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Abstract

In this work we propose an improvement to the popular Newton’s method
based on the contra-harmonic mean while using quadrature rule derived from
a Ostrowski-Gräuss type inequality developed in [19]. The order of conver-
gence of this method for solving non-linear equations which have simple roots
is shown to be three. Computer Algebra Systems (CAS), such as MAPLE 18
package, can be used successfully to take over the lengthy and tedious computa-
tions in deriving the asymptotic error of convergence. Furthermore, numerical
experiments are made to show the efficiency and robustness of the suggested
method.

Keywords: Iterative methods, mean-based Newton’s methods, order of
convergence, efficiency index, CAS.

1 Introduction

Many problems in mathematics and in many branches of science and engineer-
ing involve finding a simple root of a single non-linear equation f(x) = 0 where
f : I ⊆ R → R, for an open interval I, is a scalar function. Since it is not
always possible to obtain its exact solution by the usual algebraic process, the
numerical iterative methods can approximate the solution to a predetermined
level of accuracy. This solution can be determined as a fixed point of some
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iteration function φ by means of the one-step iteration method

xn+1 = φ(xn), n = 0, 1, 2, . . . ,

where x0 is the initial guess. Among of these types of methods the celebrated
Newton’s Method (NM)

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, . . . (1)

is probably the best known and most widely used, robust and general-purpose,
iterative root-finding algorithm in computational mathematics. Essentially, it
uses the fact that the tangent line to a curve is a good approximation to the
curve near the point of tangency. It is well known that Newton’s method is
quadratically convergent to simple roots and linearly to multiple roots. Any
one-step iterative method which depends explicitly on f and its first r − 1
derivatives cannot attain an order of convergence higher than r, according
to ([13],Theorem 1.6). However, in order to overcome this theoretical limit
many variants of Newton’s method exist. In the last decade, several modi-
fied Newton-type methods have been proposed to improve the local order of
convergence of Newton’s method. All these modifications are in the direction
of increasing the local order of convergence with the view of increasing their
efficiency indices, often, at the expense of additional evaluations of functions,
derivatives and changes in the points of iterations. Cubic and higher order of
convergence without second and higher order derivative evaluation was first
established in [18] using arithmetic mean Newton’s method (AMN) derived
using the trapezoidal rule for integration. This trend continued in [12] using
harmonic mean (HMN) and the midpoint integration rule instead of the trape-
zoidal rule. Modifications in the Newton’s method based on geometric mean
(GMN) are suggested in [11] and based on (trapezoidal) p-power mean in [9].
A modification of Newton’s method based on the Simpson 1/3-quadrature rule
and arithmetic mean is suggested [6]. Replacing the arithmetic mean with the
harmonic mean, in [7], the authors obtained a new variant with cubic conver-
gence. We refer to the book [13] as a unifying presentation of the multi-step
iterative methods constructed over fifty years and, also, to the classical book by
Traub [15]. However, the derivation of all this variants involves an indefinite
integral of the derivative of the function, and the relevant area is approxi-
mated by only classical quadrature rules e.g., trapezoid, midpoint, Simpson’s,
etc in order to reduce the error in the approximation. Ujevic in [16, 17] firstly
adopted a quite different approach by using specially derived quadrature rule.

Aim of this paper is to present a new class of efficient Newton-like mean-
based method with third-order convergence free from second or higher order
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derivative. Section 2 is devoted to the derivation of the method and the analy-
sis of convergence is derived analytically, and then re-derived with the help of
symbolic computation software package MAPLE 18, see [21]. Section 3 gives
numerical results in order to compare the efficiency of the suggested method
with the Newton’s method and other relevant iterative methods.

2 New Variant of Newton’s Method and Anal-

ysis of Convergence

Let β be a simple root of a sufficiently differentiable function f(x). Consider
the numerical solution of the equation f(x) = 0. Usually, derivation of New-
tons method involves an indefinite integral of the derivative of the function,
and the area is approximated by rectangles. In fact, from the Fundamental
Theorem of Calculus, the equation can be written as

f(x) = f(xn) +

∫ x

xn

f ′(t)dt. (2)

Interpolate f ′ in the interval [xn, x] by constant f ′(xn) then, by taking x = β,
we obtain

f(xn) + (β − xn)f ′(xn) ≈ 0,

and finally, computing the iteration value for x = xn+1, a new approximation
xn+1 to β is given by (1). On the other hand, if we approximate the indefinite
integral in (2) by the trapezoidal quadrature formula and taking x = β we
obtain

f(xn) +
1

2
(β − xn)(f ′(xn)− f ′(β)) ≈ 0,

we have a new approximation xn+1 to β proposed in [18] and given by

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(xn+1)
, n ≥ 0.

