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Abstract

In this work, we investigate the studies related to the Hahn sequence space.
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1 Introduction

By a sequence space, we understand a linear subspace of the space w = CY of all
complex sequences which contains ¢, the set of all finitely non-zero sequences.
We write /., ¢ and ¢y for the classical spaces of all bounded, convergent
and null sequences, respectively. Also by bs, cs, ¢; and /,, we denote the
space of all bounded, convergent, absolutely and p-absolutely convergent series,
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respectively. We define bv, dl, 0o, 0,05, dE and [ E as follows:

bv = {x:(xk)ew:2|xk—xk_1|<oo},
k=1

— 1
$=(Ik)GW1ZE|$k| <oo},
1

T = (x) €w:sup—

dt; =

n
r=(zy) €Ew: lim —Zxk exists },

. k—1
r= () €w:(C—=1)—» zp= lim 1-— T exists o,
SRR (R R
dE = {z=(v) cw: (k™'ay) € E},
/E = {z=(2) €w: (kay) € B},

where dE and [ E are called the differentiated and integrated spaces of E,
respectively.

A coordinate space (or K —space) is a vector space of numerical sequences,
where addition and scalar multiplication are defined pointwise.

oS =

S)
)
|
—— — = =
—_

An FK—space is a locally convex Fréchet space which is made up of se-
quences and has the property that coordinate projections are continuous.

A BK — space is locally convex Banach space which is made up of sequences
and has the property that coordinate projections are continuous.

A BK —space X is said to have AK (or sectional convergence) if and only
if ||zl — 2| = 0 as n — oc.

X has (C,1) — AK (Cesaro-sectional convergence of order one) if for all
r € X and

_E 1 pu—
(PL(2)) = (1 n>xk ,if k=1,2,...n

0 , if k=n+1n+2,..
Pl(z) € X and ||P}(z) —z||lx = 0 (n— o0).

Let X be an F'K —space. A sequence (zy) in X is said to be weakly Cesaro
bounded, if {[f(21) + f(z2) + ... + f(z4)]/k} is bounded for each f € X', the
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dual space of X.

Let ® stand, for the set of all finite sequences. The space X is said to have
AD (or) be an AD space if ® is dense in X. We note that AK = AD [3].

An FK—space X D ® is said to have AB if (z[") is bounded set in X for
each v € X.

Let X be a BK —space. Then X is said to have monotone norm if ||zI™| >
|z for m > n and ||z|| = supp, ||z

Let D = {z € & : ||z|| < 1} be in a BK—space X, that is, D is the
intersection of the closed unit sphere(disc) with ®. A subset E of ® is called
a determining set for X if and only if its absolutely convex hull K is identical
with D [18].

The normed space X is said to be rotund if and only if ||(x + y)/2|| < 1,
whenever z # y and ||z|| = ||y|| < 1 in X [17].
The set S(\, ) defined by

S\ ) ={2=(z) Ew:xz= (z2) € u forall z=(xp) €A} (1)

is called the multiplier space of the sequence spaces A and p. One can eaisly
observe for a sequence space v with A D v D pu that the inclusions

S(A,p) C S(v,p) and S\, p) C S(A,v)

hold. With the notation of (1), the alpha-, beta-, gamma- and sigma-duals of
a sequence space \, which are respectively denoted by A\*, M, A7 and \? are
defined by

A =S\ 6), N =S8(\es) N =S(\bs) and A = S(\ os).

For each fixed positive integer k, we write 6% = {0,0,...,1,0,...}, 1 in the
k — th place and zeros elsewhere. Given an F'K—space X containing ®, its
conjugate is denoted by X’ and its f—dual or sequential dual is denoted by
X/ and is given by X/ = { all sequences (f(6*)): f € X'}. An FK—space X
containing @ is said to be semi replete if X/ C o(fy). The space bv is semi
replete, because bv = bs [13].

Let A and u be two sequence spaces, and A = (a,,) be an infinite matrix of
complex numbers a,, where k,n € N. Then, we say that A defines a matrix
mapping from A into p, and we denote it by writing A : A — p if for every
sequence x = (x) € A. The sequence Ax = {(Ax),}, the A-transform of z, is
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in p; where

(Az), = Zankxk for each n € N. (2)
i

Throughout the text, for short we suppose that the summation without limits
runs from 1 to co. By (A : i), we denote the class of all matrices A such that
A: X — p. Thus, A € (A: p) if and only if the series on the right side of (2)
converges for each n € N and each x € A and we have Ax = {(Ax), ey € 1
for all x € \. A sequence z is said to be A-summable to [ if Az converges to [
which is called the A-limit of x.

