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Abstract

In 1969, Kannan [1] proved a new mapping which improved the Banach
Contraction theorem. The purpose of this paper is to generalize the Kannan
mapping and also to prove it, in space of fractals.
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1 Introduction

Benoit B. Mandelbrot [3], in his book �The Fractal Geometry of Nature�, in-
troduce the fractal geometry which explain many details of nature. Fractal
geometry has been found to be a very e�ective mean for modeling the in�-
nite details found in nature. In 1985, Barnsley and Demko [7] gave the idea
of Iterated Function Systems or IFS. Iterated Function Systems provide a
convenient framework for the description, classi�cation and communication of
fractals. More precisely the most popular �fractal-based� algorithms for both
representation and compression of computer images have involved some im-
plementation of the method of Iterated Function Systems (IFS) on complete
metric spaces. The basic concept of IFS is usually attributed to Hutchinson
[6]. However Vrscay [5] have traced the idea back to Williams [4], who studied
�xed point of in�nite composition of contractive maps. Fractals are discovered
as the �xed points of certain set maps. In 1994, Groller [13] Showed that use
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of nonlinear function incrases the �exibility when de�ning an IFS. Study in
this �eld was further carried on by Frame and Angers [11].

In this paper, the results introduced by Kannan in metric space, has been
generalized to pair of map and at the same time the metric space has been
replaced by space of fractals. We generalize the notion of �Kannan Iterated
Function System� (KIFS) [2].

2 Iterated Function System

A mapping T : X → X on a complete metric space (X, d) is called contractive
or a contraction mapping if there is a constant 0 ≤ s < 1 such that

d(T (x), T (y)) ≤ sd(x.y), ∀x, yεX (1)

Any such number s is called a contractivity factor for T. Polish mathemati-
cian S. Banach [14]. Proved a very important result, regarding contraction
mapping in 1922, known as Banach Contraction principle.

Theorem 2.1 Let T : X → X be a contraction mapping on a com-
plete metric space (X, d) with contractivity factor ′s′ . Then T possesses
exactly one �xed point x∗εX and moreover for any point xεX, the sequence
{T on(x) : n = 0, 1, 2....}converges to x∗. That is, limn→∞ T

on(x) = x∗, for each
xεX.

IFS generally employ contractive maps over a complete metric space (X, d)
where the Banach's celebrated result mentioned above guarantees the existence
and uniqueness of the �xed point knowns as �attractor�. The main property
of contraction mapping which is used in IFS is given by the following lemma:

Lemma 2.2 Let T : X → X be a contraction mapping on the complete
metric space (X, d) with contractivity factor ′s′. Then T is continuous.

We now discuss certain de�nitions required to understand Iterated Function
System. Let (X, d) be a complete metric space and let (H(X), h(d)) denote
the corresponding space of nonempty compact subsets, with Hausdor� metric
h(d).

De�nition 2.3 Let (X, d) be a complete metric space, xεX and BεH(X).
Let d (x,B) be the distance from the point x to the set B, where

d(x,B) = min{d(x, y) : yεB}.
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De�nition 2.4 Let (X, d) be a complete metric space, and A,BεH(X).
Let d (A,B) be the distance between the Set A and the Set B, where

d(A,B) = max{d(x,B) : xεA}.

De�nition 2.5 Let (X, d) be a complete metric space. Then Hausdor�
distance between two points A,BεH(X) is de�ned as

h(A,B) = d(A,B) ∨ d(B,A)

Then the function h(d) is the metric de�ned on the space H(x).

Throughout this paper the notation u ∨ ϑ means the maximum and uΛϑ
denotes the minimum of the pair of real numbers u and ϑ.

Lemma 2.6 Let T : X → X be a contraction mapping on the complete
metric space (X, d). Then T maps H(X) into itself.

Lemma 2.7 Let T : X → X be a contraction mapping on the complete
metric space (X, d) with contractivity factor 's'. Then T : H(X) → H(X)
de�ned by

T (B) = {T (x) : xεB} ∀BεH(X)

is a contraction mapping on (H(X), h(d)) with contractivity factor s.

Lemma 2.8 Let (X, d) be a complete metric space. Let {Tn : n = 1, 2, .....N}
be contraction mappings on (H(X), h). Let the contractivity factor for Tn be
denoted by ′s′n for each n. De�ne W : H(X)→ H(X)by

W (B) = T1(B)∪T2(B)∪−−−∪TN(B)

= ∪Nn=1Tn(B) ∀BεH(X)
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Then W is a contraction mapping with contractivity factor s = max{sn :
n = 1, 2,−−−, N}.

