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Abstract
The purpose of this paper is to prove some coincidence point theorems for

non-linear hybrid contraction involving two pairs of single-valued and multi-
valued mappings on complete metric space.
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1 Introduction

Nadler [8] was the first mathematician who obtained a set-valued version of
Banach contraction principle. Since then there is multitude of metrical fixed
point theorem for set valued mappings which are indeed extension of various
singled-valued metrical fixed point theorems.The work of Asina-Massa-Rous
[1], Circ [3], Bos and Mukherjee [2], Reich [11] [12], Kaulkud and Pai [7] are
special mention in this context. Hausdorff metric is ordinary distance functions
between points and set.

2 Preliminaries and Notations

A nonempty subset S of a metric space (X, d) is said to be proximinal if for
each x ∈ X there exists a point y ∈ S such that d(x, y) = d(x, S). It is well
known that every compact set is proximinal.We denote
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CB(X) = {S : S is closed bounded subset of X},
PB(X) = {S : S is proximinal bounded subet of X},
C(X) = {S : S is compact subset of X}

Since every proximinal set is closed, we have C(X) ⊆ PB(X) ⊆ CB(X).
Kaneko and Sessa [6]extended the notion of weak commutativity for single-
valued mappings to the settings of single-valued and multi-valued mappings
whereas for compatible mappings the same is done by Singh et al [13]. Now
we need to recall relevant definitions.

Definition 2.1 [6] The mappings T and F are said to be weakly commuting
it for all x ∈ X, fTx ∈ CB(X) and H(Tfx, fTx) ≤ d(fx, Tx), where H is
the Hausdorff metric defined on CB(X).

The Hausdorff H on CB(X) induced by the metric d is defined as

H(A,B) = max {supx∈A d(x, B), supy∈B d(y, A)}

for all A, B ∈ CB(X),where d(x,A) = infy∈A d(x, y).

It is well known that (CB(X), H) is a metric space, and if a metric space
(X, d) is complete, then so is (CB(X), H).

Definition 2.2 [6] The mappings T and F are said to compatible if and
only if fTx ∈ CB(X) for x ∈ X and H(Tfxn, fTxn) → 0 as n→ ∞, whenever
{xn} ⊂ X such that Txn → M ∈ CB(X) and fxn → t ∈ M as n → ∞.

Kaneko and Sessa [6] has furnish an example which shows that compatibil-
ity does not implies weak commutativity. Pathak [9] introduced the concept of
weak compatible mappings for a hybrid pair of single-valued and multi-valued
mappings as follows:

Definition 2.3 [9] The mappings f and T are said to be f-weak compatible
if fT (X) ∈ CB(X) for all x ∈ X and the following limits exists and satisfy
the relevant inequality.

limn→∞H(fTxn, T fxn) ≤ limn→∞H(Tfxn, Txn),

limn→∞d(fTxn, fxn) ≤ limn→∞H(Tfxn, Txn),

where{xn} is a sequence in X such that f(xn) → t and Txn → M ∈
CB(X) as n → ∞.

Compatible pairs are weakly compatible but not conversely. Examples
supporting this fact can be found in Pathak [9]
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Definition 2.4 [4] Let K be a non empty subsets of a metric space (X, d)
where F : K → CB(X) and T : K → X. Then the pair (F, T ) is said to
weakly commuting if for every x, y in K such that x ∈ Fy and Ty ∈ K, imply
that d(Tx, FTy) ∈ d(Ty, Fy).

Definition 2.5 [4] Let (X, d) be a metric space. A mappings T : X →
CB(X) is said to be continuous at x0 ∈ X if for any ∈> 0 there exists a δ > 0
such that H(Tx, Tx0) <∈ whenever d(x, x0) < δ. If T is continuous at every
point of X, then we say that T is continuous on X.

Definition 2.6 [5] A pair of mappings (S, T ) is said to be coincidently
commuting (resp.weakly compatible) if they commute at coincidence points.

Lemma 2.7 [8] Let A,B ∈ CB(X) and k > 1.Then for each a ∈ A, there
exists a point b ∈ B such that d(a, b) ≤ kH(A,B).

