

Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 18-23 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

A Two-Sided Multiplication Operator Norm

N. B. Okelo

School of Biological and Physical Sciences Bondo University College, Box 210, Bondo, Kenya bnyaare@yahoo.com

J. O. Agure

Department of Mathematics and Applied Statistics Maseno University, Box 333, Maseno, Kenya johnagure@yahoo.com

(Received 17.11.2010, Accepted 29.11.2010)

Abstract

Let \mathcal{A} be a C^* -algebra and define an elementary operator $T_{a,b} : \mathcal{A} \to \mathcal{A}$ by $T_{a,b}(x) = \sum_{i=1}^n a_i x b_i$, $\forall x \in \mathcal{A}$ where a_i and b_i are fixed in \mathcal{A} or multiplier algebra $M(\mathcal{A})$ of \mathcal{A} . Here, we determine the norm of a two-sided multiplication operator.

Keywords: *Two-sided Multiplication Operator, Elementary Operator, Norm.* **Mathematics Subject Classification:** Primary 47B47; Secondary 47A30.

1 Introduction

Let H be a complex Hilbert space and B(H) the algebra of all bounded linear operators on H. Then $T : B(H) \to B(H)$ is an elementary operator if T has a representation $T_{a,b}(x) = \sum_{i=1}^{n} a_i x b_i$, $\forall x \in B(H)$, where a_i and b_i are fixed in B(H). Some examples of elementary operators are the left multiplication $L_a(x) = ax$; the right multiplication $R_b(x) = xb$; the generalized derivation $\delta_{a,b} = L_a - R_b$; the inner derivation, the two-sided multiplication operator $M_{a,b} = L_a R_b$ and the Jordan elementary operator $\mathcal{U}_{a,b} = M_{a,b} + M_{b,a}$. Determining the lower estimate of the norm of elementary operators has attracted a lot of interest from many mathematicians (see [1-5, 7-18]). Clearly, every elementary operator is bounded. For the lower estimates of the norms, there have been several results obtained by different mathematicians. For example, Mathieu [6] proved that for a prime C*- algebra \mathcal{A} , $||\mathcal{U}_{a,b}|\mathcal{A}|| \geq \frac{2}{3}||a|| ||b||$, Cabrera and Rodriguez [4] proved that for JB* algebras, $||\mathcal{U}_{a,b}|\mathcal{A}|| \geq \frac{1}{20412}||a|||b||$, while Stacho and Zalar [12] obtained results for standard operator algebras on Hilbert spaces i.e. they showed that $||\mathcal{U}_{a,b}|\mathcal{A}|| \geq 2(\sqrt{2}-1)||a|||b||$. Recently, Timoney [15, 16] demonstrated that $||\mathcal{U}_{a,b}|\mathcal{A}|| \geq ||a||||b||$. He [18] also gave a formula for the norm of an elementary operator on a C*-algebra using the notion of matrix valued numerical ranges and a kind of tracial geometric mean.

Theorem 1.1. For $a = [a_1, ..., a_n] \in B(H)^n$ (a row matrix of operators $a_i \in B(H)$), $b = [b_1, ..., b_n] \in B(H)^n$ (a column matrix of operators $b_i \in B(H)$) and $T_{a,b}(x) = \sum_{i=1}^n a_i x b_i$, $\forall x \in B(H)$, an elementary operator, we have

$$||T|| = \sup\{tgm(Q(a^*,\xi),Q(b,\eta)):\xi, \eta \in H, ||\xi|| = 1, ||\eta|| = 1\}.$$

For proof, see [18, Theorem 1.4].

Interestingly, for Calkin algebras, it has been easy to calculate the norms of elementary operators as shown by Mathieu [7]. Considering a two-sided multiplication operator $M_{a,b}$, it has been shown in [2], the necessary and sufficient conditions for any pair of operators $a, b \in B(H)$ to satisfy the equation $||I + M_{a,b}|| = 1 + ||a|| ||b||$.

Definition 1.2. Let $T \in B(H)$. The maximal numerical range of T is defined by $W_0(T) = \{\lambda : \langle Tx_n, x_n \rangle \to \lambda, where ||x_n|| = 1 \text{ and } ||Tx_n|| \to ||T||\}$ and the normalized maximal numerical range is given by

$$W_N(T) = \begin{cases} W_0(\frac{T}{\|T\|}), & \text{if } T \neq 0, \\ 0, & \text{if } T = 0. \end{cases}$$

The set $W_0(T)$ is nonempty, closed, convex and contained in the closure of the numerical range, see [14].