Lemma 1.1. ([18], Theorem 7.2.7) Let X be an FK—space with X D ®.
Then,

(i) XP c X" c X/,
(ii) If X has AK, X% = X/,

(iii) If X has AD, XP = X7,

2 Hahn Sequence Space
Hahn [7] introduced the BK —space h of all sequences = = (x) such that

h = {x : Zk\Amﬂ < oo and ]}Lrgfoxk = 0},
k=1

where Axy = xp — xp 1, for all £ € N. The following norm

lzlln = kA + Sup ||
k

was defined on the space h by Hahn |7] (and also [6]). Rao (|12|, Proposition
2.1) defined a new norm on h as ||z|| = ), k|Axy|.

Hahn proved following properties of the space h:
Lemma 2.1. (i) h is a Banach space.
(ZZ) hcglmeO.

(iii) hP = 0s.
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Clearly, h is a BK —space [6].

In |6], Goes and Goes studied functional analytic properties of the BK —space
bvy N dly. Additionally, Goes and Goes considered the arithmetic means of se-
quences in bvy and bvy N dfy, and used an important fact which the sequence
of arithmetic means (™' Y,_, xx) of an = € by, is a quasiconvex null sequence.

Rao [12] studied some geometric properties of Hahn sequence space and
gave the characterizations of some classes of matrix transformations.

Now we give some additional properties of h which proved by Goes and
Goes [6].

Theorem 2.2. ([6], Theorem 3.2) h=1{1N [bv={,N [ bu.
Proof. For k=1,2, ...

Hence x € h implies

00 > Y k[Az =Y |A(kak)| = D weal.
k=1 k=1 k=1

The last series is convergent since h C ¢; by Part of (ii) of Lemma 2.1. Hence
also > 77 [A(kxy)| < oo and therefore h C ¢, N [ bu.

Conversely, (3) implies for z € £; N [ bv that

00 > opal+ > [A(kzy)| > k|Ax| and lim a, = 0.

k=1 k=1 k=1

Thus, ¢1 N [bv C h. Hence, we have shown that h = ¢; N [ bv. The second
equality in the theorem follows now from Lemma 2.1(ii). O

Lemma 2.3. (/6/, Lemma 3.3) If X and Y are f—dual (0—dual) Kothe
spaces, then X NY is also a B—dual (0—dual) Kithe space.

Proof. We use the known fact that if ( = f or ( = o, then F is a (—dual
Kothe space if and only if £ = (E¢)¢ = E ([5], p.139, Theorem 3). Hence if
X and Y are (—dual Kéthe spaces, then

(XNY)C = (XC+ YO = (X +Y) =XCNYS =XNY.
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Theorem 2.4. ([6], Theorem 8.4) h = (04)".

Proof. By Part (iii) of Lemma 2.1, h¥ = 0,. Hence by the remark in the
beginning of the last proof it is enough to show that h is a f—dual K&the
space. In fact: By Theorem 2.2, h = {1 N [ bv and as is well known ¢; = (¢o)”
and [ bv = (d(cs))? since bv = (cs)”. O

Theorem 2.5. ([6], Theorem 3.5) h is a BK—space with AK.

Proof. £y and [ buy with norms |jz|| = >, |x| and [Jz| = >, |A(kzg)| re-
spectively are BK —spaces with AK. Hence by Theorem 2.2 and since the
intersection of two BK —spaces with AK is again a BK —space with AK (|15,
p.500), the theorem follows. ]

This result is found in [12] with a different norm.

Remark 2.6. ([6], 3.6) Let E be a BK—space with AK, and let E' be
the conjugate space of E, i.e. the space of linear continuous functionals on
E. It is known that E' can be identified with EP through the isomorphism
p € E & (p(e)2, € E?, where

. 1, if k=3
(e)k:{o Cif ki

This is true because E has AK if and only if every ¢ € E can be written in
the form

x) = kayk, (x € B);
k=1
where y € EP [21]. As usual we write E? = E' if E is a BK —space with AK .
Analogously we have E° = E' if E is a BK —space with (C,1) — AK.
Theorem 2.7. ([6], Theorem 5.7)
(i) B = 0.

(ii) (00) =

Proof. (i) By Theorem 2.5, h is a BK —space with AK and by Lemma 2.1(ii)
h? = 6.. Hence by Remark 2.6, h' =0
(ii) It is known that o( is a BK —space with AK(|21], p.61) with the norm

o

lzll = sup —
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Hence, again by Remark 2.6, (0¢)® = (00). It remains to be shown that
(0‘0)ﬁ = h.