3 Main Result

In this section we give some coincidence and fixed points theorems for non-
linear hybrid generalized contractions using the notion of weak compatible
mappings introduce by Pathak et al [10].

Theorem 3.1 Let S, T be two multi-valued continuous mappings of a com-
plete metric space (X, d) in CB(X), whereas I, J be two continuous self
mappings of X. Suppose that (S, I) and (T, J) are compatible mappings with
S(X) ⊂ J(X) and T (X) ⊂ I(X) satisfying

H(Sx, Ty) ≤ h[aL(Ix, Jy) + (1− a)N(Ix, Jy)] (3.1.1),

for all x, y in X, (0 ≤ h < 1, 0 ≤ a ≤ 1), where

L(Ix, Jy) = max{d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), 1
2
[d(Ix, Ty)+d(Jy, Sx)]}

and

N(Ix, Jy)= [max{d2(Ix, Jy), d(Ix, Sx)d(Jy, Ty), d(Ix, Ty)d(Jy, Sx),

1

2
[d(Ix, Sx)d(Jy, Sx)],

1

2
[d(Ix, Ty)d(Jy, Ty)}]

1
2

Then there exists a point t ∈ X such that It = Jt ∈ St ∩ Tt, i.c the point
t is a coincidence point of I, J, S and T .

Proof: Assume k = 1√
h
. Let x0 ∈ X and y1 be an arbitrary point in Sx0.Then

there is x1 ∈ X such that Jx1 = y1 which is possible as S(X)⊂ J(X). By
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Lemma 2.7 we can find a y2 ∈ Tx1 such that d(y1, y2) ≤ kH(Sx0, Tx1). Let
us set y2 = Ix2 as T (X) ⊂ I(X). Thus in general one can choose y2n+2 =
Ix2n+2 ∈ Tx2n+1 and y2n+1 = Jx2n+1 ∈ Sx2n such that d(y2n+2, dy2n+1) ≤
kH(Sx2n, Tx2n+1) for n = 1, 2, 3...........If h = 0, the result is obvious, hence
we consider the case when h ̸= 0. Now, for n ≥ 1 we have

d(y2n+2, y2n+1) = d(Jx2n+1, Ix2n+2) ≤ kH(Sx2n, Tx2n+1)

≤
√
h[aL(Ix2n, Jx2n+1) + (1− a)N(Ix2n, Jx2n+1)],

where
L(Ix2n, Jx2n+1) = max{d(Ix2n, Jx2n+1), d(Ix2n, Sx2n),

d(Jx2n+1, Tx2n+1),
1

2
[d(Ix2n, Tx2n+1) + d(Jx2n+1, Sx2n)]}

≤ max{d(y2n, y2n+1), d(y2n+1, d(y2n+2)}

and

N(Ix2n, Jx2n+1) ≤ [max{d2(Ix2n, Jx2n+1), d(Ix2n, Sx2n)d(Jx2n+1, Tx2n+1),

d(Ix2n, Tx2n+1)d(Jx2n+1, Sx2n),
1

2
(d(Ix2n, Sx2n)d(Jx2n+1, Sx2n)),

1

2
d(Ix2n, Tx2n+1)d(Jx2n+1, Tx2n+1)}]

1
2

≤ [max{d2(y2n, y2n+1), d(y2n, y2n+1)d(y2n+1, y2n+2), 0, 0,

1

2
((d(y2n, y2n+1) + d(y2n+1, y2n+2))d(y2n+1, y2n+2)}]

1
2 .

≤ [max{d2(y2n, y2n+1), d(y2n, y2n+1)d(y2n+1, y2n+2), d
2(y2n+1, y2n+2)}]

1
2 .

