

Gen. Math. Notes, Vol. 8, No. 2, February 2012, pp. 11-17 ISSN 2219-7184; Copyright © ICSRS Publication, 2012 www.i-csrs.org
Available free online at http://www.geman.in

Pre-Semi-Closed Sets and Pre-Semi-Separation Axioms in Intuitionistic Fuzzy Topological Spaces

A. Bhattacharjee¹ and R.N. Bhaumik²

¹Department of Mathematics, D.D.M College, Khowai, Tripura West-799201
E-mail: bhattacharjee_ashish@yahoo.co.in

²Rtd. Professor of Mathematics, Tripura University, Suryamaninagar,
Tripura-799022

32 Dhaleswar, Assam-Agartala Road, Near Joyguru
Pharmacy, Agartala-College, Tripura, India, 799004
E-mail: bhaumik_r_n@yahoo.co.in

Abstract

The aim of this paper is to introduce and study different properties of pre-semi closed sets in intuitionistic fuzzy topological spaces. As applications to pre-semi-closed sets we introduce pre-semi $T_{1/2}$ -spaces, semi- pre $T_{1/3}$ space and pre-semi $T_{3/4}$ -spaces and obtain some of their basic properties.

Keywords: Intuitionistic Fuzzy (IF) sets, IF semi closed set, IF semi-pre $(=\beta)$ closed set, IF generalized closed set, IF regular closed set, IF pre-semi closed set, IF pre- semi $T_{1/2}$ space, IF semi- pre $T_{1/3}$ space, IF pre- semi $T_{3/4}$ space, etc.

1 Introduction

The concept of intuitionistic fuzzy set was introduced by Atanasov [1] in 1983 as a generalization of fuzzy sets. This approach provided a wide field to the

generalization of various concepts of fuzzy mathematics. In 1997 Coker [3] defined intuitionistic fuzzy topological spaces. Recently many concepts of fuzzy topological space have been extended in intuitionistic fuzzy(IF) topological spaces. Murugesan and Thangavelu [6] intrduced the concept of pre-semi- closed sets in fuzzy topological spaces. In the present paper we introduce and study different properties of pre-semi-closed sets, pre-semi $T_{1/2}$ -spaces, semi- pre $T_{1/3}$ space and pre-semi $T_{3/4}$ -spaces in IF topological spaces.

2 Preliminaries

Definition 2.1 Let X denotes a universe of discourse. Then a fuzzy set A in X is defined as a set of ordered pairs $A = \{ \langle x, \mu_A(x) \rangle : x \in X \}$, where $\mu_A(x): X \to [0, 1]$ is the grade of belongingness of x into A. Thus the grade of non belongingness of x into A is equal to $1-\mu_A(x)$. However, while expressing the degree of membership of any given element in a fuzzy set, the degree of non membership is not always expressed as a complement to 1. Therefore Atanassov [1,2] suggested a generalization of fuzzy set, called an intuitionistic fuzzy set. In the present paper intuitionistic fuzzy will be denoted by IF only.

An IF set in X is given by a set of ordered triples $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$, where $\mu_A(x), \nu_A(x) : X \to [0,1]$ are functions such that $0 \le \mu_A(x) + \nu_A(x) \le 1$, $\forall x \in X$. The numbers $\mu_A(x)$ and $\nu_A(x)$ represent the degree of membership and degree of non-membership for each element $x \in X$ to $A \subset X$, respectively.

Definition 2.2[2] Let A and B be IF sets of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ and $B = \{ \langle y, \mu_B(y), \nu_B(y) \rangle : y \in Y \}$. Then

- (a) $A \subseteq B$ if and only If $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$.
- (b) $A^c = \{ \langle x, V_A(x), \mu_A(x) \rangle : x \in X \}.$

Definition 2.3[10] Two IF sets A and B are said to be quasi-coincident, denoted by A $_q$ B if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

The expression 'not quasi-coincident' will be abbreviated as $7A_qB$.

Proposition 2.1[10] For any two IF sets A and B of X, A_q B if and only if $A \subseteq B^c$.

Definition 2.4[5] An IF set A of an IF topological space (X, τ) is said to be IF semi closed set if int $(cl(A)) \subseteq A$.

Definition 2.5[5] An IF set A of an IF topological space (X, τ) is said to be IF semi-pre $(=\beta)$ -closed set if int $(cl(int(A))) \subseteq A$.

Definition 2.6[9] An IF set A of an IF topological space (X, τ) is said to be IF generalized closed if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is IF open (X, τ) .

An IF set A of an IF topological space (X, τ) is said to be IF generalized open if its complement A^c is IF generalized closed.

Proposition2.2[9] Every IF open set is IF generalized open but its converse may not be true.