By Zeller(|21], Theorem 1.1), [ 0o = [ ¢o + ¢s. Hence o9 = ¢o + d(cs) and
this implies (09)® = (cp)? N [d(cs)]® = h by Theorem 2.2, since (cy)” = ¢ and
(d(cs))? = [ bo. O

Remark 2.8. (6], p.97) 09 C 0. C 0 and (09)’ = (0u)® = h (by
Theorem 2.4 and 2.7) imply o = h (see also [19], p.268).

Proposition 2.9. ([12], Proposition 2) The space h is not rotund.

Proof. We take x = (1,0,0,...) and y = (1/2,1/2,0,0,...). Then x and y are
in h. Also ||z|| = ||ly|| = 1. Obviously z # y. But = +y = (3/2,1/2,0,...) and
|(z +vy)/2|| = 1. Therefore, h is not rotund.

[

Proposition 2.10. (/12], Proposition 8) The unit disc in the space h has
extreme points.

Proof. For each fixed k = 1,2, ..., we write

k
1 .
k 7
S—Eiilé. (4)

Let y = (yx) be any point of h such that ||s* +y|| <1 and ||s* — y|| < 1. But

Is* +yll = > vl Ayl +k[1/k + g — g (5)
v>1v#k
and
Is* —yll = Z Ul Ay, |+ k[1/k = yp + ypsa |- (6)
v>1,v#£k

Hence [|s" + y|| < 1 implies k|1/k + yx — yrs1| < 1 and ||s* — y|| < 1 implies
k|1/k — yx + yrs1| < 1. Consequently yx = yrr1. But when this holds we have

/{;|1/k+yk —yk+1| =1= k:\l/k:—yk —|—yk+1\.

Thus in order that ||s* + y|| < 1 and ||s"* — y|| < 1 hold, all other terms in the
sums of (5) and (6) must be zero. That is, Ay, = 0, (v # k). This together
with the equality yx = yri1 gives yp = constant. For y = (yr) € h, y, =
Y pe (U — Yks1) so that nly,| < D77 klyx — yg+1| which converges to zero.
Thus, |y,| = O(1/n) and so y, — 0 as v — oo. Hence y, =0, (v =1,2,...).
Thus ||s* + y|| < 1 and ||s* — y|| < 1 imply that y = (0,0,0,...). Hence, s* is
an extreme point of the unit disc in h (for each fixed £ =1,2,...). O
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Proposition 2.11. ([/12], Proposition 4) Let s* be defined as in (4) for all
k € N. Consider the set E = {s* : k =1,2,...}. The E is a determining set
for the space h.

Proof. Let z € D. Then x € ® and ||z|| < 1. Consequently, z = Y " | z,0" =
S tes® where tp = k(zp — 2541), (k= 1,2,...). Also, >0 tk] < [Jzf] < 1.
Therefore, x € K, the absolutely convex hull of E. Thus

DCK. (7)

On the other hand, let z € K. Then x = >_,", txs® with >0 [tx] < 1.
Writing « = (x4, 22, ...), we observe that

t2 tm

mo= g et

ty  ts .

€T = —_ —_ .« .. —_

2 2—|—3+ +m,
tm
Ty = —
m

Tm4+1 = xm+2:"':0-

Hence ||z|| = Y70 klok — zpga] = D40 [tk] < 1. Thus we have
K c D. 8)

Combining (7) and (8) it follows that K = D. Therefore, E is a determining
set for the space h. O

Proposition 2.12. ([/12], Proposition 5) Let X be any F'K—space which
contains ®. Then X includes h if and only if E = {s* : k = 1,2,...} is
bounded in X.

Proof. This is an immediate consequences of our Proposition 2.11 and Theorem
8.2.4 of [18|. |

Lemma 2.13. (/13], Lemma 1) Every semi replete space contains the Hahn
space h.

Proof. Let X be any semi replete space. Then X7 C o(ly). But 0(fy) = h'
[12]. Thus X/ = h’/. Since h has AD, we have by Theorem 8.6.1 [18], X/ C
hf = hcC X. O
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Lemma 2.14. ([13], Lemma 2) A sequence z = (z) belongs to o(ls) if
and only if 2° is semi replete.

Proof. Suppose that z € 0({). Then hlo({s)]? C 27 so that 2°% C hP =
0({s). But 2% has AK under the sequence of norms

Py(z) = |2z)les, (z€2), I=(I),r= ().
P.(z) = |z, (xe2?), n>1.

Hence 2%/ C o({s). Therefore 27 is semi replete.

Conversely, suppose that 27 is semi replete. Then 2%/ C o(f,). Since
2% has AK, we have z°% = 2%/, So 2 € 2% C o(l,). This completes the
proof. ]

Theorem 2.15. ([13], p.45) The intersection of all semi replete spaces in
h.

