

Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp.10-15 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

The Relationship between M-Weakly Compact Operator and Order Weaky Compact Operator

Kazem Haghnejad Azar¹ and Mina Matin Tazekand²

^{1,2}Department of Mathematics, University of Mohaghegh Ardabili Ardabil, Iran
¹E-mail: haghnejad@uma.ac.ir
²E-mail: minamatin1368@yahoo.com

(Received: 12-6-13 / Accepted: 21-7-13)

Abstract

In this note, we will show that the class of order weakly compact operators bigger than the class of M-weakly compact operators. Under a new condition, we will show that each M-weakly compact operator is an order weakly compact operator. We will show that, if Banach lattice E be an AM-space with unit and has the property (b), then the class of M-weakly compact operators from E into Banach space Y coincides with that of order weakly compact operators from E into Y. Also we establish some relationship between M-weakly compact operators and weakly compact operators and b-weakly compact operators and order weakly compact operators.

Keywords: Banach lattice, order weakly compact operator, M-weakly compact operator, b-weakly compact operator, AM-space.

1 Introduction

The class of order weakly compact operators bigger than the class of M-weakly compact operators. In this note by combining Theorems 3.1 and 3.2, we will show that, if Banach lattice E is an AM-space with unit and has the property (b), then the class of M-weakly compact operators on E coincides with that of order weakly compact operators on E.

A vector lattice E is an ordered vector space in which $\sup(x, y)$ exists for every $x, y \in E$. A sequence $\{x_n\}$ in a vector lattice E is said to be disjoint whenever

 $n \neq m$ implies | x_n | \wedge | x_m |= 0. A vector lattice E is called σ -Dedekind complete whenever every countable subset that is bounded from above has a supremum. A subset B of a vector lattice E is said to be solid if it follows from $|y| \leq |x|$ with $x \in B$ and $y \in E$ that $y \in B$. A solid vector subspace of a vector lattice E is refferd to as an ideal. Let E be a vector lattice, for each $x, y \in E$ with $x \leq y$, the set $[x, y] = \{z \in E : x \leq z \leq y\}$ is called an order interval. A subset of E is said to be order bounded if it is included in some order interval. If E is a vector lattice, we denote by E^{\sim} its order dual. Recall from [2] that a subset A of a vector lattice E is called b-order bounded in E if it is order bounded in the order bidual $(E^{\sim})^{\sim}$. A vector lattice E is said to have property (b) if $A \subset E$ is order bounded whenever A is b-order bounded in E. A Banach lattice is a Banach space $(E, \| \cdot \|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \leq |y|$, we have $||x|| \leq ||y||$. If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice. A norm $\| \cdot \|$ of a Banach lattice E is order continuous if for each net (x_{α}) such that $x_{\alpha} \downarrow 0$ in E, the net (x_{α}) converges to 0 for the norm $\| \cdot \|$. A Banach lattice E is said to be an AM-space if for each $x, y \in E$ such that $\inf(x, y) = 0$ we have $||x + y|| = \max\{||x||, ||y||\}$. The Banach lattice E is an AL-space if its topological dual E' is an AM-space. A Banach lattice E is said to be a KB-space whenever every increasing norm bounded sequence of E^+ is norm convergent.

We will use the term operator $T: E \to F$ between two Banach lattices to mean a linear mapping.

2 Main Result of Relationship

Definition 2.1 Let $T : X \to Y$ be an operator between two Banach spaces. Then, T is said to be weakly compact whenever T carries the closed unit ball of X onto a relatively weakly compact subset of Y, the collection of weakly compact operators will be denoted by W(X, Y).

Definition 2.2 A continuous operator $T : E \to Y$ from a Banach lattice into a Banach space is said to be M-weakly compact whenever $\lim_n || Tx_n || = 0$ holds for every norm bounded disjoint sequence $\{x_n\}$ of E, denoted by $W_M(E, Y)$.

Definition 2.3 A continuous operator $T : E \to Y$ from a Banach lattice into a Banach space is said to be b-weakly compact whenever T carries each b-order bounded subset of E into relatively weakly compact subset of Y, denoted by $W_b(E, Y)$. **Definition 2.4** Finaly, a continuous operator $T : E \to Y$ from a Banach lattice into a Banach space is order weakly compact whenever T[0,x] is a relatively weakly compact subset of Y for each $x \in E^+$, denoted by $W_o(E,Y)$.

Theorem 2.5 For a Banach lattice E, the following statements are equivalent:

(1) E has order continuous norm.

- (2) If $0 \le x_n \uparrow \le x$ holds in E, then $\{x_n\}$ is norm couchy sequence.
- (3) E is σ -Dedekind complete, and $x_n \downarrow 0$ in E implies $||x_n|| \downarrow 0$.