Suppose on contrary that d(y2n+1, y2n+2) >
√
hd(y2n, y2n+1) for some n ∈

N . Then we have d(y2n+1, y2n+2) < d(y2n+1, y2n+2) which is contradiction and
so

d(y2n+1, y2n+2) ≤
√
hd(y2n+1, y2n) (3.1.2)
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Similarly one can show that
d(y2n+1, y2n) ≤

√
hd(y2n, y2n−1)

which in general yields that

d(yn+1, yn) ≤
√
hd(yn, yn−1) for all n establishing that the sequence yn

described by

{Ix0, Jx1, Ix2, Jxn..........Jx2n−1, Ix2n, Jx2n+1....................} (3.1.3)

is a Cauchy sequence and get limit t in X. Hence the sequences {Ix2n} and
{Jx2n+1} which are subsequences of {yn} also converge to the point t. Also
by the fact that H(Sx2n, Tx2n+1)≤ hd(Ix2n, Jx2n+1) together with (3.1.3)one
can conclude that

{Sx0, Tx1, Sx2, Tx2, ...........Tx2n−1, Sx2n, Tx2n+1.............} (3.1.4)

is a Cauchy sequence in (CB(X), H). Hence he sequences {Sx2n} and
{Tx2n+1} converge to some M in CB(X). Now, one can have

d(t,M) ≤ d(t, Ix2n)+d(Ix2n,M) ≤ d(t, Ix2n)+H(Tx2n−1,M) → 0 as n → ∞,

establishing that t ∈ M as M is closed. Now, by the weak compatibility of
(S, I), one can write

limn→∞H(ISx2n, SIx2n) ≤ limn→∞H(SIx2n, Sx2n) (3.1.5)

limn→∞d(ISx2n, Ix2n) ≤ limn→∞H(SIx2n, Sx2n) (3.1.6)

Using the above mentioned inequality, we obtained

limn→∞ d(IIx2n, Ix2n) ≤ limn→∞ d(IIx2n, ISx2n)+limn→∞ d(ISx2n, Ix2n)

≤ limn→∞ d(IIx2n, ISx2n) + limn→∞H(SIx2n, Sx2n) (3.1.7)

Since S and I are continuous, making n → ∞,(3.1.5) (3.1.6)(3.1.7) we get

H(I(M), St) ≤ H(St,M) and d(It, t) ≤ H(St,M)

Similarly using the continuity and weak compatibility of the pair (T, J) one
can show that
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H(J(M), T t) ≤ H(Tt,M) and d(Jt, t) ≤ H(Tt,M)
Now

d(Jt, T t) ≤ d(Jt, JIx2n) + d(JIx2n, T t)
≤ d(Jt, JIx2n) +H(JTx2n−1, T t)

≤ d(Jt, JIx2n)+H(JTx2n−1, TJx2n−1)+d(TJx2n−1, T t)
Which on letting n→ ∞, reduces to

d(Jt, T t) ≤ H(Tt,M)
Now using (3.1.1) we have

H(Sx2n, T t) ≤ h[aL(Ix2n, Jt) + (1− a)N(Ix2n, Jt)],

Where

L(Ix2n, Jt) ≤ max{d(Ix2n, Jt), d(Ix2n, Sx2n), d(Jt, T t),

1

2
[d(Ix2n, T t) + d(Jt, Ix2n) + d(Ix2n, Sx2n)]}

which on letting n → ∞, reduce to

limn→∞L(Ix2n, Jt) ≤ max{H(Tt,M), 0, H(Tt,M),
1

2
[H(Tt,M)+H(Tt,M)+0]}

= H(M,Tt)
and

N(Ix2n, Jt) ≤ max{d2(Ix2n, Jt), d(Ix2n, Sx2n)d(Jt, T t),

d(Ix2n, T t)[d(Jt, Ix2n) + d(Ix2n, Sx2n)],

1

2
d(Ix2n, Sx2n)[d(Jt, Ix2n)+d(Ix2n, Sx2n)],

1

2
[d(Ix2n, T t)d(Jt, T t)}]

1
2 .

which on letting n → ∞, reduces to

limn→∞N(Ix2n, Jt) ≤ [max{d2(t, Jt), d(t,M)d(Jt, T t), d(t, T t)[d(Jt, t)+d(t,M)],