To overcome the implicit problem in the right hand side of the above equa-
tion, it is straightforward to suggest the following two-step method: using the
Newton’s Method as a predictor and the new method as a corrector. Hence,
the (n + 1)st value of Newton’s method zn+1 is used instead of xn+1, that is
we get

xn+1 = xn −
2f(xn)

f ′(xn) + f ′(zn+1)
, zn+1 = xn −

f(xn)

f ′(xn)
, n ≥ 0. (3)

Notice that (3) is obtained by using the arithmetic mean of f ′(xn) and f ′(zn+1),
for this reason this new method is called the arithmetic mean Newton’s method
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(AMN)(see [18]). Many authors have proposed to replace the arithmetic mean
with other definitions of mean in the denominator of the equation (3) in order
to obtain a new family of methods with third order of convergence which
can be called Based-Mean Newton’s methods (BMN). Again, instead of using
trapezoidal quadrature rule it is possible to use also Simpson 1/3-quadrature
rule to approximate the integral in (2) as in [6, 7, 8, 9]. Here, we propose,
following ([19], Remark 1), to use a specially quadrature rules developed in
the sense of a Ostrowski-Gräuss type inequality derived in [20, 14] and given
by ∫ x

xn

f ′(t)dt ≈ (x− xn)

[
h

(
f ′(xn) + f ′(x)

2

)
+ (1− h)f ′

(
xn + x

2

)]
,

for h ∈ [0, 1] a free parameter. The previous quadrature formula is an averaging
of midpoint and trapezoid rule. Computing for x = xn+1, we obtain a new
approximation for n ≥ 0

xn+1 = xn −
2f(xn)

h(f ′(xn) + f ′(zn+1)) + 2(1− h)f ′
(
xn+zn+1

2

) , zn+1 = xn −
f(xn)

f ′(xn)
.

(4)
We rearrange (4) in the following form

xn+1 = xn−
f(xn)

h
(f ′(xn)+f ′(zn+1)

2

)
+ (1− h)f ′

(
xn+zn+1

2

) , zn+1 = xn−
f(xn)

f ′(xn)
, n ≥ 0.

(5)
In ([19], Theorem 3), the authors prove, for all h ∈ [0, 1], the cubic conver-
gence for the method (5). Along those lines, we propose to use the contra-
harmonic mean instead of arithmetic mean obtaining a new variant of the
Newton’s method called Contra-Harmonic Mean Newton’s method developed
in the sense of inequalities (CHMN-I), that is

xn+1 = xn −
f(xn)

h
(f ′(xn)2+f ′(zn+1)2

f ′(xn)+f ′(zn+1)

)
+ (1− h)f ′

(
xn+zn+1

2

) , for h ∈ [0, 1], (6)

where zn+1 is computed as follows

zn+1 = xn −
f(xn)

f ′(xn)
, n ≥ 0. (7)

Now, we compute the order of convergence of scheme (6)-(7) both analyti-
cally and by using symbolic computation. The symbols used here have usual
meanings.

Theorem 2.1. Let β be a simple root of a function f : I ⊆ R→ R, where
I is an open interval. Assume f sufficiently differentiable in a neighborhood
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of β, Uβ = {x : |x − β| ≤ r} for some r ≥ 0. Furthermore, assume that the
initial guess x0 ∈ Uβ then the method defined by (6)-(7) is cubically convergent
for all h ∈ [0, 1] with the following error equation

en+1 =
(
c22
(
h+ 1

)
+

1

4
c3
(
3h− 1

))
e3n +O(e4n), (8)

where en = xn − β and ck = f (k)(β)
k!f ′(β)

, k = 1, 2, 3, . . . .