Notation 2.1 *Let* (X, τ) *be an IF topological space. Then the family of IF regular (respectively semi-pre) closed sets in X, may be denoted by r (respectively sp).*

Definition2.7[7] Let A be an IF set in an IF topological space (X, τ) . Then IF semi pre interior and semi pre closure of A is denoted by spint (A) and spcl(A), defined by

```
spint(A) = \bigcup \{G: G \subseteq A, G \text{ is } IF \text{ semi pre open set in } X \}

spcl(A) = \bigcap \{B: A \subseteq B, B \text{ is } IF \text{ semi pre closed set in } X \}.
```

Definition 2.8[7] An IF set A of an IF topological space (X, τ) is said to be IF generalized semi-pre closed set if $spcl(A) \subseteq O$ whenever $A \subseteq O$ and O is IF open set in (X, τ) .

An IF set A of an IF topological space (X, τ) is said to be IF generalized semi-pre open if its complement A^c is IF generalized semi-pre closed.

Definition 2.9[7] An IF topological space (X, τ) is said to be IF semi-pre $T_{1/2}$ space if every IFGSP closed set in X is an IF semi-pre closed set in X.

3 Pre-Semi-Closed Sets

Definition 3.1 Let A be an IF set in an IF topological space (X, τ) . Then A is called an IF pre-semi closed set in X if $spcl(A) \subseteq O$ whenever $A \subseteq O$ and O is IF generalized open set in X.

Example 3.1 Consider the IF topological space (X,τ) , where $X=\{a,b\}$ and $\tau=\{0_{\sim},1_{\sim},U\}$, $U=\langle x,(a/.9,b/.2),(a/.1,b/.8)\rangle$. Since every IF open set is IF g-open so $0_{\sim},1_{\sim},U$ are IF generalized open sets. Let $A=\langle x,(a/.7,b/.2),(a/.3,b/.8)\rangle$ be an IF set in X. Then A is an IF pre-semi-closed set in X, for if $A\subseteq O$ and O is IF generalized open set in X, then

$$O = 1_{\sim}$$
 and hence spcl(A) \subseteq O.

Theorem 3.1 Every IF semi-pre-closed set in an IF topological space (X, τ) is IF pre-semi closed set.

Proof. Let A be an IF semi-pre closed set in an IF topological space (X,τ). Suppose that $A \subseteq O$ and O is IF generalized open set in X. Since A is an IF semi-pre closed set, hence spcl(A) = A. Thus $spcl(A) = A \subseteq O$, and hence A is IF presemi closed set.

But the converse may not true as shown in the following example.

Example 3.2: Consider the IF topological space (X,τ) , where $X=\{a,b\}$ and $\tau=\{0_{\sim},1_{\sim},U\}$, $U=\langle x,(a/.7,b/.3),(a/.3,b/.7)\rangle$. Since every IF open set is IF generalized open so $0_{\sim},1_{\sim}$, U are IF g-open sets. Let $A=\langle x,(a/.8,b/.3),(a/.2,b/.7)\rangle$ be an IF set in X. Then A is an IF pre-semi-closed set in X, for if $A\subseteq O$ and O is IF generalized open set in X, then

O =1 \sim and hence spcl(A) \subseteq O. But A is not an IF semi-pre-closed set, for int(A) = U, so cl(int(A)) = 1 \sim A.

Remark 3.1 The IF pre-semi closed ness is independent from IF generalized closed ness as shown in the following two examples.

Example 3.3 In example 3.1 A is an IF pre-semi-closed set in X. But not an IF generalized closed set, for $A \subseteq U$ and U is IF open set in X, but $cl(A) = 1 \not\subset U$.

Example 3.4 Consider the IF topological space (X,τ) , where $X=\{a,b\}$ and $\tau=\{0_{\sim},1_{\sim},U\}$, $U=\langle x,(a/1,b/0),(a/0,b/.5)\rangle$. Let $A=\langle x,(a/1,b/.2),(a/0,b/.3)\rangle$ be an IF set in X. Then A is an IF generalized closed set in X but not an IF pre-semi-closed set in X.; for if $A\subseteq A$ and A is an IF generalized open set in X, but $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))=1_{\sim}\supset A$ and hence $\operatorname{spcl}(A)=1_{\sim}\supset A$.

Theorem 3.2 Every IF pre-semi closed set in an IF topological space (X, τ) is IF generalized semi pre closed.

Proof. Let A be an IF pre-semi closed set in an IF topological space (X,τ). Suppose that $A \subseteq O$ and O is an IF open set in X, then $spcl(A) \subseteq O$ and O is IF generalized open set in X. Hence A is an IF generalized semi pre closed in X. But the converse may not true as shown in the following example.