(4) E is an ideal of E''.

(5) Each order interval of E is weakly compact.

Proof. (1) \Rightarrow (2) Let $0 \le x_{\alpha} \uparrow \le x$ hold in E, and let $\varepsilon > 0$. By Lemma 12.8 of [1] there exists a net $(y_{\lambda}) \subseteq E$ with $y_{\lambda} - x_{\alpha} \downarrow 0$. Thus, there exists λ_0 and α_0 such that $|| y_{\lambda} - x_{\alpha} || < \varepsilon$ holds for all $\lambda \ge \lambda_0$ and $\alpha \ge \alpha_0$. From the inequality

$$|| x_{\alpha} - x_{\beta} || \leq || x_{\alpha} - y_{\lambda_0} || + || x_{\beta} - y_{\lambda_0} ||,$$

we see that $||x_{\alpha} - x_{\beta}|| < 2\varepsilon$ holds for all $\alpha, \beta \geq \alpha_0$. Hence, (x_{α}) is a norm couchy net.

 $(2) \Rightarrow (3)$ It follows immediately from Theorem 11.2(2) of [1].

(3) \Rightarrow (1) Let $x_{\alpha} \downarrow 0$. If (x_{α}) is not a norm Cauchy net, then there exist some $\varepsilon > 0$ and a sequence $\{\alpha_n\}$ of indices with $\alpha_n \uparrow$, and $|| x_{\alpha_n} - x_{\alpha_{n+1}} || > \varepsilon$ for all n. Since E is σ -Dedekind complete, there exists some $x \in E$ with $x_{\alpha_n} \downarrow x$. Now from our hypothesis, we see that $\{x_{\alpha_n}\}$ is a norm Cauchy sequence, which contradicts $|| x_{\alpha_n} - x_{\alpha_{n+1}} || > \varepsilon$. Thus, (x_{α}) is a norm Cauchy net, and so (x_{α}) is norm convergent to some $y \in E$. By Theorem 11.2(2) of [1] we see that y = 0, and so $|| x_{\alpha} || \downarrow 0$ holds.

The other equivalences follow easily from Theorems 11.13 and 11.10 of [1].

Theorem 2.6 Let E be a Banach lattice. E is a KB-space if and only if $I: E \to E$ is a b-weakly compact operator.

Proof. Let E be KB-space and A be an b-order bounded subset of E. Since E by Proposition 2.1 of [2] has property (b), A is an order bounded subset of E and thus there exists some $x \in E^+$ for which $A \subset [-x, x]$. Then, by Theorem 2.5, [-x, x] and hence A is a relatively weakly compact subset of E.

Conversely, let $I : E \to E$ be b-weakly compact and $\{x_n\}$ be an increasing, norm bounded sequence in E^+ . We wish to show $\{x_n\}$ is norm convergent. Let us define $x'' : (E^+)' \to R$ by $x''(f) = \lim_n f(x_n)$ for each $f \in (E^+)'$. x'' is additive on $(E^+)'$ and extends to an element of $(E^+)''$ which we shall also denote by x''. We have $0 \le x_n \le x''$ in E'' for each n. Therefore, $\{x_n\}$ is an b-order bounded subset of E. By b-weak compactness of I, we obtain a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x$ in $\sigma(E, E')$ for some $x \in E$. The Relationship between M-Weakly Compact Operator...

Since $\{x_n\}$ is increasing, $x = \sup_k x_{n_k}$ and we have $x = \sup_n x_n$. Thus $x_n \to x$ in $\sigma(E, E')$. $x - x_n \downarrow 0, x - x_n \to 0$ in $\sigma(E, E')$ now yield $x - x_n \to 0$ in the norm topology.

Theorem 2.7 M-weakly compact operators are weakly compact operators. Proof. Assume first that $T: E \to Y$ is an M-weakly compact operator. Denot by U and V the Closed unit balls of E and Y, respectively, and let $\varepsilon > 0$. By Theorem 18.9(1) of [1], there exists some $u \in E^+$ such that $|| T(|x|-u)^+ || < \varepsilon$ holds for all $x \in U$, and consequently from the identity $|x| = |x| \wedge u + (|x|-u)^+$ we see that

$$T(U^+) \subseteq T[0,u] + \varepsilon V. \quad (*)$$

On the other hand, if $\{u_n\}$ is disjoint sequence of [0, u], then it follows from our hypothesis that $\lim || Tu_n || = 0$, and thus by Theorem 18.1 of [1] the set T[0, u] is relatively weakly compact. Now (*) combined with Theorem 10.17 of [1] shows that $T(U^+)$ (and hence T(U)) is relatively weakly compact, and so T is a weakly compact operator.