Proof. Let I denote the intersection of all semi replete spaces. By Lemma
2.13, I contains h. On the other hand, by Lemma 2.14, I is contained in
(2% : 2 € 0(s)} and so I is contained in [0({s,)]® = h. Thus I = h. This
proves the theorem. O

Let X be an FK—space with X D ®. Then

BY = X" =B*(X)={z€w:(2") is bounded in X}
={zcw: (z.f(0M) € bs,Vf € X'}.

Also we write B = BTN X. Let X is an AB—space if and only if B = X. Any
space with monotone norm has AB (see Theorem 10.3.12 of [18]).

Lemma 2.16. ([14], Lemma 2) b/ = ().

Proof. b = o(ls) by Lemma 2.1 (|7] and [6]). Also h has AK (|12] and |6]).
We have h® = h/. Therefore h/ = o({,,). This completes the proof. O

Theorem 2.17. ([14], Theorem 1) Let Y be any FK—space DO ®. Then
Y D h if and only if the sequence (0% is weakly Cesiro bounded.

Proof. We know that h has AK. Since every AK —space is AD [3], the follow-
ing two sided implications establish the result.
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Y D h & Y/ Ch! since h has AD and hence by using Theorem 8.6.1. in [18]
& Y/ Co(ly) by Lemma 2.16
& for each f €Y', the topological dual of Y, f(6%)) € o(f)

{f(5<1)) + (O + ... +f(5<’f>)} i

< k

{f((S(l)) + F(E@) 4 4 f(5P)
k

& The sequence (6) is weakly Cesaro bounded.

=

} is bounded.

This completes the proof. O

Theorem 2.18. ([14], Theorem 2) Suppose that h is a closed subspace of
an FK—space X. Then BT (X) C h.

Proof. Note that ¢y has AK. Hence o(cy) has AK. Consequently o(cy) has
AD. Therefore by Lemma 1.1, [0(co)]® = [o(co)]”. By, Theorem 10.3.5 of [18]
and Lemma 2.16, we have

BH(X) = B*(h) = h" = (W) = (0(l0)).

But (0(ls))” C (0(co))? = (0(cp))? and (0(co))? = h (See p.97 [6]). Hence
B*(X) C h. This completes the proof. H

Theorem 2.19. ([1}], Theorem 3) Let X be an AK—space including ®.
Then X D h if and only if BT (X) D h.

Proof. (Necessity): Suppose that X D h. Then the inclusion,
B*(X) > B*(h) (9)

holds by monotonicity Theorem 10.2.9 of [18|. By Theorem 10.3.4 of [18|, we
have

BY(h) =h"" =h (10)

From (9) and (10), we obtain B*(X) D B*(h) = h.
(Sufficiency): Suppose that B*(X) D h. We have

hY O [BY(X)]". (11)
But A has AK and so h has AD. Therefore

h? =n' =n'. (12)
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But always
BY(X) =X/ (13)

From (11) and (13), »” > (X/7)Y = (X/) > X/. Thus from (12), b/ > X7.
Now by Theorem 8.6.1 of [18]; since h has AD we conclude that X D h. This
completes the proof. O

Theorem 2.20. ([1}], Theorem /) The space h has monotone norm.

Proof. Let m > n. It follows from

|xn| < |$n - $n+1| + |$n+1 - $n+2| +o Tt |$m—1 - $m| + |xm|

that
n—1

2™ < (Zkzm = a:|) 2y — Taa| + oo A (1= D]y — T+ M| = 2]
k=1

The sequence (||z(™]|) being monotone increasing, it thus follows from z =
lim,, o ™ that

]| = lim [|z] = sup [lz™].

Rao and Subramanian [14] defined semi-Hahn space as below:
An FK—space X is called semi-Hahn if X/ C 0({y). In other words

FOWY € o(ly),VfeX
FOY) + f(0%) + ... + f(6%)

PN { ’ } €l
{f(51) + f(523€+ - f(ék)} is bounded for each f € X'

Example 2.21. (/14], p.169) The Hahn space is semi Hahn. Indeed, if h
is a Hahn space, then, h' = o(ly) by Lemma 2.16.

Lemma 2.22. ([18], 4.3.7) Let z be a sequence. Then (27, p) is an AK —space
with p = (px) : k € N, where

m
E 2Lk

k=1

po(x) = sup , () = |20

For any k such that z;, # 0, pr may be omitted. If z € ®, py may be omitted.
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Theorem 2.23. ([1/], Theorem 5) 2P is semi-Hahn if and only if 2 € o({y).

