
Gen. Math. Notes, Vol. 27, No. 1, March 2015, pp.9-15
ISSN 2219-7184; Copyright c©ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Dynamical Consequences and Stability

Analysis of a New Host-Parasitoid Model

Ozlem Ak Gümüş
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Abstract
In this paper, we re-examined, depending on steady state, the dynamics of

the host population under external effect called immigration. Also, we get some
results relating to steady state.
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1 Introduction

The various internal and external parameters have an effect on life of organ-
ism. Therefore, the review of the model with different parameters has an
importance. Many authors presented review of various models by considering
different parameters derived from biological facts or changes in environmental
factors. When studies on population model are examined, we can see that
the models, involving two species interaction, such as host-parasitoid, host-
parasite and predator-prey are popular subjects. Especially, host-parasitoid
models are interesting, because they allow us to define natural enemy of an
insect pest. One of the earliest applications of discrete-time models including
host-parasitoid interaction was obtained by Nicholson and Bailey who applied
it to the parasitoid Encarsia formosa and the host Trialeurodes vaporariorum
in 1935 [1, 2]. In host-parasitoid models, the parasitoids kill the hosts and they
also die in the absence of the hosts. Such models allow us to understand some
fundamental aspects of this species. This fact provides us that this models can
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be tested with some data. Therefore, parasitoids are used as biological control
agents and preferred instead of chemicals which are non-nature control. The
general host-parasitoid model proposed by Nicholson-Bailey is presented in the
following form

Ht+1 = rHtf(Ht, Pt)

Pt+1 = eHt(1− f(Ht, Pt))

where, r and e are positive parameters [2]. Also, f(Ht, Pt) is a fraction of hosts
that are not parasitized; Nt is the density of host species in generation t; Pt is
the density of parasitoid species in generation t; r is the number of eggs laid
by a host that survive through the larvae, pupae and adult stages; e is the
number of eggs laid by parasitoid on a single host that survive through larvae,
pupae and adult stages.

The number of encounters of the parasitoid with a host according to the
law of mass action is defined as cNtPt. Here, the constant c is the searching
efficiency. Nicholson-Bailey model assumes that the number of encounters is
calculated according to the Poisson distribution such that p(n) = e−σσn /n!,
where n is the number of encounters and σ is the avarege number of encounters
per host in one generation. If there is no encounter, the fraction of hosts that
are not parasitized is p(0) = e−σσ0 /0! = e−σ, where σ =encounters/Nt = cPt.
Then f(Ht, Pt) = e−cPt . Accordingly, the model is given as

Nt+1 = rNte
−cPt

Pt+1 = eNt(1− e−cPt).

In this paper, we review the dynamic of the host and parasitoid interaction
connected to Beverton-Holt function given in [4] under immigration parameter
(see, [3]) as follows:

Nt+1 =
λNt

1 + kNte−bPt
e−bPt + β (1)

Pt+1 = αNt(1− e−bPt).

Here, β ∈ (1,∞) is a diffusive force which called as immigration; Nt is the host
population at time t; Pt is the parasitoid population at time t and α presents
the average number of offsprings of parasitized host. The growth rate of the
host population in the absence of the parasitoid, λ

1+kNte−bPt
, is associated with

the Beverton-Holt function such that λ, k > 0.

The aim of this study is to find steady states of the model (1) analytically
and also to investigate the local stability of steady states.
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2 Steady States of the Model (1)

In this section, we will obtain the steady states of model (1) by using Nt =
Nt+1 = N∗ and Pt = Pt+1 = P ∗ as follows:

N∗ =
λN∗

1 + kN∗e−bP ∗ e
−bP ∗

+ β (2)

P ∗ = αN∗(1− e−bP ∗
).

It is clearly seen that there is no steady state (0, 0), since β ∈ (1,∞). Then,
we have the following the theorems.

Theorem 2.1 Model (1) has steady state (N∗,0).