1

2
d(t,M)[d(Jt, t) + d(t,M)],

1

2
[d(t, T t)d(Jt, T t)}]

1
2

≤ [max{H2(Tt,M), 0, H(Tt,M)[H(Tt,M) + 0], 0,
1

2
H2(Tt,M)}]

1
2 ,
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≤ H(M,Tt) (3.1.8)

Thus

H(M,Tt) = limn→∞H(Sx2n, T t)

≤ h[a limn→∞L(Ix2n, Jt) + (1− a)limn→∞N(Ix2n, Jt)]

≤ h[aH(M,Tt) + (1− a)H(M,Tt)] = hH(M,Tt)

which implies that H(M,Tt) = 0. Therefore d(Jt, T t) = 0 which in turn
yields Jt ∈ Tt as Tt is closed. Similarly, one can also show that It ∈ St.

Now it remains to show that It = Jt. For this we consider

d(It, Jt) ≤ d(It, SIx2n) +H(SIx2n, TJx2n−1) + d(TJx2n−1, Jt)

≤ d(It, SIx2n)+d(TJx2n−1, Jt)+h[a maxd(I2x2n, J
2x2n−1), d(I

2x2n, SIx2n),

d(J2x2n−1, TJx2n−1),
1
2
[d(I2x2n, Jt)+d(Jt, TJx2n−1)+d(J2x2n−1, It)+d(It, SIx2n)]

+(1− a)[max{d2(I2x2n, J
2x2n−1), d(I

2x2n, SIx2n)d(J
2x2n−1, TJx2n−1),

(d(I2x2n, J
2x2n−1)+d(J2x2n−1, TJx2n−1))(d(J

2x2n−1, I
2x2n)+d(I2x2n, SIx2n)),

1

2
d(I2x2n, SIx2n)d(J

2x2n−1, SIx2n),

1

2
[d(I2x2n, J

2x2n−1) + d(J2x2n−1, TJx2n−1)]d(J
2x2n−1, TJx2n−1)})]

1
2

which on letting n → ∞, reduces

d(It, Jt) ≤ hd(It, Jt)

yielding thereby It = Jt

Thus we have shown that It = Jt ∈ St∩ Tt establishing that t is a coinci-
dence point of I, J, S and T .

This completes the proof.

In order to obtain a fixed point result corresponding to Theorem 3.1 one
requires additional hypotheses. In this regard the following lemma from Pathak
et al[10] is useful.

Lemma 3.2 [10] Let S, T : X → CB(X) and I, J : X → X be continuous
mappings if Iw = Jw ∈ Tw ∩ Sw for some w ∈ X and Theorem 3.1 holds for
all x, y in X, then JTw = TJw, and ISw = SIw.
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Proof: Let xn = w for all n ∈ N . Hence if Iw=Jw ∈ Tw ∩ Sw, then by
weak compatibility of (S, I) and (T, J) one can have

H(ISw, SIw) ≤ H(SIw, Sw) (3.2.1),

H(JTw, TJw) ≤ H(TJw, Tw),

d(I2w, Jw) ≤ d(I2w, ISw) + d(ISw, Iw) + d(Iw, Jw) ≤ H(SIw, Sw),

and similarly

d(Iw, J2w) ≤ H(SIw, Sw).
Now

H(SIw, Sw) = H(SIw, Tw)

≤ h[aL(I2w, Jw) + (1− a)N(I2w, Jw)] (3.2.2)

where

L(I2w, Jw) = max{d(I2w, Jw), d(I2w, SIw), d(Jw, Tw), 1
2
[d(I2w, Tw)+d(Jw, SIw)]}

≤ max{H(SIw, Sw), H(SIw, Sw), 0, H(SIw, Sw)},

and

N(I2w, Jw) = [max{d2(I2w, Jw), d(I2w, SIw)d(Jw, Tw), d(I2w, Tw)d(Jw, SIw),

1

2
[d(I2w, SIw)d(Jw, SIw),

1

2
[d(I2w, Tw)d(Jw, Tw)}]

