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Abstract

In this paper, we introduce the concept of Q-P quantale modules. A series
of categorical properties of Q-P quantale modules are studied, we prove that
the category of Q-P quantale modules is not only pointed and connected, but
also completed.
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1 Introduction

The first lattice analogy of a ring module was introduced in[1]by A.Joyal
and M.Tierney. The idea of quantale module appeared in work[2] of S.Abransky
and S.Vickers. With the development of the theory of quantale, many people
have stuied this structure. The paper[3]investigate the relations of quantale
module with quantale matrix. Every prime give wise to a strong module, which
be generalized for prime matrix. Every quantale module can be viewed as a
matrix.Pedre Resende [4] defined a sup-lattice bimorphism which are equiva-
lent to Galois connections, and study their relation to quantale modules. Jan
paska [5] introduced concept of Girard bimodules and studied of properties of
Girard bimodules. In the paper [6][7]discussed a series of properties of Hilbert
modules, and gave some important resultes on Hilbert modules. So, the quan-
tale theory has aroused great interests of many scholar and experts, a great
deal of new ideas and applications of quantale have been proposed in twenty
years([6− 17]).
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In this paper, we introduced the concept of Q-P quantale modules, and
study deeply and systemly the categorical properties of Q-P quantale modules,
some interesting categorical properties of Q-P quantale modules are obtained.

For facts concerning category in general we refer to [18].
The paper is organized as follows. In section 1, we recall the notions of

quantale modules and introduce the definition of Q-P quantale modules. In
section 2, we prove that the category of the Q-P quantale modules is pointed
and connected.The equalizer, the coequlizer, the product, the coproduct, the
mutiplipullback in the category of Q-P quantale modules are studied.we prove
that the each projection of the category of Q-P quantale modules is retract,
and the category of Q-P quantale modules has kernel and cokernel.

2 Preliminaries

Definition 2.1 (10) A quantale is a complete lattice Q with an associa-
tive binary operation&satisfying: a &(supαbα)=supα(a & bα)and (supαbα) &
a=supα(bα & a)for all a∈ Q and bα ⊆Q.

Definition 2.2 (6) Let Q be a quantale, a left module over Q(briefly, a
left Q-module)is a sup-lattice M, together with a module action · :Q×M−→M
satisfying

(1) (
∨
i∈I
ai) ·m =

∨
i∈I

(ai ·m);

(2) a · ( ∨
j∈J

mj) =
∨
j∈J

(a ·mj);

(3) (a&b) ·m = a · (b ·m). for all a,b,ai ∈Q, m,mj ∈M.
The right modules are defined analogously.
If Q is untial and e·m=m for every m∈M, we say that M is unital.

Definition 2.3 (10) Let M and N are Q-quantales. A mapping f : M−→N
is said to be module homomorphism if f(

∨
i∈I
mi) =

∨
i∈I
f(mi), and f(a · m) =

a · f(m)for all a ∈Q, m, mi ∈M.

Definition 2.4 Let Q,P be a quantale, a Q-P quantale module over Q,P
(briefly, a Q-P-module) is a complete lattice M , together with a mapping T :
Q×M × P −→M satisfies the following conditions:

(1) T (
∨
i∈I
ai,m,

∨
j∈J

bj) =
∨
i∈I

∨
j∈J

T (ai,m, bj);

(2) T (a, (
∨
k∈K

mk), b) =
∨
k∈K

T (a,mk, b);

(3) T (a&b,m, c&d) = T (a, T (b,m, c), d).
for all ai, a, b ∈ Q,bj, c, d ∈ P , mk,m ∈M .

We shall denote the Q-P quantale module M over Q,P by (M, T ).
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Definition 2.5 Let (M1, T1) and (M2, T2)are Q-P quantale modules. A
mapping f : M1 −→ M2is saied to be Q-P quantale module homomorphism
if satisfying

(1) f(
∨
i∈I
mi) =

∨
i∈I
f(mi);

(2) f(T1(a,m, b)) = T2(a, f(m), b)for all a∈ Q,b∈ P, mi ∈M .