Proof. Let β be a simple zero of function f(x) = 0 (i.e. f(β) = 0 and f ′(β) 6=
0). Since, by hypothesis, f is sufficiently smooth around β, expanding f(xn)
and f ′(xn) by Taylor series about β, we obtain

f(xn) = f ′(β)[en + c2e
2
n + c3e

3
n +O(e4n)], (9)

and
f ′(xn) = f ′(β)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n +O(e4n)] (10)

where ck = f (k)(β)
k!f ′(β)

. Direct division gives us

f(xn)

f ′(xn)
= en − c2e2n + 2(c22 − c3)e3n +O(e4n). (11)

From (7),(11) we have

zn+1 = β + c2e
2
n + 2(c3 − c22)e3n +O(e4n). (12)

Again, expanding f(zn+1) by Taylor series about β and using (12), we get

f ′(zn+1) = f ′(β)[1 + 2c22e
2
n + 4(c2c3 − c32)e3n +O(e4n)]. (13)

From (10) and (13), we easily get

f ′(xn)2 = f ′(β)2[1 + 4c2en + (4c22 + 6c3)e
2
n + 4(2c4 + 3c2c3)e

3
n +O(e4n)] (14)

and
f ′(zn+1)

2 = f ′(β)2[1 + 4c22e
2
n + 8(c2c3 − c32)e3n +O(e4n)]. (15)

Adding (10) and (13) we get

f ′(xn)+f ′(zn+1) = 2f ′(β)

[
1+c2en+

(
c22+

3

2
c3

)
e2n+2(c2c3−c32+c4)e

3
n+O(e4n)

]
.

(16)
In the same manner, adding (14) and (15) we get

f ′(xn)2+f ′(zn+1)
2 = 2f ′(β)2[1+2c2en+(4c22+3c3)e

2
n+(10c2c3−4c32+4c4)e

3
n+O(e4n)].

(17)
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Thus, we obtain

h

(
f ′(xn)2 + f ′(zn+1)

2

f ′(xn) + f ′(zn+1)

)
= hf ′(β)

[
1 + c2en +

(
2c22 +

3

2
c3

)
e2n

+ (−5c32 + 2c4 + 5c2c3)e
3
n +O(e4n)

]
.

(18)

Furthermore, we have

zn+1 + xn
2

= β +
1

2
en +

1

2
e2ncn + (c3 − c22)e3n +O(e4n). (19)

Expanding f ′( zn+1+xn
2

) by Taylor series about β and using (19), we obtain

(1− h)f ′
(
zn+1 + xn

2

)
= (1− h)f ′(β)

[
1 + c2en +

(
c22 +

3

4
c3

)
e2n

+

(
− 2c32 +

7

2
c2c3 +

1

2
c4

)
e3n +O(e4n)

]
.

(20)

Adding (18) and (20) we get

h

(
f ′(xn)2 + f ′(zn+1)

2

f ′(xn) + f ′(zn+1)

)
+ (1− h)f ′

(
zn+1 + xn

2

)
=

f ′(β)

[
1 + c2en + (h− 1)

(
c22 +

3

4
c3

)
e2n +

1

2

(
− 4c32(1 + 2h)

+ c2c3(7 + 3h) + c4(1 + 3h)

)
+O(e4n)

]
.

(21)

Finally, dividing (9) by (21) we obtain

f(xn)

h
(
f ′(xn)2+f ′(zn+1)2

f ′(xn)+f ′(zn+1)

)
+ (1− h)f ′

(
zn+1+xn

2

) = en−
(
c22(h+1)+

1

4
c3(3h−1)

)
e3n+O(e4n).

(22)
Substituting (22) in (6) and, then, subtracting β from both sides we get the
following error equation

en+1 =
(
c22(h+ 1) +

1

4
c3(3h− 1)

)
e3n +O(e4n), (23)

which shows that the method (6)-(7) has third order convergence ∀h ∈ [0, 1].

In this case, the computations are simple enough to do by hand but, in
general, if for example higher order derivative are involved, this can be too
time-consuming and, often, error-prone. In view of this issue, we would like
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to remark that all the above computations can be also derived employing the
symbolic computation of the MAPLE 18 package to compute the Taylor series
of f and its derivative f ′ about x = β, see [2, 3] for further details. As an
example, consider method (6) restricted to the case h = 1 and run the following
MAPLE 18 statements:

> N:=x->x-f(x)/D(f)(x):

> F:=x->x-f(x)*(D(f)(x)+(D(f)@N)(x))/(D(f)(x)^2+(D(f)@N)(x)^2):

> algsubs(f(beta) = 0, F(beta));

β

> algsubs(f(beta) = 0, D(F)(beta));

0

> algsubs(f(beta) = 0, (D@@2)(F)(beta));

0

> simplify(algsubs(f(beta) = 0, (D@@3)(F)(beta));

1
2
D(f)(β)D(3)(f)(β)+6D(2)(f)(β)2

D(f)(β)2
.