Proof. Step 1. Suppose that z? is semi-Hahn. 2z° has AK by Lemma 2.22.
Hence 2° = 2/. Therefore 2% = (27)/ by Theorem 7.2.7 of [18]. So 27 is
semi-Hahn if and only if 2°° C 0(f,). But then z € 2% C o({s).

Step 2. Conversely, let z € 0(£4,). Then 2° D {0({)}? and 2°° C 0 ()% =
h? = 0(ly). But (2°) = 288, Hence (2°)/ C o({) which gives that 27 is
semi-Hahn. This completes the proof. m

Theorem 2.24. ([14], Theorem 6) Every semi-Hahn space contains h.

Proof. Let X be any semi-Hahn space. Then, one can see that

= X! Colly).

= f0") eo(ly), VfeX

= 6% is weakly Cesaro bounded w.r. to X
= X D h by Theorem 2.17.

]

Theorem 2.25. ([14], Theorem 7) The intersection of all semi-Hahn spaces
is h.

Proof. Let I be the intersection of all semi-Hahn spaces. Then the intersection
ITcn{?’: zco(l)} ={ol)}’ =h (14)
By Theorem 2.24,
hcl (15)
From 14 and 14, we get I = h. O]
Corollary 2.26. (/14/, p.170) The smallest semi-Hahn space is h.

3 Matrix Transformations
Now we give some matrix transformations:
Theorem 3.1. ([12] Proposition 6) A € (h: ¢y) if and only if
lim ap, =0, (k=1,2,..) (16)

n—oo
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Proof. We have by Theorem 2.5 that h is a BK —space with AK. Also ¢ is a
BK —space. So, we invoke Theorem 8.3-4 of [18] and conclude that A € (h : ¢)
if and only if the columns of A are in ¢y, and A(FE) is a bounded subset of co.

Here, we recall that £ = {s* : k = 1,2, ...}. But As* = {Zk Aok im =1,2,...¢.

v=1

So, A € (h: ¢) if and only if (16) and (17) hold. O
Omitting the proofs, we formulate the following results.

Theorem 3.2. ([12], Proposition 7) A € (h : ¢) if and only if (17) holds
and

lim a,; ezists, (k=1,2,...) (18)

n—oo

Theorem 3.3. ([12], Proposition 8) A € (h: {) if and only if (17) holds.
Theorem 3.4. (/12], Proposition 9) A € (h: {y) if and only if

Z |ank| converges, (k=1,2,...) (19)

n=1

>

n=1

E anv

v=1

< 00. (20)

| =

sup
k

Theorem 3.5. (/12], Proposition 10) A € (h : h) if and only if (16) holds
and

o0

Zn|ank — api1x| converges, (k=1,2,...) (21)

n=1

k
Z(anv - anJrl,v)

v=1

< 00. (22)

| =

sup
k

S
P
n=1

4 The Hahn Sequence Space of Fuzzy Numbers

In this section, we introduce the sequence space h(F’) called the Hahn sequence
space of fuzzy numbers [2].

The concept of fuzzy sets and fuzzy set operations was first introduced
by Zadeh [20]. Sequences of fuzzy numbers have been discussed by Aytar
and Pehlivan [1], Mursaleen and Bagarir [9], Nanda [10] and many others.
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The study of Hahn sequence space was initiated by Rao [12] with certain
specific purpose in Banach space theory. Talo and Bagar 16| gave the idea of
determining the dual of sequence space of fuzzy numbers by using the concept
of convergence of a series of fuzzy numbers.

Definition 4.1. A fuzzy number is a fuzzy set on the real azis, i.e., a map-
ping u : R — [0, 1] which satisfies the following conditions:
(i) u is normal, i.e., there exists an xo € R such that u(zg) = 1.

(i1) w is fuzzy convez, i.e., u[Ax+(1—N)y] > min{u(x),u(y)} for allz,y € R
and for all X € [0, 1].

(11i) w is upper semi continuous.

(iv) The set [u]p = {z € R : u(x) > 0} is compact [20], where {x € R : u(z) > 0}
denotes the closure of the set {x € R : u(x) > 0} in the usual topology of
R.

We denote the set of all fuzzy numbers on R by E and called it as the space
of fuzzy numbers. The A\—level set [u]y of u € E is defined by

[ {teR:u®) =2}, (0<A<1),
[uh_{{teR:u(t)>)\} . (A=0).

