, (11)

where c1 and c2 are arbitrary constants and ζ = ax− ωt.

2.2 The case η′ = α + η2

In this case, the transformed Fisher-Kolmogorov equation becomes

a2(α + η2)v′ + ωv + η(1− η) = 0. (12)

A direct computation tells that there is a solution

v(η) =

(∫ η(1− η)

a2(α + η2)
exp

{
ω arctan η√

α

a2
√
α

}
dη + c

)
exp

{
−
ω arctan η√

α

a2
√
α

}
. (13)

For example if η =
√
α tan

√
αζ, a new travelling wave solution for Fisher-

Kolmogorov equation is

u(x, t) =
∫ tan2

√
αζ(
√
α tan

√
αζ − 1)

a2(1 + tan2
√
αζ)

exp
{ωζ
a2

}
dζ + c exp

{
− ωζ

a2

}
, (14)

where ζ = ax− ωt.

2.3 Bäcklund Transformation

Let u = u(x, t) be a solution for the equation (1). Evidently, if a function
v = v(x, t) satisfies

2uv + ∆FK(v) = 0, (15)
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where ∆FK is the Fisher-Kolmogorov equation, then the sum of the two func-
tions, w = u + v, gives another solution to the Fisher-Kolmogorov equation.
Therefore, once we find a function v satisfying (15), we get a new solution
w = u + v from a known function u. This forms a general auto-Bäcklund
transformation for the Fisher-Kolmogorov equation. It follows directly from
the above Bäcklund transformation if two solutions u and v of the Fisher-
Kolmogorov equation satisfy uv = 0, then w = u + v is a third solution. For
example if we take a travelling wave solution u = u(x, t) = u(ax − ωt) to the
Fisher-Kolmogorov equation, then the function

w(x, t) = u(ax− ωt) + a′x− ω′t+ b, (16)

where a′ and ω′ are constants, presents a new solution to the Fisher-Kolmogorov
equation.

3 Conservation Laws

A coservation law of a non-degenerate system of differential equation is a diver-
gence expression that vanishes on all solutions of the given system. In general,
any such non-trivial expression that yields a local conservation law of the sys-
tem arises from a linear combination formed local multipliers (characteristics)
with each differential equation in the system, where the multipliers depend on
the independent and dependent variables as well as at most a finite number
of the dependent variables of the given system of differential equations. It
turns out that a divergence expression depending on independent variables,
dependent variables and their derivatives to some finite order is annihilated by
the Euler operators associated with each of its dependent variables; conversely,
if the Euler operators, associated with each dependent variable in an expres-
sion involving independent variables, dependent variables and their derivatives
to some finite order, annihilated the expression, then the expression is a di-
vergence expression. From this it follows that a given system of differential
equations has a local conservation laws if and only if there exist a set of lo-
cal multipliers whose scalar product with each differential equation in each
differential equation in system is identically annihilated without restricting
the dependent variables in the scalar product to solution of the system, i.e.,
the independent variables, as well as each of their derivatives, are treated as
arbitrary functions.

Thus the problem of finding local conservation laws of a system of differen-
tial equations reduces to the problem of finding local multipliers whose scalar
product with each differential equation in the system is annihilated by the
Euler operators associated with each dependent variable where the dependent
variables and their derivatives in the given set of local conservation laws multi-
pliers, there is an integral formula to obtain the fluxes of the local conservation
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laws [4, 10]. Often it straightforward to obtain the conservation law by direct
calculation after its multipliers are known [5]. What has been outlined here is
the direct method for obtaining local conservation laws of Fisher-Kolmogorov
equation.

3.1 The Direct Method

Consider a system ∆(x, u(n)) = 0 of `−differential equations of order n with
p−independent variables x = (x1, ..., xp) and q−dependent variables u(x) =
(u1(x), ..., uq(x)), given by

∆ν [u] = ∆ν(x, u, ∂u, ..., ∂
nu) = 0, ν = 1, ..., `, (17)

a local conservation law of the system (17) is a divergence expression

DiΦ
i[u] := D1Φ

1[u] + · · ·+DpΦ
p[u] = 0, (18)

holding on all solutions of the system (17). In (18), Di is the total deriva-
tives respect to xi and Φi[u] = Φi(x, u, ∂u, ..., ∂ku), i = 1, ..., p, is the fluxes of
conservation laws.

In general, for a given non-degenerate differential equation system (17),
non-trivial local conservation laws arise from seeking scalar products that in-
volve linear combinations of the equations of the differential equation system
(17) with multipliers (factors) that yield nontrivial divergence expressions. In
seeking such expressions, the dependent variables and each of their derivatives
that appear in the differential equation system (17) or in the multipliers, are
replaced by arbitrary functions. Such divergence expressions vanish on all so-
lutions of the differential equation system (17) provided the multipliers are
non-singular.

Definition 3.1 The Euler operator with respect to Uµ is the operator de-
fined by

EUµ =
∂

∂Uµ
−Di

∂

∂Uµ
+ · · ·+ (−1)sDi1 · · ·Dis

∂

∂Uµ
i1...is

+ · · · . (19)

By direct calculation, one can show that the Euler operators (19) annihilate
any divergence expression DiΦ

i(x, U, ∂U, ..., ∂kU) for any k. In particular the
following identities holds for arbitrary U(x),

EUµ(DiΦ
i(x, U, ∂U, ..., ∂kU)) ≡ 0, µ = 1, ..., q. (20)

It is straightforward to show that the converse also holds. Namely, the only
scalar expressions annihilated by Euler operators are divergence expressions.
This establishes the following theorem.
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Theorem 3.2 A set of non-singular local multipliers
{Λν}`ν=1 = {Λν(x, U, ∂U, ..., ∂

kU)} yields a divergence expression for a system
of differential equations (17) if and only if the set of equations

EUµ(Λν(x, U, ∂U, ..., ∂
kU)∆ν(x, U, ∂U, ..., ∂

nU)) ≡ 0, µ = 1, ..., q, (21)

holds for arbitrary functions U(x).