Theorem 1.3. For $a, b \in B(H)$ the following are equivalent: (1) $||I + M_{a,b}|| = 1 + ||a|| ||b||$, (2) $W_N(a^*) \cap W_N(b) \neq \emptyset$.

See [2] for proof.

Conjecture 1.4. Let \mathcal{A} be a standard operator subalgebra of B(H). The estimate of M, such that $||M_{a,b}x|| = ||a|| ||b||$ holds for every $a, b \in \mathcal{A}$.

This conjecture was verified in the following cases :

(i) for $a, b \in B(H)$ such that $\inf_{\lambda \in \mathbb{C}} ||a + \lambda b|| = ||a||$ or $\inf_{\lambda \in \mathbb{C}} ||b + \lambda a|| = ||b||$, (ii) in the Jordan algebra of symmetric operators. See [1, 13].

Nyamwala and Agure [8] used the spectral resolution theorem to calculate the norm of an elementary operator induced by normal operators in a finite dimensional Hilbert space. They gave the following result.

Theorem 1.5. Let $T_{a,b} : B(H) \to B(H)$ be an elementary operator defined by $T_{a,b}(x) = \sum_{i=1}^{k} a_i x b_i$ where a_i and b_i are normal operators and H a finite m-dimensional Hilbert space then

$$||T|| = \left(\sum_{j=1}^{k} \left(\sum_{j=1}^{m} |\alpha_{i,j}|^2 |\beta_{i,j}|^2\right)\right)^{\frac{1}{2}}$$

where $\alpha_{i,j}$ and $\beta_{i,j}$ are distinct eigenvalues of a_i and b_i respectively.

A specific example in [8, Example 2.3] shows that ||T|| = 2. In the next section, we determine the norm of a two-sided multiplication operator.

2 Two-sided Multiplication Operator Norm

In this section we concentrate on a complex Hilbert space over the field \mathbb{K} . We show that for a two-sided multiplication operator M, $||M_{a,b}x|| = ||a|| ||b||$.

Definition 2.1. Let $\phi \in H^*$ and $\xi \in H$. We define $\phi \otimes \xi \in B(H)$ by

$$(\phi \otimes \xi)\eta = \phi(\eta)\xi, \ \forall \ \eta \in H.$$

Theorem 2.2. Let H be a complex Hilbert space, B(H) the algebra of all bounded linear operators on H. Let $M_{a,b} : B(H) \to B(H)$ be defined by $M_{a,b}(x) = axb, \ \forall x \in B(H)$ where a, b are fixed in B(H). Then $||M_{a,b}x|| = ||a|||b||$.

Proof. By definition, $||M_{a,b}|B(H)|| = \sup \{||M_{a,b}(x)|| : x \in B(H), ||x|| = 1\}$. This implies that $||M_{a,b}|B(H)|| \ge ||M_{a,b}(x)||, \forall x \in B(H), ||x|| = 1$. So $\forall \epsilon > 0$, $||M_{a,b}|B(H)|| - \epsilon < ||M_{a,b}(x)||, \forall x \in B(H), ||x|| = 1$. But, $||M_{a,b}|B(H)|| - \epsilon < ||axb|| \le ||a|| ||x|| ||b|| = ||a|| ||b||$. Since ϵ is arbitrary, this implies that

$$||M_{a,b}|B(H)|| \le ||a|| ||b||.$$
(1)

On the other hand, let $\xi, \eta \in H$, $\|\xi\| = \|\eta\| = 1$, $\phi \in H^*$. Now,

$$||M_{a,b}|B(H)|| \ge ||M_{a,b}(x)||, \ \forall x \in B(H), \ ||x|| = 1.$$

But,

$$||M_{a,b}(x)|| = \sup \{ ||(M_{a,b}(x))\eta|| : \forall \eta \in H, ||\eta|| = 1 \}$$

= sup { ||(axb)\eta|| : \eta \in H, ||\eta|| = 1 }.