1
2

≤ [max{H2(SIw, Sw), 0, H2(SIw, Sw),
1

2
H2(SIw, Sw), 0, }]

1
2 ,

= H(SIw, Sw)
which in turn yields that

H(SIw, Sw) = H(SIw, Tw) ≤ h[a.H(SIw, Sw) + (1− a)H(SIw, Sw)]

= hH(SIw, Sw)
which is a contradiction.Therefore, we have SIw = Sw.Hence from (3.2.1)

SIw = ISw
Similarly we can show that TJw = JTw.
Now we formulate a fixed point theorem as follows:



On Coincidence and Common Fixed Point of Nonlinear... 23

Theorem 3.3 Let S, T , I and J satisfy all the conditions of Theorem 3.1.
Assume that for each x ∈ X either

(i)Ix ̸= I2x ⇒ Ix /∈ Sx(resp, Jx ̸= J2x ⇒ Jx /∈ Tx

(ii)Ix ∈ Sx ⇒ Inx → wforsome w ∈ X(respJx ∈ Tx ⇒ Jnx → w′

for some w′ ∈ X, then S, T , I and J have a common fixed point in X.

Proof: By Theorem 3.1 there exists a point z in X such that Iz = Jz ∈
Sz ∩ Tz. Since Iz ∈ Sz, Lemma 3.2 yields ISz = SIz. If (i) holds, Iz =
I2z ∈ ISz = SIz. Thus w = Iz is the fixed point of I and S.

If (ii) holds, then it is clear that Iw = w as I is continuous. Now we assert
that Inz ∈ SIn−1z for each n. To verify this, we consider I2z = IIz ∈ ISz =
SIz. Using Lemma3.2 (w = Iz) we can have I3z = II2z ∈ I(ISz) = SI2z.
Thus inductively we get Inz = SIn−1z and hence the continuity implies that

d(w, Sw) ≤ d(w, Inz) + d(Inz, Sw)

≤ d(w, Inz) + d(SIn−1z, Sw)
which tends to zero as n → ∞. Hence w = Iw ∈ Sw as Sw is closed.

Similarly one can show that w′ = Jw′ ∈ Tw′.
Now using contraction condition, one can obtains

d(w,w′) = d(Iw, Jw′)

= H(Sw, Tw′)

≤ h[ad(Iw, Jw′) + (1− a)d(Iw, Jw′)]

≤ hd(w,w′)
implying thereby w = w’

Thus we prove have that w = Iw = Jw ∈ Sw∩Tw. Hence w is a common
fixed point of S,T ,I and J .

If we replace weak compatibility[6],[10] by weak commutativity due to
Hadzic-Gajic [4], then the continuity of S and T can be relaxed and no ad-
ditional hypotheses are needed to ensure the existence of coincidence point
which appears to be a noted improvement over Theorem 3.1.

Theorem 3.4 Let S, T , I, J , X and CB(X) be the same as in Theorem
3.1. If we replace the weak compatibility with weak commutativity in Theorem
3.1 with I and J continuous then there is a point t in X such that It = Jt ∈
St ∩ Tt.
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Proof: Proceeding as in Theorem 3.1, we can show that the subsequences
Ix2n, Jx2n+1 converge to some t in X whereas the sequences Sx2n, Tx2n+1

converge to some M in CB(X).
Since J is continuous, sequence JIx2n converges Jt. Now, using the

weak commutativity of (T, J), we have Ix2n ∈ Tx2n−1 and so

d(JIx2n, TJx2n−1) = d(JTx2n−1, TJx2n−1) ≤ d(Jx2n−1, Tx2n−1) ≤ d(Ix2n, Jx2n−1)

which on letting n → ∞, reduce to

d(Jt, TJx2n−1) → 0

Similarly, using the continuity of I and weak commutativity of (S, I), we
can show that

d(It, SIx2n) → 0 as n → ∞.