Definition 2.6 Let (M, TM) be Q-P quantale module over Q and P, N is
the subset of M, N is said to be submodule of M if N is closed under arbitrary
join and TM(a, n, b)∈N for all a∈ Q,b∈ P, n∈N.

3 Equalizer, Intersection, Product and Pull

Back

Definition 3.1 Let QModP be the category whose objects are the Q-P
quantale modules, and morphisms are f : M−→N which is the Q-P quantale
module homomorphism,i.e.,
Ob(QModP)={M : M is Q-P quantale modules},
Mor(QModP)={f : M −→ N is the Q-P quantale modules homorphism}

Hence, the category QModP is a concrete category.

Theorem 3.2 Every constant morphism of the category QModP is exactly
a zero morphism.

Proof: Let Q,P are quantales, M and N are double quantale modules,
the mapping f : M −→ N is a morphism of Q-P quantale modules. Suppose
idM : M −→N is a identity morphism, 0M : M−→M is a zero morphism.
Since f◦idM=f◦0M ,then f◦idM(m)=f◦0M(m) for all m∈M. Thus f(m)=0N for
all m∈M.

Conversely, If f(m)=0N for all m∈M, then f◦r=f◦s for all r,s∈ Hom(M, N).

Theorem 3.3 Every coconstant morphism of the category QModP is ex-
actly a zero morphism.

Theorem 3.4 The category QModP is a pointed.

Theorem 3.5 (1) The category QModP has terminal objects.
(2) The category QModP has initial objects.
(3) The category QModP is connected.

Proof: (1) Let Q,P are quantales, (M, TM) is a Q-P quantale module. It
is easy to prove that ({0}, T{0}) is a Q-P quantale module,define mapping f :
M −→ {0}such that f(m)=0 for all m∈M, then
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f(
∨
i∈I
mi) = 0 =

∨
i∈I

0 =
∨
i∈I
f(mi),

f(TM(a,m, b) = 0 = T{0}(a, 0, b) = T{0}(a, f(m), b) for all a∈Q,b∈P,m,mi ∈M,
therefore the mapping f is a Q-P quantale module morphism.

(2) Let M is a Q-P quantale module, f : {0} −→ M is a Q-P quantale
module morphism, then f(0)=0M . We can see that f is only morphism in
Hom({0}, M ), therefore the category QModP has initial objects.

(3)It is clearly.

Theorem 3.6 The category QModPhas equalizers.

M N
f

g
E

i

E ′

E

ee

---
?

@
@
@
@R

Proof: Let Q,P are quantales, (M,TM) and (N, TN) are Q-P quantale
modules, f and g : M−→ N are Q-P quantale module morphisms. Suppose
E={m ∈M | f(m) = g(m)}, then f(0M)=0N=g(0M), implies 0M ∈ E 6= ∅.

For all {mi | i ∈ I} ⊆ E, a ∈ Q, b ∈ P, m∈ E,
f(

∨
i∈I
mi) =

∨
i∈I
f(mi) =

∨
i∈I
g(mi) = g(

∨
i∈I
mi), i.e.,

∨
i∈I
mi ∈ E;

f(TM(a,m, b)) = TN(a, f(m), b) = TN(a, g(m), b) = g(TM(a,m, b)), i.e.,
TM(a,m, b) ∈ E, then E is a submodule of M, therefore the inclusion mapping
i : E↪→M is a Q-P quantale module morphism. We will show (E, i)is equalizer
of f and g,

(1) It is clear know that f◦i=g◦i;
(2) Let E’ is a Q-P quantale module, mapping e : E ′ −→ M is a Q-P

quantale module morphism, and satisfy f◦ e=g◦e. Define mapping e : E ′ −→ E
such that e(x) = e(x)for all x ∈ E ′. Sincef(e(x)) = g(e(x)) for all x ∈ E ′,
then ē is well defined.