The set [u]y is closed bounded and non-empty interval for each A € [0, 1] which
is defined by [u]x = [u=(A),ut(X\)]. Since each r € R can be regarded as a fuzzy
number T defined by

R can be embedded in E'. Let u,w € E and k € R. The operations
addition, scalar multiplication and product defined on E' by

utv=w & [w]y=ulx+ vy forall X\el0,1]
S [w]”A\) =[u(\),v"(N)] and [w]t(\) =[uT(N),vT(\)] forall \e[0,1]

[kulyx = K[u]y for all A € [0,1] and uv = w < [w]y = [u]A[v]a for all A € [0, 1],
where it is immediate that

[w]”(A) = min{u” (Ao~ (A),u” (A" (A), u" (Mo~ (), (\)oT (M)}
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and
[ (A) = max{u”(N)o™(A), u” (AT (A),u" (N~ (A), u" (Mo (A)}
for all A € [0, 1].

Let W be the set o_f all closed ang bounded intervals A of real numbers
with endpoints A and A i.e., A = [A, A]. Define the relation d on W by

d(A, B) = max{|A — B|,|4 - B|}.

Then it can be observed that d is a metric on W [10] and (W, d) is a complete
metric space [4]. Now we can define the metric D on E’ by means of a Hausdorff
metric d as

Dlu,v) = sup d((uls, [o]y) = sup {|u-<A>—v-<A>|,|u+<A>—v+<A>|}.

A€[0,1] A€[0,1]

(E', D) is a complete metric space ([11] Theorem 2.1). One can extend the
natural order relation on the real line to intervals as follows:

A< B ifandonlyif A<B and A< B.
The partial order relation on E’ is defined as follows:
u<veuy<vheu (A) <o (A) and ut(\) <ot(N) forall Xe€]0,1].
An absolute value |u| of a fuzzy number u is defined by

max{u(t),u(—t)} , (t>0),
[ul(t) = { 0 , (t<0).

A—level set [|ul]x of the absolute value of u € E' is in the form [|u|],, where
lu|~(A) = max{0,u"(A),u"(A\)} and |u|T(\) = max{Ju=(N\)|, |[uT(N)|}. The
absolute value |uv| of u,v € E' satisfies the following inequalities [16]

uv|~(A) < Juv[T(A) < max{|ul (Ao~ (A), [ul (WD) A), [ul (V][ (A), [ul"(N)[u[F(A)}

In the sequel, we require the following definitions and lemmas.

Definition 4.2. A sequence u = (ux) of fuzzy numbers is a function u from
the set N into the set E'. The fuzzy number wy, denotes the value of the function
at k € N and is called the kth term of the sequence. Let w(F) denote the set
of all sequences of fuzzy numbers.
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Lemma 4.3. The following statements hold:
(i) D(uv,0) < D(u,0)D(v,0) for all u,v € E'.

(ii) If u, — w as k — oo then D(uy,0) — D(u,0) as k — oo; where
(ur) € w(F).

Definition 4.4. A sequence u = (uy) € w(F') is called convergent with limit
w € E'if and only if for every € > 0 there exists an ng = ng(¢) € N such that
D(ug,u) < e for all k> ny.

If the sequence (u) € w(F) converges to a fuzzy number u then by the
definition of D the sequences of functions {u, (A\)} and {u} (\)} are uniformly
convergent to u—(\) and ut(\) in [0, 1], respectively.

Definition 4.5. A sequence u(uy) € w(F) is called bounded if and only if
the set of all fuzzy numbers consisting of the terms of the sequence (uy) is a
bounded set. That is to say that a sequence (uy) € w(F') is said to be bounded
of and only if there exist two fuzzy numbers m and M such that m < up < M
for all k € N.

Definition 4.6. Let (ug) € w(F). Then the expression Y uy is called a
series of fuzzy numbers. Denote S, = Y ,_,uy for all n € N. If the sequences
(Sn) converges to a fuzzy number u then we say that the series »  uy of fuzzy
numbers converges to u and write Y, _,up = u which implies as n — oo that
Soroun (A) = uy (N) and Yop_gui (A) = uf (N) uniformly in A € [0,1]. Con-
versely, if the fuzzy numbers ur = {[uy (\),uf (N)] : A € [0,1]}, D u; (\) and
S uf (N) converge uniformly in X then w = {[u™(\),ut(\)] : X € [0,1]} defines
a fuzzy number such that uw =" uy.

We say otherwise the series of fuzzy numbers diverges. Additionally if the
sequence (.S,) is bounded then we say that the series > uy of fuzzy numbers
is bounded. By ¢s(F) and bs(F'), we denote the sets of all convergent and
bounded series of fuzzy numbers, respectively.

Lemma 4.7. Let for the series of functions Y, ui(z) and ), vi(x) there
exists an ng € N such that |ug(z)| < vg(x) for all k > ng and for all x € [a, ]
with ug : [a,b] — R and vy : [a,b] — R. If the series converges uniformly

in [a,b] then the series Y, |ug(x)| and Y, |ve(x)| are uniformly convergent in
[a, b].