In IFS, the contractivity maps act on the members of Hausdor� space, i.e.
the compact subsets of X. Thus, an Iterated Function System is de�ned as
follows:

A (hyperbolic) Iterated Function System consists of a complete metric
space (X, d) together with a �nite set of continuous contraction mappings
Tn : X → X with respective contractivity factors sn for n = 1, 2....N . The
notation for the IFS is {X, Tn, n = 1, 2....N}and its contractivity factor if
s = max{sn : n = 1, 2, ......N}. Thus, the following theorem was given by
Barnsley[12].

Theorem 2.9 Let {X,Tn, n = 1, 2, ....N}be an IFS with contractivity factor
′s′. Then the transformation W : H(X)→ H(X) de�ned by

W (B) = ∪Nn=1Tn(B) for all BεH(X),is a contractivity mapping on the
complete metric space (H(X), h(d)) with contractivity factor s.

That is

h(W (B),W (C)) ≤ sh(B,C)∀B,CεH(X)

Its unique �xed point, which is also called an attractor, AεH(X) satis�es
the condition

A = W (A) = ∪Nn=1Tn(A),

and is given by A = limn→∞W
on(B) for any BεH(X).W on denotes the

n-fold composition of W.

The contraction mappings used in IFS are typically a�ne maps. The fun-
damental property of an iterated function system is that it determines a unique
attractor, which is usually a fractal. For a simple example, take F to be the
middle third Cantor set. Let S1, S2 : R→ R be given by

S1(x) = 1
3
x ; S2(x) = 1

3
x+ 2

3
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Then S1(F ) and S2(F ) are just the left and right 'halves' of F , so that F =
S1(F )∪S2(F ) ; thus F is an attractor of the IFS consisting of the contractions
{S1, S2}, the two mappings which represent the basic self-similarities of Cantor
set.

3 Generalized K-Iterated Function System

In this section, we shall try to explore the possibility of improvement in IFS by
replacing contraction condition by a more general condition known as Kannan
condition.Kannan [1] introduced a mapping which was an improvement over
contraction mapping, known as kannan mapping de�ned as follows :

A mapping T on a metric space (X, d) is called Kannan, if there ex-
ists α, 0 < α < 1

2
, such that d(T (x), T (y)) ≤ α[d(x, T (x)) + d(y, T (y))]

(2)

for all x, yεX.Kannan proved that if X is complete then every Kannan
mapping has a �xed point, let us name α as K-contractivity factor of Kannan
mapping T.

On the basis of de�nition of (hyperbolic) Iterated Function System given
by Barnsley[12], we now introduce Generalized K-Iterated Function System;

A Generalized K- Iterated Function System consists of a complete metric
space (X, d) together with a �nite pair set of Kannan mappings P2n+1, Q2n+2 :
X → X with respective K- contractivity factors α2n+1, α2n+2 for each n =
1, 2, ......., N , where α = max{α2n+1, α2n+2 : n = 1, 2, ........, N}

First of all we state and prove the two propositions which will establish
a relation between pair of Kannan mapping P 2m+1, Q2m+2 : m = 1, 2, ......, N
with respective K-contractivity factors α2m+1, α2m+2 for m = 1, 2, ......., N and
uniqueness of common �xed point of P,Q if it exists , respectively.

Proposition 3.1 Let P,Q : X → X be pair of Kannan mapping with K-
contractivity factors ′α′1,

′α′2 respectively where
′α′ = max{α1, α2}, on a metric

space (X, d) and xεX. Then P and Q satisfy the following conditions:

d(P 2m+1(x), P 2m+2(x)) ≤ ( α
1−α)2m+1d(x, P (x)) and

d(Q2m+2(x), Q2m+3(x)) ≤ ( α
1−α)2m+2d(x,Q(x)).

Moreover, limm→∞d(P 2m+1(x), P 2m+2(x)) = 0
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and limm→∞d(Q2m+2(x), Q2m+3(x)) = 0.

Proof.

Since P is a Kannan contraction mapping , we have

d(P 2m+1(x), P 2m+2(x)) ≤ α(d(P 2m(x), P 2m+1(x))+d(P 2m+1(x), P 2m+2(x))).

It follows that d(P 2m+1(x), P 2m+2(x)) ≤ α
1−αd(P 2m(x), P 2m+1(x))

≤ α
1−α [ α

1−αd(P 2m−1(x), P 2m(x))]

≤ ( α
1−α)2m+1d(x, P (x)).

Taking limit as m→∞, we have

limm→∞d(P 2m+1(x), P 2m+2(x)) ≤ limm→∞( α
1−α)2m+1d(x, P (x)).

Therefore, limm→∞d(P 2m+1(x), P 2m+2(x)) = 0, since α
1−α < 1.

Similarly, it can be established that for Kannan mapping Q;

limm→∞d(Q2m+2(x), Q2m+3(x)) = 0.

Proposition 3.2 Let P,Q : X → X be a pair of Kannan mapping ,with K-
contractivity ′α′1,

′α′2 respectively where ′α′ = max{α1, α2}, on a metric space
(X, d).If P and Q possesses a common �xed point, then it is unique.