Example 3.5 In example 3.4 A is an IF generalized semi pre closed set in X but not an IF pre-semi closed set.

Remark 3.2 Every IF semi pre closed set is IF generalized semi pre closed set but its converse may not be true [7]. Hence the relationships of IF semi pre closed set, IF pre-semi closed set, IF generalized semi pre closed sets are as follows.

IF semi pre closed set \Rightarrow IF pre-semi closed set \Rightarrow IF generalized semi pre closed set.

However the converses are not true in general.

Theorem 3.3 Let A be an IF set in an IF topological space (X, τ) . Then A is an IF pre-semi closed if and only if $\sqrt{(A_q F)} \Rightarrow \sqrt{(spcl(A)_q F)}$ for every IF generalized closed set F of X.

Proof.

Necessity Let F is an IF generalized closed set of X and $A \subseteq F$. Then by proposition 2.1 A $\subseteq F$ and F is IF generalized open in X. Now since A is IF presemi closed, spcl (A) $\subseteq F$. Hence S (spcl(A) $\subseteq F$).

Sufficiency Let O is an IF generalized open set of X such that $A \subseteq O$ that is $A \subseteq (O^c)^c$. Hence by proposition $2.1 \rceil (A_q O^c)$ and O^c is IF generalized closed set in X. Hence by hypothesis $\rceil (\operatorname{spcl}(A)_q O^c)$. Therefore $\operatorname{spcl}(A) \subseteq (O^c)^c$. That is $\operatorname{spcl}(A) \subseteq O$. Hence A is IF pre-semi closed in X.

Lemma 3.1 Let A be an IF set in an IF topological space (X, τ) . Then $A \cup int(cl(int(A))) \subseteq spcl(A)$.

Theorem 3.4 Let A be an IF set in an IF topological space (X, τ) . If A is IF generalized open and IF pre-semi closed, then A is IF semi-pre closed.

Proof. Since A is IF generalized open and IF pre-semi closed, it follows that $A \cup \text{int}(\text{cl}(\text{int}(A))) \subseteq \text{spcl}(A) \subseteq A$. Hence $\text{int}(\text{cl}(\text{int}(A))) \subseteq A$ and A is IF semi-pre closed.

Theorem 3.5 Let A be an IF set in an IF topological space (X, τ) . Then the following are equivalent:

- (i) A is IF regular open.
- (ii) A is IF open and IF pre-semi closed.
- (iii) A is IF open and IF generalized semi pre closed set.
- **Proof** (i) \Rightarrow (ii) Let A be an IF regular open set in an IF topological space (X,τ). Then A is both IF open and IF semi closed. Now since every IF semi closed set is IF semi pre closed set, hence by theorem 3.1 A is an IF pre-semi closed set.
- (ii) \Rightarrow (iii) Let A be IF open and IF pre-semi closed. Then by theorem 3.2 A is IF generalized semi pre closed set.
- (iii) \Rightarrow (i) Let A be IF open and IF generalized semi pre closed set. Then $A \subseteq A$ and A is an IF open set in X and so $A \cup \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \subseteq \operatorname{spcl}(A) \subseteq A$. Hence $\operatorname{int}(\operatorname{cl}(\operatorname{int}(A))) \subseteq A$. Since A is IF open it follows that $\operatorname{int}(\operatorname{cl}(A)) \subseteq A = \operatorname{int}(A) \subseteq \operatorname{int}(\operatorname{cl}(A))$. Hence A is IF regular open.

Lemma 3.2 Let A be an IF set in an IF topological space (X, τ) . Then spcl(spcl(A)) = spcl(A).

Theorem 3.6 Let A be an IF pre-semi closed set in an IF topological space (X, τ) . If B is an IF set in X such that $A \subseteq B \subseteq \operatorname{spcl}(A)$, then B is also IF pre-semi closed. **Proof.** Let B be an IF set in an IF topological space (X,τ) such that $B \subseteq O$ and O is an IF generalized open set in X. Then $A \subseteq O$, since A is IF pre-semi closed, hence by lemma 3.2 $\operatorname{spcl}(B) \subseteq \operatorname{spcl}(\operatorname{spcl}(A)) = \operatorname{spcl}(A) \subseteq O$. Hence, B is an IF pre-semi closed in X.

Definition 3.2 An IF set A in an IF topological space (X, τ) is called an IF presemi open if and only if its complement A^c is IF pre-semi closed.

Theorem 3.7 An IF set A in an IF topological space (X, τ) is called an IF presemi open if $F \subseteq spint(A)$ whenever $F \subseteq A$ and F is IF generalized closed set in X.