3 Main Result of Equality

Recall from [1] that Banach space X has the Dunford-pettis property whenever $x_n \to 0$ in $\sigma(X, X')$ and $x'_n \to 0$ in $\sigma(X', X'')$ imply $\lim x'_n(x_n) = 0$, and we say that an operator $T: X \to Y$ between two Banach spaces is a Dunford-pettise operator whenever $x_n \to 0$ in $\sigma(X, X')$ implies $\lim ||Tx_n|| = 0$.

Theorem 3.1 Let T is an operator from AM-space with unit E into Banach space Y. Then the following assertion are equivalent:

(1) T is M-weakly compact.

- (2) T is weakly compact.
- (3) T is Dounford-pettis.
- (4) T is b-weakly compact.

Proof. (1) \Rightarrow (2) Follows from Theorem 2.6.

 $(2) \Rightarrow (3)$ From Theorem 19.6 Of [1] E has the Duoford-pettis property. Then from Theorem 19.4 of [1] it follows that every weakly compact operators from E which has the Duonford-pettis property into an arbitrary Banach space Y is a Duonford-pettis operator.

 $(3) \Rightarrow (1) E'$ is an AL-space so it will be KB-space and then E' has the order continuous norm. Then from Theorem 3.7.10 of [5] every Duonford-pettis operator from E into Y is a M-weakly compact operator. (2) \Rightarrow (4) Obvious.

 $(4) \Rightarrow (2)$ Since E is AM-space with unit so from Theorem 12.20 of [1] its closed unit ball is like an order interval. So we have the result.

Theorem 3.2 Let E is a Banach lattice with property (b). Then every order weakly compact operator from E into Banach space Y is a b-weakly compact operator.

Proof. Let E has the property (b) and T from E into Banach space Y is order weakly compact operator and A is a b-order bounded subset of E. Since E has the property (b) we can choose $x \in E^+$ with $A \subseteq [-x, x]$. Therefore

$$\overline{T(A)}^w \subseteq \overline{T([-x,x])}^w.$$

Therefor by hypothesis, we will result.

4 Conclusion

In the following, we establish some relationships between some class of operators.

i) Each weakly compact operator from Banach lattice E into Banach space Y is b-weakly compact operator.

ii) Each b-weakly compact operator from Banach lattice E into Banach space Y is order weakly compact.

iii) Now by Theorem 2.7, i, ii, we will have

$$W_M(E,Y) \subset W(E,Y) \subset W_b(E,Y) \subset W_o(E,Y) \quad (**)$$

iv) Since the norm of c_0 is order continuous, by Theorem 2.5, [0, x] is weakly compact in c_0 , then $I : c_0 \to c_0$ is order weakly compact. But c_0 is not KB-space, then by Theorem 2.6, $I : c_0 \to c_0$ is not b-weakly compact operator. Therefore, by (**) every order weakly compact operator is not M-weakly compact and weakly compact operator.

v) Since $L_1([0,1])$ is a KB-space therefor $I : L_1([0,1]) \to L_1([0,1])$ is b-weakly compact operator. But its not weakly compact operator. By (**) every b-weakly compact operator is not M-weakly compact operator.

vi) By theorems 19.6 and 17.5 of [1], operator $T: l^1 \to l^\infty$ defined by

$$T(\alpha_1, \alpha_2, \ldots) = \left(\sum_{n=1}^{\infty} \alpha_n, \sum_{n=1}^{\infty} \alpha_n, \ldots\right) = \left[\sum_{n=1}^{\infty} \alpha_n\right] (1, 1, 1, \ldots)$$

is weakly compact. The sequence $\{e_n\}$ of the standard unit vectors is a norm bounded disjoint sequence of l^1 satisfying $Te_n = (1, 1, 1, ...)$ for each n. This follow that T is not M-weakly compact. Then every weakly compact is not M-weakly compact.

vii)If E is an AM-space with unit and has the property (b), by Theorems 3.1 and 3.2 we will have

$$W_o(E, Y) = W_b(E, y) = W_M(E, Y) = W(E, Y).$$

References

- [1] C.D. Aliprantis and O. Burkinshow, *Positive Operators*, Original, (1985).
- [2] S. Alpay, B. Altin and C. Tonyali, On property (b) of vector lattices, *Positivity*, 7(1-2) (2003), 135-139.
- [3] B. Aqzzouz, A. Elbour and J. Hmichane, The duality problem for the class of b-weakly compact operators, *Positivity*, In Press.
- [4] B. Aqzzouz, A. Elbour, M. Moussa and J. Hmichane, Some characterizations of b-weakly compact operators, *Math Reports*, 12(62) (2010), 315-324.
- [5] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer-Berlin, (1991).