Let{xi | i ∈ I} ⊆ E ′, a ∈ Q, b ∈ P, x ∈ E ′, then e(
∨
i∈I
xi) = e(

∨
i∈I
xi) =∨

i∈I
e(xi) =

∨
i∈I
e(xi);

e(TM(a, x, b)) = e(TM(a, x, b)) = TM(a, e(x), b) = TM(a, e(x), b),thus eis a
Q-P quantale module morphism. For all x ∈ E ′, we have that(i ◦ e)(x) =
i(e(x)) = i(e(x)) = e(x),thene = i ◦ e.

It’s easy to prove that there is a only one Q-P quantale module morphism
from E ′to E with e(x) = i ◦ e(x)for all x ∈ E ′,therefore(E, i)is the equalizer of
f and g.

Theorem 3.7 The category QModPhas multiple equalizers.
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Proof: Let Q,P are quantales, (M,TM) and (N, TN) are Q-P quantale
modules, {hj | M −→ N}j∈J are Q-P quantale module morphisms. Suppose
E = {m ∈ M | ∀j1, j2 ∈ J, hj1(m) = hj2(m)}. Since hj1(0M) = 0N =
hj2(0M)for all j1, j2 ∈ J , then0M ∈ E 6= ∅.

Let{mi | i ∈ I} ⊆ E, a ∈ Q, b ∈ P,m ∈ E, j1, j2 ∈ J , we have

hj1(
∨
i∈I
mi) =

∨
i∈I
hj1(mi) =

∨
i∈I
hj2(mi) = hj2(

∨
i∈I
mi), i.e.,

∨
i∈I
mi ∈ E;

hj1(TM(a,m, b) = TN(a, hj1(m), b) = TN(a, hj2(m), b) = hj2(TM(a,m, b)), i.e.,
TM(a,m, b) ∈ E,

thus the set E is a submodule of M, therefore the mapping i : E ↪→ M is
a Q-P quantale module morphism,

M N
hj

E
i

E ′

E

e
e

--
?

@
@
@
@R

We will prove that (E, i) is the multiple equalizer of {hj}j∈J .

(1) It’ is clearly that hj1 ◦ i = hj2 ◦ ifor allj1, j2 ∈ J ;

(2) Suppose (E ′, TE′ is a Q-P quantale module, mapping e : E ′ −→M is a
Q-P quantale module morphism,and satisfy hj1 ◦ e = hj2 ◦ e for all j1, j2 ∈ J .
Define e : E ′ −→ E, e(x) = e(x)forallx ∈ E ′. Because hj1(e(x)) = hj2(e(x))
for all x ∈ E ′, j1, j2 ∈ J,thus e(x) ∈ E for all x ∈ E ′, therefore e is well defined.

Let {xi | i ∈ I} ⊆ E ′, a ∈ Q, b ∈ P, x ∈ E ′
, then

e(
∨
i∈I
xi) = e(

∨
i∈I
xi) =

∨
i∈I
e(xi) =

∨
i∈I
e(xi);

e(TE′(a, x, b)) = e(TE′(a, x, b)) = TM(a, e(x), b) = TM(a, e(x), b),
thus the mapping e is Q-P quantale module morphism. Since (i ◦ e)(x) =
i(e(x)) = i(e(x)) = e(x),then e = i◦eforallx ∈ E ′.It’s easy to prove that there
is a only one Q-P quantale module morphism from E’to E with e(x) = i ◦ e(x)
for all x ∈ E ′, therefore (E, i) is the equalizer of {hj}j∈J .

Theorem 3.8 The category QModP has intersection.

Ai B

D C

di g

mi

f

d
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-
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Proof: Let (Ai,mi)i∈I is a family submodules of B,i.e.,there is a morphism
mi : Ai −→ B for all i ∈ I. It’s easy to prove that mi is a homomorphism for
all i ∈ I, then mi(Ai) is a submodule of B, and mi(Ai) is isomorphic to Ai.