Proof. Let an IF set A in an IF topological space (X,τ) is IF pre-semi open and F is an IF generalized closed set in X such that $F \subseteq A$. Then $A^c \subseteq F^c$, where A^c is IF pre-semi closed and F^c is an IF generalized open set in X. Hence from definition 3.1 spcl $(A^c) \subseteq F^c$. Hence $(F^c)^c \subseteq (\text{spcl}(A^c))^c$. That is $F \subseteq \text{spint}(A^c)^c = \text{spint}(A)$.

Theorem 3.6 Let A be an IF pre-semi closed set in an IF topological space (X, τ) . If B is an IF set in X such that spint $(A) \subseteq B \subseteq A$, then B is also IF pre-semi open.

Proof Let B be an IF set in an IF topological space (X,τ) such that $F \subseteq B$ and F is IF generalized closed set in X. Then $F \subseteq A$, since A is IF pre-semi closed, hence $F \subseteq \text{spint}(A)$. Therefore $F \subseteq \text{spint}(A) \subseteq B$. Hence, B is an IF pre-semi open in X.

4 Pre-Semi-Separation Axioms

Definition 4.1 An IF topological space (X, τ) is said to be IF pre-semi $T_{1/2}$ space if every IF pre-semi closed set in X is IF semi-pre closed set in X.

Theorem 4.1 Every IF semi-pre $T_{1/2}$ space is an IF pre-semi $T_{1/2}$ space.

Proof. Let (X,τ) be an IF semi-pre $T_{1/2}$ space and A be an IF pre-semi closed set in X. Now by theorem 3.2 every IF pre-semi closed set is an generalized semi pre closed set in X. Hence, A is an generalized semi pre closed set. in X and consequently A is IF semi-pre closed set in X. Thus (X,τ) is IF pre- semi $T_{1/2}$ space.

Definition 4.2 An IF topological space (X, τ) is said to be IF semi- pre $T_{1/3}$ space if every generalized semi pre closed set in X is IF pre- semi closed set in X.

Theorem 4.2 Every IF semi-pre $T_{1/2}$ space is an IF semi- pre $T_{1/3}$ space.

Proof. Let (X,τ) be an IF semi-pre $T_{1/2}$ space and A be an generalized semi pre closed set in X. Then, A is IF semi-pre closed set in X. Now by theorem 3.1 every IF semi-pre-closed set in X is IF pre-semi closed. Thus (X,τ) is IF semi- pre $T_{1/3}$ space.

Definition 4.3 An IF topological space (X, τ) is said to be IF pre-semi $T_{3/4}$ space if every IF pre-semi closed set in X is IF pre-closed set in X.

Theorem 4.3 Every IF pre-semi $T_{3/4}$ space is an IF pre-semi $T_{1/2}$ space.

Proof. Let (X,τ) be an IF pre-semi $T_{3/4}$ space and A be an IF pre-semi closed set in X. Then A is IF pre-closed set in X. Now every IF pre-closed set in X is IF semi-pre-closed set in X. Hence, A is an IF semi-pre-closed set in X. Thus (X,τ) is IF pre-semi $T_{1/2}$ space.

References

- [1] K. Atanasov, Intuituionistic fuzzy sets, *ITKR*, s session, Sofia, VII(1983) (in Bulgaria).
- [2] K. Atanasov, Intuituionistic fuzzy sets, *Fuzzy Sets and Systems*, 20(1986), 87-96.
- [3] D. Coker, An introduction to IFT spaces, *Fuzzy Sets and Systems*, 88(1) (1997) 81-89.
- [4] M. Caldas and R.K. Saraf, Preserving Fuzzy sg-Closed Sets, *Proyeccions*, 20(2) (2001), 127-138.
- [5] H. Gurcay, D. Coker and A.H. Es, On fuzzy continuity in intuitionistic fuzzy topological spaces, The Journal of Fuzzy Mathematics,5(2)(1997), 365-378.
- [6] S. Murugesan, P. Thangavelu, Fuzzy pre-semi-closed sets, *Bulletin of the Malayasian Mathematical Sciences Society*, (2) 31(2) (2008), 223-232.
- [7] R. Santhi, and D. Jayanthi, Intuituioistic fuzzy generalized semi-pre closed sets(accepted)
- [8] S.S. Thakur and J. Bajpai, Intuituionistic fuzzy sg-continuous mappings, *International Journal of Applied Mathematical Analysis and Applications*, 5(1) (2010),45-51.
- [9] S.S. Thakur and R. Chaturvedi, Generalized closed set in intuitionistic fuzzy Topology, *The Journal of Fuzzy Mathematics*, 16(3) (2008)559-572.
- [10] S.S. Thakur and R. Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, *Studii Si Cercetari Stiintifice*, Universitateta Din Bacau, Seria: Matematica, 16(2006), 252-272.