Definition 4.8. (Weierstrass M Test) Let uy : [a,b] — R are given.
If there exists an My, > 0 such that |ux(z)] < My for all k € N and the
series Y, My converges then the series ), ux(x) is uniformly and absolutely
convergent in [a, b



A Survey on Hahn Sequence Space 53

Definition 4.9. A mapping T from X; and X5 is said to be fuzzy isometric
if do(Tx,Ty) = dy(z,y) for all z,y € Xy1. The space X, is said to be fuzzy
isometric with the space X if there exists a bijective fuzzy isometry from X,
onto Xo and write X1 = Xo. The spaces X1 and Xy are then called fuzzy
1sometric spaces.

The following spaces are needed.

(o(F) = {(uk)Ew(F):zlelj]gD(uk,ﬁ)<oo},

o(F) = {(uk) € w(F):30€ B lim D(uy, () = o},

o(F) = {(uk) € w(F) : lim D(uy,0) = o},

0,(F) = {(uk) € w(F): Y D(u,0) <oo}.

Let A denote the matrix A = (a,) defined by

[ n(-1)"*  n—-1<k<n
(nk = 0 , 1<k<n-—-1or k>n

Define the sequence y = (yx) which will be frequently used as the A—transform
of a sequence = = (xy), i.e.,

Yp = (Ax)p = k(zp —ap1) k2>1 (23)

We introduce the sets h(F') and he(F) as the sets of all sequences such
that their A—transforms are in ¢(F') and /. (F') that is,

WMF) = {u=(w)€w(F): ZD[(Au)k,G] < oo and I}LIEOD[uk,G] =0}
hoo(F) = {u=(u) € w(F): Sl;pD[(Au)k,G] < 0o}

Example 4.10. (/2], Example 3.1) Consider the sequence u = (uy) defined

1, 1<k<n
=10 , k>n

> " D[(Au), 01 = > D[k(uy, — up—1),0] =0

which is convergent. Also limy_,o D(ug,0) = 0. Hence, u € h(F).
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Theorem 4.11. (/2], Theorem 3.2) h(F) and ho(F) are complete metric
spaces with the metrics dh and dh., defined by

dh(u,v) = ZD[(AU)k,(AU)k]

dhoo(u,v) = sup D[(Au)g, (Av)]

keN

respectively, where u = (ug) and v = (vg) are the elements of the spaces h(F')

or hoo(F).

Proof. Let {u'} be any Cauchy sequence in the space h(F), where u’ =

{u(() ,uy),ug -+ t. Then for a given ¢ > 0, there exists a positive integer

no(e) such that

dh(u’,w’) = Z D[(Au)’, (Au)!] < & (24)

for i,7 > no(e). We obtain for each fixed n € N from (24) that
D[(Au);,, (Au)]] <
for every i,j > ng(e). We obtain for each fixed n € N from (24) that
ZD u)l] < dh(u', ) < e. (25)
k=0

Take any i > ng(e) and takin limit as j — oo first and next m — oo in (24),
we obtain

dh(u',u) < e.

Finally, we proceed to prove u € h(F). Since {u'} is a Cauchy sequence in
h(F), we have

ZD[(AU)Z,G] <e and lim [(Au)i,0] = 0.

k—o00

Now
D[(Au)y, 0] < D[(Au)y, (Au)i] + D[(Aw)}, (Au)i] + D[(Au)y, 0].
Hence,

D[(Au)x, 0] < ) DI(Au), (Aw)i] + ) Dl(Aw)i, (Au)i] + Y D[(Au)y,0] < e

Also from (25), limg_o[(Au)t,0] = 0. Hence, u € h(F). Since, {u'} is an
arbitrary Cauchy sequence, the space h(F') is complete. O



A Survey on Hahn Sequence Space 5%5)

Theorem 4.12. ([2], Definition 3.3) The space h(F) is isomorphic to the
space (1(F).

Proof. Consider the transformation 7" defined from h(F') to ¢1(F) by x +— y =
T(x). To prove the fact h(f) = ¢1(F), we show the existence of a bijection
between the spaces h(F') and ¢,(F). We can find that only one = € h(F) with
Tx = y. This means that T is injective.

Let y € ¢1(F). Define the sequence x = (z}) such that (Ax), = y; for all k € N.

Then dh(z,0) = >, D[(Az);,0] =3, Dyk, 0] < co. Thus, z € h(F).
Consequently, T is bijective and is isometric. Therefore, h(F) and ¢1(F) are
isomorphic. O

Theorem 4.13. (/2], Theorem 3.4) Let d denote the set of all sequences of
fuzzy numbers defined as follows

d={z = (z;) € w(F): Zk\xk — T < oo and x € ¢o(F)}.