Let mapping mo
i is the corestrict of mi on mi(A), (mo

i )
−1 is the inverse

mapping of mo
i , D =

⋂
i∈I
mi(Ai), It’s evident that D is the submodule of B,thus

D is the submodule of Ai for all i ∈ I. Suppose d : D −→ Bis a inclusion map.
We will prove that (D, d) is the intersection of (Ai,mi)i∈I in the category. In
fact, we have that

(1) Let di = (m◦i )
−1|D : D −→ Ai is the restrict of (mo

i )
−1 on D for all

i ∈ I, then di is the Q-P quantale module, and d = mi ◦ di for all i ∈ I.

(2) Let g : C −→ B and gi : C −→ Ai are the Q-P quantale modlue
morphisms such that g = mi ◦ gi for all i ∈ I, then gi(C) is the submodule of
D for all i ∈ I, thus g(C) = mi(gi(C)) is the submodule of mi(Ai), we know
that g(C)is the submodule of D. Suppose f is the restrict of g on D,then f is a
Q-P quantale module morphism, and d ◦ f = g. It’s easy to prove that there
is a only one morphism such that d ◦ f = g, therefore (D,d) is the intersection
of (Ai,mi)i∈I in the category.

Theorem 3.9 The category QModP has products.

∏
k∈K

Mk Mk
πk

fk

M

f̄

6

-

@
@
@

@I

Proof: Let {(Mk, Tk) | k ∈ K}is a family Q-P quantale modules, define
T : Q × ∏

k∈K
Mk × Q −→

∏
k∈K

Mk such that T (a,m, b) = (Tk(a,mk, b))k∈K for

all a ∈ Q, b ∈ P,m = (mk)k∈K , then

(1)
∏
k∈K

Mk is a complete lattice with pointwise.

(2)
∏
k∈K

Mk is a Q-P quantale module. In fact, for all {ai | i ∈ I} ⊆ Q,

{bh | h ∈ H} ⊆ P , {m(j) = (m
(j)
k )k∈K | j ∈ J} ⊆ ∏

k∈K
Mk, a, b ∈ Q, c, d ∈

P,m = (mk)k∈K ∈
∏
k∈K

Mk, k ∈ K, we have that

(T (
∨
i∈I
ai,m,

∨
h∈H

bh))k = Tk(
∨
i∈I
ai,mk,

∨
h∈H

bh) =
∨
i∈I

∨
h∈H

Tk(ai,mk, bh)

=
∨
i∈I

∨
h∈H

T (ai,m, bh)k

= (
∨
i∈I

∨
h∈H

T (ai,m, bh))k;
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(T (a,
∨
j∈J

m(j), c))k = Tk(a, (
∨
j∈J

m(j))k, c) = Tk(a,
∨
j∈J

m
(j)
k , c) =

∨
j∈J

Tk(a,m
(j)
k , c) =∨

j∈J
(T (a,m(j), c))k;

(T (a&b,m, c&d))k = Tk(a&b,mk, c&d) = Tk(a, Tk(b,mk, c), d) = Tk(a, (T (b,m, c)k, d))
= (T (a, T (b,m, c), d)k.

(3) Let k ∈ K, define πk :
∏
k∈K

Mk −→ Mk is a project,i.e.,πk(m) = mk for

all m = (mk)k∈K ∈
∏
k∈K

Mk. Suppose {m(i) = (m
(i)
k )k∈K | i ∈ I} ⊆ ∏

k∈K
Mk,

a ∈ Q, b ∈ P,m = (mk)k∈K ∈
∏
k∈K

Mk, then

πk(
∨
i∈I
m(i)) = (

∨
i∈I
m(i))k =

∨
i∈I
m

(i)
k =

∨
i∈I
πk(m

(i));

πk(T (a,m, b)) = (T (a,m, b))k = Tk(a,mk, b) = Tk(a, πk(m), b),
therefore πk :

∏
k∈K

Mk −→ Mk is a Q-P quantale module morphism for all

k ∈ K.
(4) we will prove that (

∏
k∈K

Mk, {πk}k∈K)is the products of {Mk | k ∈ K}.