It follows that

F (β) = β, F ′(β) = F ′′(β) = 0, F ′′′(β) =
1

2

f ′(β)f ′′′(β) + 6f ′′(β)2

f ′(β)2
(24)

and, thus, by the Schröder-Traub’s Theorem ([13], Theorem 1.1), the method
(6)-(7) is of order 3.
Expanding in Taylor series F (xn) around x = β and by using (24) it is possible
to rederived the error equation (8).

Remark 2.2.

1. The family of two-step iterative method presented in this paper recap-
tures some previous quadrature based methods. For h = 0, it recaptures
the Midpoint Newton’s method, see [4, 12]. For h = 1, it recaptures the
Contra-Harmonic Newton’s method, see [1]. For different choices of h
we obtain different variants of Newton’s method with third order conver-
gence.
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2. At each iteration, this variant requires evaluations of one function f
and three derivatives f ′. We have, previously, proved that the current
method converge cubically to a simple root and, thus, as a byproduct,
the efficiency index is found to be EI ∼ 1.3161 which is less than the
efficiency index of Newton’s method (EI ∼ 1.414) except for the cases
for which h = 0 (EI ∼ 1.4422) and h = 1 (EI ∼ 1.4422). However, our
method takes lesser number of iterations than Newton’s method.

3. The suggested method is not optimal in the sense of Kung and Traub, see
[10, 15].

4. In [8], the authors introduced a new class of cubic convergent methods
based on p-power means exploited in the trapezoidal formula for 3 knots
and introducing also same parameters k1, k2 and k with the condition
k = k1 + k2, i.e.

xn+1 = xn −
kf(xn)

k1sign(f ′(xn))
(f ′(xn)p+f ′(zn+1)p

2

) 1
p + k2f ′

(
xn+zn+1

2

) .
The efficiency index of the method is EI ∼ 1.3161. For different choices
of p, it is possible to obtain different variants of Newton’s method such as
arithmetic mean, harmonic mean, quadratic mean, geometric mean and
square-mean root. Our main result Theorem 2.1 can be also viewed as
an extension of ([8], Theorem 4.1) to the not included contra-harmonic
mean case.

3 Numerical Results and Conclusions

In this section, we present the results of numerical calculations to compare
the efficiency of the proposed method (CHMN-I) with Newton’s method (NM)
and with the most classical variants defined in Section 1. We use the following
stopping criterion for iterative process: |xn+1 − xn| < ε and |f(xn+1)| < ε for
a fixed ε, the precision of the computer. For example, here we fix ε = 10−14.
This means that if the stopping criterion is satisfied, xn+1 is taken as the exact
root β computed. As convergence criterion it is required that the distance of
two consecutive approximations δ for the root is less than 10−14. Numerical
computations are performed in MAPLE 18 environment with 64 digit floating
point arithmetics (Digits:=64). Different test functions, the initial guess x0,
the number of iterations are given in Table 1. The following test functions are
used in the numerical results:

1. f1(x) = x3 + 4x2 − 10, β = 1.365230013414097,

2. f2(x) = sin2(x)− x2 + 1, β = −1.404491648215341,
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Table 1: Number of iterations for the test functions
Function x0 NM AMN HMN GMN CHMN-I

f1(x) 1 5 3 3 3 3
f2(x) 1 6 4 3 4 4
f3(x) 3 6 4 4 4 3
f4(x) 3 6 5 4 4 4

3. f3(x) = x2 − ex − 3x+ 2, β = 0.2575302854398608,

4. f4(x) = (x− 1)3 − 1, β = 2

Finally, numerical results show that the proposed method is in accordance
with the developed theory and it can compete with the classical Newton’s
method. Though our method needs more function evaluations at each itera-
tion, when compared to the Newton’s method it is evident by Table 1 that the
number of the required iterations is less than that of Newton’s method.
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