Proof: Let’s take N∗ 6= 0 and P ∗ = 0. Then we can write

λ =
(1 + kN∗)(N∗ − β)

N∗
. (3)

So, the following function can be created by using the right side of Eq.(3) such
that N∗ = x.

f(x) =
(1 + kx)(x− β)

x
. (4)

In this way, if the derivation of the function f(x) is calculated, we have

f ′(x) =
(kx2 + β)

x2
.

If f ′(x) = 0 is solved, the function f(x) has no real root in the interval [β,∞)
on the first domain. So, we get that the function f has no critical point, that
is, f ′(x) > 0 in the interval [β,∞) on the first domain ( limx→∞f(x) = ∞.).
Eq.(3) has only one solution. The proof is completed.

Theorem 2.2 In case of β < N∗1 <
−(1−λ−βk)+

√
(1−λ−βk)2+4βk

2k
, the model

(1) has steady state (N∗1 , P
∗
1 ).

Proof: If model (1) is taken into account for N∗1 6= 0 and P ∗1 6= 0, we
obtain

N∗1 (1 + kN∗1 e
−bP ∗

1 ) = λN∗1 e
−bP ∗

1 + β(1 + kN∗1 e
−bP ∗

1 )

⇒ e−bP
∗
1 =

N∗1 − β
−kN∗21 + (λ+ βk)N∗1

(5)

⇒ P ∗1 = −1

b
ln

N∗1 − β
−kN∗21 + (λ+ βk)N∗1

. (6)
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If we have the following inequality

0 <
N∗1 − β

−kN∗21 + (λ+ βk)N∗1
< 1, (7)

then P ∗1 > 0. If we combine Eq. (5) with the second equation of (2), then we
get

P ∗1 = αN∗1 (1− N∗1 − β
−kN∗21 + (λ+ βk)N∗1

).

If P ∗1 is written in the first equation in (2), we obtain

N∗1 =
λN∗1

1 + kN∗1 e
−αbN∗

1 (1−
N∗
1−β

−kN∗2
1 +(λ+βk)N∗

1
)
e
−αbN∗

1 (1−
N∗
1−β

−kN∗2
1 +(λ+βk)N∗

1
)
+ β

⇒ N∗1 [1 + kN∗1 e
−αbN∗

1 (1−
N∗
1−β

−kN∗2
1 +(λ+βk)N∗

1
)
] = λN∗1 e

−αbN∗
1 (1−

N∗
1−β

−kN∗2
1 +(λ+βk)N∗

1
)
+

β[1 + kN∗1 e
−αbN∗

1 (1−
N∗
1−β

−kN∗2
1 +(λ+βk)N∗

1
)
]

⇒ λ = (1− β

N∗1
)[e
−αbN∗

1 (1−
N∗
1−β

−kN∗2
1 +(λ+βk)N∗

1
)
+ kN∗1 ]. (8)

Now, let’s take N∗1 = x. We can write the function by considering the right
side of (8) as follows:

g(x) = (1− β
x

)(e
−αbx(1− β−x

kx2−(λ+βk)x
)
+ kx). (9)

If derivatives of the function g(x) are examined, there is no extremum. Note
that g(β) = 0, g′(β) = 1

β
ebαβ > 0, and also g(x) → ∞ as x → ∞. Then (8)

must have only one solution. Now, if we simplify inequality (7) by solving it,
then we get

β < N∗1 <
λ+ βk

k
and N∗1 <

−(1− λ− βk) +
√

(1− λ− βk)2 + 4βk

2k
. (10)

Let’s compare λ+βk
k

and
−(1−λ−βk)+

√
(1−λ−βk)2+4βk

2k
. Assume that

λ+ βk

k
>
−(1− λ− βk) +

√
(1− λ− βk)2 + 4βk

2k
(11)

holds. If the process is continued, we obtain

1 + λ+ βk >
√

(1− λ− βk)2 + 4βk

⇔ (1 + λ+ βk)2 > (1− λ− βk)2 + 4βk

⇔ 4λ > 0.
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Since λ > 0, our assumption is true. Now, we need to show

β <
−(1− λ− βk) +

√
(1− λ− βk)2 + 4βk

2k
. (12)

From this, we can that the following the result

βk + 1− λ <
√

(1− λ− βk)2 + 4βk

⇔ (βk + 1− λ)2 < (1− λ− βk)2 + 4βk

⇔ 0 < 4βk.