Let (M,TM) is the a Q-P quantale module, fk : M −→ Mk for all k ∈ K,
define f : M −→ Mk such that (f(m))k = fk(m) for all m ∈ M,k ∈ K. For
all a ∈ Q, b ∈ Q,m ∈M, {mi | i ∈ I} ⊆M ,k ∈ K, we have

(f(
∨
i∈I
mi))k = fk(

∨
i∈I
mi) =

∨
i∈I
fk(mi) =

∨
i∈I

(f(mi))k = (
∨
i∈I
f(mi))k,

f(TM(a,m, b))k = fk(TM(a,m, b)) = Tk(a, fk(m), b) = Tk(a, (f(m))k, b) =
(TM(a, f(m), b))k,

Thereforef is a Q-P quantale module morphism,It’s clear that πk◦f = fkfor
all k ∈ K. It’s easy to prove that there is a only one morphism satisfy the
condition.Hence (

∏
k∈K

Mk, {πk}k∈K)is the products of {Mk | k ∈ K}.

Theorem 3.10 The category QModPhas coproducts.

Mk

∏
k∈K

Mkδk

f, f
′

M

fk

-

?

@
@
@
@R

Proof: Let {(Mk, Tk) | k ∈ K}is a family Q-P quantale modules. By the
theorem 2.7, we can see that (

∏
k∈K

Mk, T ) is a Q-P quantale modules.

For all k ∈ K, we have that
(1) For all {mi | i ∈ I} ⊆ Mk, then (δk(

∨
i∈I
mi))k =

∨
i∈I
mi =

∨
i∈I

(δk(mi))k =

(
∨
i∈I
δk(mi))k,
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For all l ∈ K, and l 6= k, (δk(
∨
i∈I
mi))l = 0Ml

=
∨
i∈I

0Ml
=

∨
i∈I

(δk(mi))l =

(
∨
i∈I
δk(mi))l,

i.e.,δk(
∨
i∈I
mi) =

∨
i∈I
δk(mi);

(2)For all a, b ∈ Q, b ∈ P,m ∈Mk, we have
(δk(Tk(a,m, b))k = Tk(a,m, b) = Tk(a, (δk(m))k, b) = (T (a, δk(m), b))k,
For all l ∈ K,andl 6= k,we have (δk(Tk(a,m, b)))l = 0Ml

= Tl(a, 0Ml
, b) =

Tl(a, (δk(m))l, b) = (T (a, δk(m), b))l, i.e.,δk(Tk(a,m, b)) = T (a, δk(m), b).
Therefore δk is a Q-P quantale module morphism for all k ∈ K.
Let M is a Q-P quantale module, mapping fk : Mk −→M is a Q-P quantale

module morphism for all k ∈ K. Define f :
∏
k∈K

Mk −→ Msuch that f(x) =∨
k∈K

fk(xk)with x ∈ ∏
k∈K

Mk, then for all {x(i) | i ∈ I} ⊆ ∏
k∈K

Mk, a ∈ Q, b ∈
P, x ∈ ∏

k∈K
Mk,

f(
∨
i∈I
x(i)) =

∨
k∈K

fk((
∨
i∈I
x(i))k) =

∨
k∈K

fk(
∨
i∈I
x
(i)
k ) =

∨
k∈K

(
∨
i∈I
fk(x

(i)
k ))

=
∨
i∈I

∨
k∈K

fk(x
(i)
k ) =

∨
i∈I
f(x(i));

f(T (a, x, b)) =
∨
k∈K

fk(T (a, x, b)k) =
∨
k∈K

fk(Tk(a, xk, b)) =
∨
k∈K

(TM(a, fk(xk), b))

= TM(a,
∨
k∈K

fk(xk), b) = TM(a, f(x), b),

thus f is a Q-P quantale module morphism.
Since (f ◦ δk)(x) = f(δk(x)) =

∨
l∈K

fl(δk(x))l = fk(x) for all k ∈ K, x ∈Mk,

thenf ◦ δk = fk for all k ∈ K.
It’s easy to prove that there is a only one morphism satisfy the condition.