Setting $a = (\phi \otimes \xi_1), \ \forall \xi_1 \in H, \ \|\xi_1\| = 1$ and $b = (\varphi \otimes \xi_2), \ \forall \xi_2 \in H, \ \|\xi_2\| = 1$, we have,

$$\|M_{a,b}|B(H)\| \geq \|M_{a,b}(x)\| \geq \|(M_{a,b}(x))\eta\|$$

$$= \|(axb)\eta\|$$

$$= \|((\phi \otimes \xi_1)x(\varphi \otimes \xi_2))\eta\|$$

$$= \|(\phi \otimes \xi_1)x(\varphi(\eta)\xi_2)\|$$

$$= \|(\phi \otimes \xi_1)\varphi(\eta)x(\xi_2)\|$$

$$= \|\varphi(\eta)\|\|(\phi \otimes \xi_1)x(\xi_2)\|$$

$$= \|\varphi(\eta)\|\|\phi(x(\xi_2))\xi_1\|$$

$$= \|\varphi(\eta)\|\|\phi(x(\xi_2))\|\|\xi_1\|$$

$$= \|a\|\|b\|.$$

Therefore,

$$||M_{a,b}|B(H)|| \ge ||a|| ||b||.$$
(2)

Hence by inequalities (1) and (2),

$$||M_{a,b}|B(H)|| = ||a|| ||b||.$$

This completes the proof.

3 The Jordan Elementary Operator

Theorem 3.1. Let H be a 2-dimensional complex Hilbert space, B(H) the algebra of bounded linear operators on H. Let $T_{a,b} : B(H) \to B(H)$ be defined by $T_{a,b}(x) = axb + bxa$, $\forall x \in B(H)$ where a, b are fixed in B(H) and $\{e_1, e_2\}$ an orthonormal basis for H. Then for a constant C > 0 such that $||T_{a,b}|| \ge C||a|||b||, C = 1$.

Proof. The proof of this theorem follows immediately from the results obtained in [3]. \Box

Remark 3.2. From [13], we see that C = 1 is also true for symmetric operators (in this case, a and b are self adjoint).

Theorem 3.3. Let $a, b \in Symm(H)$. Then $||\mathcal{U}_{a,b}|\mathcal{A}|| \ge ||a|| ||b||$. See [13] for proof.

Acknowledgements:

We thank the referees and reviewers for their useful comments and suggestions.

References

- [1] M. Barraa and M. Boumazgour, A lower bound of the Norm of Operator $X \rightarrow AXB + BXA$, *Extracta Math.*, 16(2001), 223-227.
- [2] M. Boumazgour, Norm inequalities for sums of two basic elementary operators, J. Math. Anal. Appl., 342(2008), 386-393.
- [3] A. Blanco, M. Boumazgour and T. J Ransford, On the norm of elementary operators, *J. London Math. Soc.*, 70(2004), 479-498.
- [4] M. Cabrera and A. Rodriguez, Nondegenerately ultraprime Jordan Banach algebras, Proc. London Math. Soc., 69(1994), 576-604.
- [5] B. Magajna, The norm of a symmetric elementary operator, Proc. Amer. Math. Soc., 132(2004), 1747-1754.
- [6] M. Mathieu, More properties of the product of two derivations of a C*algebra, Canad. Math. Bull., 42(1990), 115-120.
- [7] M. Mathieu, Elementary operators on Calkin algebras, *Irish Math. Soc. Bull.*, 46(2001), 33-42.
- [8] F. O. Nyamwala and J. O. Agure, Norms of Elementary Operators in Banach Algebras, Int. Journal of Math. Analysis., Vol.2(9)(2008), 411-424.
- [9] A. Seddik, On the numerical range and norm of elementary operators, Linear Multilinear Algebra., 52(2004), 293-302.
- [10] A. Seddik, On the norm of elementary operators in standard operator algebras, *Acta Sci. Math. (Szeged)*, 70(2004), 229-236.
- [11] A. Seddik, Rank one operators and norm of elementary operators, *Linear Algebra and its Applications*, 424(2007), 177-183.
- [12] L. L. Stacho and B. Zalar, On the norm of Jordan elementary operators in standard operator algebras, *Publ. Math. Debrecen*, 49(1996), 127-134.
- [13] L. L. Stacho and B. Zalar, Uniform primeness of Jordan algebra of symmetric elementary operators, *Proc. Amer. Math. Soc.*, 126(1998), 2241-2247.

- [14] J. G Stampfli, The norm of a derivation, Pacific journal of mathematics, Vol.33(3)(1970), 737-747.
- [15] R. M. Timoney, Norms of elementary operators, Irish Math. Soc. Bulletin, 46(2001), 13-17.
- [16] R. M. Timoney, Norms and CB norms of Jordan elementary operators, Bull. Sci. Math., 127(2003), 597-609.
- [17] R. M. Timoney, Computing the norm of elementary operators, *Illinois J. Math.*, 47(2003), 1207-1226.
- [18] R. M. Timoney, Some formulae for norms of elementary operators, J. Operator Theory, 57(2007), 121-145.