Then, the set d is identical to the set h(F).
Proof. Let x € h(F'). Then

ZD ((Az)j,0) < oo and  lim D[z, 0] = 0. (26)

k—o0
Using (23),

ZD(yk,ﬁ) < oo and lim D[z, 0] = 0.

k—o0
k

We have, 33, D(y,0) = supscpp masc{ gy (), [y ()]} Now, max{lyy (W], i (W]} <
>, D(y,0) < oo. This implies that Y, [yx| < co. That is 37, klay — 21| <
oo. Also from (26), x € ¢o(F'). Thus, z € d. Then, >, k|lzy — z4p—1| < o0.
That is >, |yx] < oo. Therefore Zkkmax{|yk_(/\)|, Y- (N)|} converges for
A € [0,1]. This gives for A\ =0, >, D(yx,0) < oo. Also () € co(F) implies
limg_oo D(24,0) = 0. This completes the proof. O

Definition 4.14. (/2/, Definition 3.5) The a—dual, f—dual and ~v—dual

S(F)*, S(F)? and S(F)? of a set S(F) C w(F) are defined by
{S(F)}* = {(ury € w(F): (wpvy) € ((F) for all (vy) € S(F)},
{S()}Y = {(u) € w(F) : (upvy) € cs(F) for all (vg) € S(F)},
{S(F)}" = {(up) € w(F): (wpvy) € bs(F) for all (vy) € S(F)},



o6 Murat Kirigci

Definition 4.15. (/2], Definition 3.6) Let B denote the matriz B = (by,)
defined by

{1/n , 1<k<n
by, =

0 , otherwise

Define the sequence y = (yx) by the B—transform of a sequence x = (xy,), i.e.,
yr = (Bx) = S0 x;/k for all k € N,

The Cesaro space of (o (F) is the set of all sequences such that their
B—transforms are in U (F). That is,

o(loo(F)) = {z = (2) : s%p D[(Bz)y, 0] < 0o}

Theorem 4.16. (/2], Theorem 3.7) 0({s(F)) is a complete metric space
with the metric

do'(u? U) = Sl;p D[(Bu)k” (Bv)k]>

where u = (u) and v = (vg) are the elements of the space o({o(F)).

Theorem 4.17. ([2], Theorem 3.8) The 5— and ~y—dual of the set h(F') is
the set 0(lso(F)).
Proof. Let (uy) € h(F) and (v;,) € 0(ls(F)). If (ug) € h(F), then limy,_, o, D[ug, 0] =
0. Therefore for given ¢ > 0 there exists ng such that D(u;,0) < e. TIf
(vr) € 0(oo(F)), then sup, D[(Bv);,0] < oo. Thus, D(vt,0) < oo for all k

and n. Hence, there exists a M > 0 such that D(v,0) < M for all £ and n.
Now,

Weierstrass Test yields that Y, (ug)~(A) and >, (ug)"(X) converge uniformly
and hence >, uy, converges. Thus o({s(F)) C hP(F).

Conversely, suppose that (v;) € h?(F). Then the series >, u,v; converges
for all (uy) € h(F). This also holds for the sequence (uy) of fuzzy numbers
defined by uy, = x[—1,1] for all k¥ € N. Since u; () = —1 and v}/ (\) =1 for
all X € [0, 1], the series

S () =Y mascuy (o V), up (Ve (), wg (Vo (V), wf Vo (A}
= > max{—v; (A), = (), v, V), v (\)}
k
= Zmax{]vg()\)’, o (M}

converges uniformly. Thus sup, D[(Bv),0] < oo. Hence, (vi) € 0(ls(F))
and h?(F) = 0({s(F)). This completes the proof. O
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5 Conclusion

Hahn defined the space h and gave its some general properties. Goes and
Goes [6] studied the functional analytic properties of this space. The study of
Hahn sequence space was initiated by Rao [12] with certain specific purpose in
Banach space theory. Also Rao [12| computed some matrix transformations.
Rao and Srinivasalu [13] introduce a new class of sequence spaces called semi
replete spaces. Rao and Subramanian [14] defined the semi Hahn space and
proved that the intersection of all semi Hahn spaces is the Hahn space. Bal-
asubramanian and Pandiarani|2| defined the new sequence space h(F) called
the Hahn sequence space of fuzzy numbers and proved that f— and v—duals
of h(F') is the Cesaro space of the set of all fuzzy bounded sequences.
Determine the matrix domain h 4 of arbitrary triangles A and compute their
a—, f— and y—duals and characterize matrix transformations on them into
the classical sequence spaces and almost convergent sequence space may hap-
pen new results. Also it may study the some geometric properties of this space.
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