Thus (
∏
k∈K

Mk, T ) is the coproducts of {(Mk, Tk) | k ∈ K}.

Definition 3.11 Let Q,P are quantales, (M,TM) is a Q-P quantale module,
R ⊆M ×M . The set R is said to be a congruence of Q-P quantale module on
the M. If R satisfy

(1) R is an equivalence relation on M.
(2) If (mi, ni) ∈ R for all i ∈ I, then ( ∨

i∈I
mi, ∨

i∈I
ni) ∈ R;

(3) If(m,n) ∈ R, then (TM(a,m, b), TM(a, n, b)) ∈ R for all a ∈ Q, b ∈ P .
Let Q,P is a quantale, M is a Q-P quantale module, R is a congrence of

Q-P quantale module on M, define order on M/R is that [m] ≤ [n]if and only
if [m ∨ n] = [n] for all [m], [n] ∈M/R.

Theorem 3.12 Let Q,P are quantales, M is a Q-P quantale module, R
is a congruence of Q-P quantale module on M, define TM/R : Q × M/R ×
P −→ M/R such that TM/R(a, [m], b) = [TM(a,m, b)] for all a ∈ Q, b ∈ P ,
[m] ∈ M/R, then (M/R, TM/R)is a Q-P quantale module, and π : m 7→ [m] :
M −→M/Ris a Q-P quantale module morphism.
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Proof: We will prove that “ ≤ ”is a partial order on M/R, and TM/Ris
well defined. In fact, for all [m], [n], [l] ∈M/R,

(i) It’s clearly that [m] ≤ [m];

(ii) Let[m] ≤ [n], [n] ≤ [m], then [m ∨ n] = [n] and [n ∨ m] = [m], thus
[m] = [n];

(iii) Let[m] ≤ [n], [n] ≤ [l],then [m∨n] = [n] and [n∨ l] = [l], therefore[m∨
l] = [m ∨ (n ∨ l)] = [(m ∨ n) ∨ (n ∨ l)] = [n ∨ l] = [l];

If [m1] = [m2], then (m1,m2) ∈ R, (TM(a,m, b), TM(a, n, b)) ∈ R for all
a ∈ Q, b ∈ P ,i.e.,[TM(a,m, b)] = [TM(a, n, b)], thusTM/Ris well defined.

(2)We will prove that (M/R,≤) is a complete lattice. Let {[mi] | i ∈ I} ⊆
M/R, we have

(i) Since [mi ∨ (
∨
i∈I
mi)] = [

∨
i∈I
mi] for all i ∈ I, then [mi] ≤ [

∨
i∈I
mi];

(ii) Let[m] ∈ M/Rand [mi] ≤ [m] for all i ∈ I, then [mi ∨m] = [m] for all
i ∈ I, therefore [(

∨
i∈I
mi) ∨m] = [

∨
i∈I

(mi ∨m)] = [m], i.e.,[
∨
i∈I
mi] ≤ [m].

Thus
M/R∨
i∈I

[mi] = [
∨
i∈I
mi].