Similarly, we can see that our assumptions are true, since β > 0 and k > 0 .
So, (12) is provided. Then, we have

β < N∗1 <
−(1− λ− βk) +

√
(1− λ− βk)2 + 4βk

2k
(13)

from (10), (11) and (12). The proof is completed.

Corollary 2.3 When inequality (13) is not provided, (N∗, 0) is uniqe steady
state of model (1). Otherwise, (N∗1 , P

∗
1 ) is only unique steady state.

2.1 Stability Analysis of Model (1)

In this section, we will investigate the local stability conditions of steady state
of (1). Firstly, we assume that inequality (13) is not provided. Namely, we
have only unique steady state (N∗, 0). If the model (1) is considered, we can
write

F (Nt, Pt) =
λNt

1 + kNte−bPt
e−bPt + β

G(Ht, Pt) = αNt(1− e−bPt).

If the Jacobian matrix of model (1) is created in the neighborhood of (N∗, 0),
then we have

J1 =

[
λ

(1+kN∗)2
−bλN∗

(1+kN∗)2

0 αbN∗

]
.

The eigenvalues of J1 are σ1 = λ
(1+kN∗)2

and σ2 = αbN∗. Let’s apply the

stability conditions |σ1| < 1and |σ2| < 1. So, (N∗, 0) is local stable if

λ

(1 + kN∗)2
< 1 and αbN∗ < 1 (14)

holds. Let’s take λ
(1+kN∗)2

> 1 and αbN∗ > 1 under inequality (13). So, (N∗, 0)

is unstable. Then the stability of the model (1) which has only unique steady
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state (N∗1 , P
∗
1 ) can be examined. The Jacobian matrix which is evaluated in

the neighborhood of (N∗1 , P
∗
1 ) can be written as follows:

J2 =

[
λe−bP

∗
1

(1+kN∗
1 e

−bP∗
1 )2

− bλN∗
1 e

−bP∗
1

(1+kN∗
1 e

−bP∗
1 )2

α(1− e−bP ∗
1 ) αbN∗1 e

−bP ∗
1

]
.

The trace and determinant of J2 are

trJ2 =
λe−bP

∗
1

(1 + kN∗1 e
−bP ∗

1 )2
+ αbN∗1 e

−bP ∗
1

det J2 =
αbλN∗1 e

−bP ∗
1

(1 + kN∗1 e
−bP ∗

1 )2
.

respectively. If the following inequality (see [2]) is provided

|trJ2| < 1 + det J2 < 2, (15)

then (N∗1 , P
∗
1 ) is local stable. By using (15), we get the local stability conditions

for (N∗1 , P
∗
1 ) as

αbλN∗1 e
−bP ∗

1

(1 + kN∗1 e
−bP ∗

1 )2
< 1 and

(λ− αbλN∗1 )e−bP
∗
1

(1 + kN∗1 e
−bP ∗

1 )2
+ αbλN∗1 e

−bP ∗
1 < 1. (16)

Corollary 2.4 If inequality (13) is not provided, then the model (1) has
only unique steady state (N∗, 0), and it is stable under conditions (14).

Corollary 2.5 If inequality (13) is provided, then the steady state (N∗1 , P
∗
1 )

is only unique steady state, and it is stable under conditions (16).

3 Conclusion

In this paper, we investigated the steady state of the host-parasitoid model
with immigration parameter. Also, we examined the local stability of steady
state of this model. So, we have reached some consequences which give condi-
tions on stability of the steady states.
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