The set of equations (21) yields the set of linear determining equations to find
all sets of local conservation laws multipliers of a given differential equation
system (17) by letting k = 1, 2, ... in (21). Since the equations (17) holds
for arbitrary U(x), it follows that they also hold for each derivative of U(x)
replaced by an arbitrary function.

The direct method to obtain local conservation laws is now illustrated
through equation (1). Consider the Fisher-Kolmogorov equation (1), we see
all local conservation laws multipliers of the form Λ = Λ(x, t, u, ux, ut), of the
equation (1). In terms of Euler operators EU , we have three local conservation
multipliers given by

Λ1 = 1, Λ2 = ut, Λ3 = tut + x2 − t2. (22)

For each set of local multipliers, it is straightforward to obtain the following
two linearly independent local conservation laws of the equation (1):

Φ = −xtuut − exp(x2 + t2 + u2) + x3uut +
1

2
(x2 + u2), (23)

Ψ = x3tu2ut + u− ux. (24)

3.2 Lie Point Symmetries and Conservation Laws

In this section we show if any system of differential equations such as (17)
maps to system of differential equations

Γν [u] = Γν(x, u, ∂u, ..., ∂
nu) = 0, ν = 1, ..., `, (25)

by an invertible transformation, then any conservation law of ∆ν(x, u
(n)) maps

to a conservation law of Γν(x, u
(n)). When this transformation is a symmetry

of system ∆ then, the corresponding conservation law is a conservation law of
Γ.

Consider the system (17), let

∆ν [U ] = ∆ν(x, U, ∂U, ..., ∂
nU) = 0, ν = 1, ..., `, (26)

where U(x) = (U1(x), ..., U q(x)) is a solution of the system (17).
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Consider an invertible point transformation

xi = xi(z,W ), i = 1, ..., p; Uα = Uα(z,W ), α = 1, ..., q, (27)

where U(x) = (U1(x), ..., U q(x)), z = (z1, ..., zq) andW (z) = (W 1(z), ...,W q(z)).
Under the transformation (27) and its prolongation, any function ∆ν [U ]

maps to a function Γν [W ] = Γν(z,W, ∂W, ..., ∂
nW ). In a special case Γν [W ] =

∆ν [U ], the components x, U, ∂U, ..., ∂nU is written in the form of components
z,W, ∂W, ..., ∂nW in (27). If U(x) = u(x) is a solution of the system (17),
then, W (z) = w(z) is a solution of the system (25) in the form of

Γν [w] = Γν(z, w, ∂w, ..., ∂
nw) = 0, ν = 1, ..., `, (28)

with p−independent variables z = (z1, ..., zp) and q−dependent variables w =
(w1, ..., wq). Let us consider the invertible transformations (27) is a symmetry
of system (26). Then, there are smooth functions Aντ [W ] such that:

∆ν [U ] = Γν [W ] = Aντ [W ]∆τ [U ]. (29)

Lemma 3.3 If a point transformation (x, u) 7→ (x̃(x, y), ũ(x, u)) be a sym-
metry of system (26), then, a conservation law DiΦ

i[u] = 0 leads to a conser-
vation law DiΨ

i[u] = 0.

This lemma shows that the action of a symmetry transformation of system
(26) on a conservation law DiΦ

i[u] = 0 leads us to a new conservation law
DiΨ

i[u] = 0.

Theorem 3.4 Suppose the point transformation (27) is a symmetry of sys-
tem (26) . If {Λν [U ]}`ν=1 be a set of conservation laws multipliers with conser-
vation laws DiΦ

i[u], then,

Λ̃τ [W ]∆τ [W ] = D̃iΨ
i[W ], (30)

where

Λ̃τ [W ] = J[W ]Aντ [W ]Λν [U(z,W )], τ = 1, ..., `. (31)

Corollary 3.5 The set of multipliers {Λ̃ν [U ]}`ν=1 generates new conserva-
tion laws for system (26) if and only if it is a linear independent set on the
solutions U(x) = u(x).

The main result of these section is, we can act point symmetries on the obtained
conservation laws for finding new conservation laws. Now according to the
basic results of Lie point symmetries [8, 9, 10], we can use Maple and obtain
the Lie algebra of Lie point symmetry of the equation (1) spanned by the vector
fields { ∂

∂x
, ∂
∂t
}, then we apply these vector fileds for finding new conservation
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laws for Fisher-Kolmogorov equation. Thus the set of new linear independent
multipliers are

Λ1 = tuut − 2x exp(x2 + t2 + u2) + 3x2uut +
1

2
(2x+ u2), (32)

Λ2 = xuut − 2t exp(x2 + t2 + u2). (33)

Acknowledgements: Lie point symmetries of differential equations is an
important object for studying structures of all differential equations. There
is a lots of literatures for this but we can use Maple and Mathematica for
finding this kind of symmetries. There are some method to obtain solutions of
differential equations by using symmetries [1, 7, 9, 10]. Another symmetries
which are called higher order symmetries such as contact symmetries and gen-
eralized symmetries [10] could be used for finding new conservation laws foe
equation (1).
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