(3) For all {ai | i ∈ I} ⊆ Q, {bj | j ∈ J} ⊆ P , {[ml] | l ∈ H} ⊆ M/R,
a, b ∈ Q, c, d ∈ P, [m] ∈M/R,we have that

(i) TM/R(
∨
i∈I
ai, [m],

∨
j∈J

bj) = [TM(
∨
i∈I
ai,m,

∨
j∈J

bj)] = [
∨
i∈I

∨
j∈J

TM(ai,m, bj)] =∨
i∈I

∨
j∈J

TM [ai,m, bj] =
∨
i∈I

∨
j∈J

TM/R(ai, [m], bj);

(ii) TM/R(a, (
∨
j∈J

[mj]), c) = TM/R(a, [
∨
j∈J

mj], c) = [TM(a, (
∨
j∈J

mj), c)]

= [
∨
j∈J

TM(a,mj, c)] =
∨
j∈J

[TM(a,mj, c)] =
∨
j∈J

TM/R(a, [mj], c);

(iii) TM/R(a&b, [m], c&d) = [TM(a&b,m, c&d)] = [TM(a, TM(b,m, c), d)]
= TM/R(a, [TM(b,m, c)], d) = TM/R(a, TM/R(b, [m], c), d).

Then is a Q-P quantale module.

(4) For all {[mi] | i ∈ I} ⊆M/R, a ∈ Q, b ∈ P, [m] ∈M/R,

π(
∨
i∈I
mi) = [

∨
i∈I
mi] =

∨
i∈I

[mi] =
∨
i∈I
π(mi);

π(TM(a,m, b)) = [TM(a,m, b)] = TM/R(a, [m], b) = TM/R(a, π(m), b).
So π : m 7→ [m] : M −→M/R is a Q-P quantale module morphism.

Theorem 3.13 Let Q,P are quantales, M is a Q-P quantale module, then
4 = {(x, x) | x ∈M} is a congrence of Q-P quantale module on M.

Theorem 3.14 The category QModP has coequalizer.
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M
f

g
N E ′h

E

π
h

-
-

-

?
�
�
�
���

Proof: Let Q,P are quantales, (M,TM) and (N, TN) are Q-P quantale mod-
ules, f and g are Q-P quantale module morphisms. Suppose R is the smallest
congrence of the Q-P quantale modules on N, which contain {(f(x), g(x)) |
x ∈ M}. Let E = N/R, π : N −→ N/Ris the canonical epimorphsim, by the
theorem 2.11 that (N/R, TN/R)is a Q-P quantale module, πis a Q-P quantale
module morphism. We will prove (π,E)is the coequalier of f and g. In fact,

(1) π ◦ f = π ◦ gis clearly.
(2) (E ′, TE′)is a Q-P quantale module, h : N −→ E ′ is a Q-P quantale

module morphism, and h ◦ f = h ◦ g. Let R1 = h−1(4),4 = {(x, x) | x ∈ E ′}.
By the theorem 2.12, we can see that R1is a congrence of Q-P quantale module
on N. Since h(f(x)) = h(g(x)) for all x ∈M , then (f(x), g(x)) ∈ R1, therefore
R is the smallest congrence which contain {(f(x), g(x)) | x ∈ M}. Define
h : N/R −→ E ′ such that h([n]) = h(n) for all [n] ∈ Q/R. Let n1, n2 ∈ N
and (n1, n2) ∈ R, then(n1, n2) ∈ R1, we have thath(n1) = h(n2), thereorehis
wll defined.

For all {[ni] | i ∈ I} ⊆ N/R, a ∈ Q, b ∈ P , [n] ∈ N/R, we have that
h(

∨
i∈I

[ni]) = h([
∨
i∈I
ni]) = h(

∨
i∈I
ni) =

∨
i∈I
h(ni) =

∨
i∈I
h([ni]),

h(TN/R(a, [n], b)) = h([T (a, n, b)]) = h(T (a, n, b)) = TE′(a, h(n), b)
= TE′(a, h([n]), b),

thus his a Q-P quantale module morphism. It’s easy to prove that h◦π = h
and his the only one morphism which satisfy the above condition. Therefore
(π,E) is the coequalizer of f and g.

Theorem 3.15 The categoryQModP has mutiple pullback.

E Di

B Bi

p0 fi

pi

gi

M ei
h

f

-

-
? ?