Now consider

d(It, Jt) ≤ d(It, SIx2n) +H(SIx2n, TJx2n−1) + d(TJx2n−1, Jt)

≤ d(It, SIx2n)+d(Jt, TJx2n−1)+h{[a maxd(I2x2n, J
2x2n−1), d(I

2x2n, SIx2n),

d(J2x2n−1, TJx2n−1),
1
2
[d(I2x2n, Jt)+d(Jt, TJx2n−1)+d(J2x2n−1, It)+

d(It, SIx2n)]}

+(1− a)[max{d2(I2x2n, J
2x2n−1), d(I

2x2n, SIx2n)d(J
2x2n−1, TJx2n−1),

[d(I2x2n, TJx2n−1)d(J
2x2n−1, SIx2n)],

1

2
d(I2x2n, SIx2n)d(J

2x2n−1, SIx2n),

1

2
[I2x2n, TJx2n−1)d(J

2x2n−1, TJx2n−1)})]
1
2

which on letting n → ∞, reduces

d(It, Jt) ≤ hd(It, Jt), yielding thereby It = Jt.
Now

d(Jt, St) ≤ d(Jt, TJx2n−1) +H(TJx2n−1, St)



On Coincidence and Common Fixed Point of Nonlinear... 25

≤ d(Jt, JTx2n−1) + d(JTx2n−1, TJx2n−1) +H(ST, TJx2n−1, )

≤ d(Jt, JTx2n−1) + d(JTx2n−1, TJx2n−1) + h[a max{d(It, J2x2n−1),

d(It, St)d(J2x2n−1, TJx2n−1),
1
2
[d(It, TJx2n−1) + d(J2x2n−1, St)]}

+(1− a)[maxd2(I2t, Jx2
2n−1), d(It, St)d(J

2x2n−1, TJx2n−1)

,

d(It, TJx2n−1)d(J
2x2n−1, St)],

1

2
d(It, St)d(J2x2n−1, St)

,
1

2
d(It, TJx2n−1)d(J

2x2n−1, TJx2n−1)]}]
1
2

which on letting n → ∞, reduce to

d(Jt, St) ≤ hd(Jt, St),

yielding thereby Jt ∈ St, as St is closed.

Similarly one can show that It ∈ Tt . Thus we have shown that It = Jt ∈
St ∩ Tt.

Remark:

(a) If we replace CB(X) by PB(X)(with ISx, JTx ∈ PB(X))and choose
L(x, y) = d(Ix, Jy), a = 1 in Theorem 3.1 then we get an improve version of
Corollary 2.2 of Pathak et al.[10] as it involves four mappings instead of two.

(b) If we choose a = 1 in Theorem,then we get sharpen version of Theorem 2
of [9] which in tern generalizes the main result of Kaneko and Sessa[6]

Related Example: We present example to discuss the validity of the hy-
potheses of main results.

Example: Let X = [0,∞) be endowed with the Euclidean metric d(x, y) =
| x− y |.Let I(X)=3

2
(x4 + x2), J(X)= 3

2
(x2 + x), T (X) = [0, x2 + 2], S(X) =

[0, x4 + 2] for each x ≥ 0. Then I,J ,S and T are continuous and I(X) =
J(X) = T (X) = S(X). Since Sxn, Txn → [0, 3] and Ixn, Jxn → 3 if xn → 1.
We observe by the verification that

d(ISxn, Ixn) → 0, H(ISxn, SIxn) → 52, H(SIxn, Sxn) → 80,
d(JTxn, Jxn) → 0, H(JTxn, TJxn) → 7, H(TJxn, Txn) → 8,
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Therefore (S, I) and (T, J) are weak compatible but they are not compat-
ible. Also since

H(Sx, Ty) = | x4 − y2 |

(x2+y)
(x2+y+1)

| x2 − y || x2 + y + 1 |

2(x2 + y)3

3(x2 + y + 1)2
| x4 − y2 + x2 − y |

≤ 2

3
d(Ix, Jy) = h[aL(Ix, Jy) + (1− a)N(Ix, Jy)]

for all x, y ∈ X, where h ∈ [2
3
, 1] and 0 ≤ a ≤ 1. Thus all the conditions

of Theorem 3.1 are satisfied and 0 is the unique common fixed point of S ,T ,I
and J .
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