XXXXXXXXXz

HHHHjB
B
B
B
B
B
B
BN

Proof: Let I is a set, (B, TB) and (Di, TDi
)i∈I are Q-P quantale modules.

gi : B −→ Bi, fi : Di −→ Biare Q-P quantale modules morphisms for all i ∈ I.
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Suppose E = {x ∈ B × ∏
i∈I
Di | ∀i ∈ I, gi(x0) = fi(xi), x0 ∈ B}. We will prove

that Eis the submodule of B × ∏
i∈I
Di.

(1) For all {xj | j ∈ J} ⊆ B× ∏
i∈I
Di, we have gi((

∨
j∈J

xj)0) = gi(
∨
j∈J

(xj)0) =∨
j∈J

gi((xj)0) =
∨
j∈J

fi((xj)i) = fi(
∨
j∈J

(xj)i) = fi((
∨
j∈J

xj)i);

(2) For all x ∈ B × ∏
i∈I
Di, a ∈ Q, b ∈ P , we have gi((T (a, x, b)0) =

gi(TB(a, x0, b)) = TBi
(a, gi(x0), b) = TB(a, fi(xi), b) = fi(TDi

(a, xi, b));
then E is a submodule of B × ∏

i∈I
Di.

Let p0, pi(i ∈ I) are projects from B × ∏
i∈I
Di(i ∈ I) to B and Di restrict

on E respectively, thengi ◦ p0 = fi ◦ pi, for alli ∈ I, we have gained a family
commutative squares.

Let M is a Q-P quantale module,suppose (xq)0 = f(q), (xq)i = ei(q), for all
q ∈M , then xq ∈ B ×

∏
i∈I
Di. Since fi ◦ ei = gi ◦ f , for all i ∈ I, then xq ∈ E.

Define h : M −→ Esuch thath(q) = xq for all q ∈ Q,we will prove that h is
a double quantale module morphism. For all m ∈M, a ∈ Q, b ∈ Q, {aj}j∈J ⊆
M , i ∈ I, then

(1) since (h(
∨
j∈J

aj))0 = f(
∨
j∈J

aj) =
∨
j∈J

f(aj) =
∨
j∈J

(h(aj))0,

(h(
∨
j∈J

aj))i = ei(
∨
j∈J

aj) =
∨
j∈J

ei(aj) =
∨
j∈J

(h(aj))i, thenh(
∨
j∈J

aj) =
∨
j∈J

h(aj);

(2) (h(TM(a,m, b))0 = f(TM(a,m, b)) = TB(a, f(m), b) = TB(a, (h(m))0, b),
(h(TM(a,m, b))i = ei(TM(a,m, b)) = TDi

(a, ei(m), b) = TDi
(a, (h(m))i, b);

hence h is a Q-P quantale module morphism, and f = p0 ◦ h, ei = pi ◦ h.
It’s easy to prove that h is the only Q-P quantale module morphism which
satisfy the conditions, therefore the categoryQModQhas mutiple pullback.

Theorem 3.16 The category QModP has kernel.

Proof: Let Q,P are quantales, M and N are Q-P quantale modules, f :
M −→ N is a Q-P quantale modules morphism, 0M,N : M −→ N such that
f(m)=0 for all m ∈ M . Suppose E = {x ∈ M | f(x) = 0}, then (E, i : E ↪→
M)is a equalizer of f and0M,N , then f has kernel.

Theorem 3.17 The categoryQModPhas cokernel.

Proof: Let Q,P are quantales, M and N are Q-P quantale modules, f :
M −→ N is a Q-P quantale modules morphism, 0M,N : M −→ N such that
f(m)=0 for all m ∈ M . Let R is the smallest congrvence which contain
{(f(m), 0) | m ∈ M}, by the theorem 3.14 we know that (E = N/R, π :
N ↪→ E)is the coequalizer of f and0M,N , then f has cokernel.
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