Proof.

On the contrary, let x∗ and y∗be two common �xed points of P and Q.Then
x∗ = P (x∗);x∗ = Q(x∗) for every x∗εX and y∗ = P (y∗); y∗ = Q(y∗) for every
y∗εX, then

d(x∗, y∗) = d(Q(x∗), Q(y∗))
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= d(P (x∗), P (y∗))

≤ α[d(x∗, P (x∗)) + d(y∗, P (y∗))]

= α[d(x∗, x∗) + d(y∗, y∗)]

= 0

Therefore x∗ = y∗.

Using Propositions 3.1 and 3.2 we now prove the following theorem which
is an extension of contraction mapping theorem for pair of Kannan mapping .

Theorem 3.3 Let P,Q : X → X be a pair of Kannan mapping , with K-
contractivity factors ′α′1,

′ α′2 respectively and ′α′ = max{α1, α2}, on a complete
metric space (X, d). Then P and Q possesses common �xed point x∗εX and
moreover for any point xεX, the sequences {X,P 2n+1(x), n = 0, 1, 2........} and
{X,Q2n+2(x), n = 0, 1, 2, .....} converges to x∗.

That is limn→∞P
2n+1(x) = x∗ = limn→∞Q

2n+2(x) for each xεX.

Proof.

Let xεX. Since P,Q be pair of Kannan mapping with K-contractivity factor
′α′1,

′ α′2 respectively and α = max{α1, α2}, we have d(P 2m+1(x), P 2m+2(x)) ≤
( α

1−α)2m+1d(x, P (x))∀m = 0, 1, 2, ........... and
d(Q2m+2(x), Q2m+3(x)) ≤ ( α

1−α)2m+2d(x,Q(x))∀m = 0, 1, 2........
Then , for any �xed xεX, we get

d(P 2n+1(x), P 2m+1(x)) ≤ s(2m+1)Λ(2n+1)d(x, P |(2n+1)−(2m+1)|(x)) (3)

and d(Q2n+2(x), Q2m+2(x)) ≤ s(2m+2)Λ(2n+2)d(x,Q|(2n+2)−(2m+2)|(x)) (4)

where m,n=0,1,2,.......... and s := α
1−α .In particular , let us take k =

|(2n+1)-(2m+1)|, for k =0,1,2,........
we have d(x, P k(x)) ≤ d(x, P (x))+d(P (x), P 2(x))+......................+d(P k−1(x), P k(x))
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≤ (1 + s+ s2 + ..........+ sk−1)d(x, P (x))

≤ (1−sk
1−s )d(x, P (x)).

On substituting in eqution (3), we obtain d(P 2n+1(x), P 2m+1(x)) ≤ s(2m+1)Λ(2n+1)(1−sk)

1−s d(x, P (x)),it
immediately follows that {P 2n+1(x)}∞n=0 is a Cauchy sequence .Since X is a
complete metric space , this Cauchy sequence has a limit x∗εX and we have
limn→∞P

2n+1(x) = x∗. (5)

Now to prove that x∗ is a �xed point of P, we see that

d(x∗, P (x∗)) ≤ d(x∗, P 2n+1(x)) + d(P 2n+1(x), P (x∗))P 2n+1(x)).

≤ d(x∗, P 2n+1(x)) + α[d(P 2n(x), P 2n+1(x)) + d(x∗, P (x∗))].

+d(x∗, P (x∗))].

Taking limit as n→∞, on considering equation (5) and proposition(3.1),
we get

d(x∗, P (x∗)) ≤ (1 + α)d(x∗, P (x∗)).

Hence x∗ = P (x∗).By proposition (3.2),x∗is a unique.

Similarly, we can prove that limn→∞Q
2n+2(x) = x∗ and x∗ = Q(x∗).

That is limn→∞P
2n+1(x) = x∗ = limn→∞Q

2n+2(x)for each xεX.

This completes the proof .

Lemma 3.4 Let P,Q : X → X be a pair of continuous Kannan mapping
on the metric space (X, d) with K-contractivity factor ′α′1,

′ α′2 respectively ,and
′α′ = max{α1, α2}.

Then P,Q : H(X) → H(X) de�ned by, P (B) = {P (x) : xεB}for every
BεH(x)and Q(B) = {Q(y) : yεB} for every yεH(x) are a Kannan mapping on
(H(X), h(d)) with contractivity factor ′α′.

Proof.
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SinceP is a continuous mapping , therefore by Lemma 2.6 and [12], P maps
H(X) into itself.

Now consider B,CεH(X).Then
h(P (B), P (C)) = d(P (B), P (C)) ∨ d(P (C), P (B)) ≤ α{[d(B,P (B)) +

d(C,P (C))] ∨ [d(C,P (C)) + d(B,P (B))]}

= α[d(B,P (B)) + d(C,P (C))]

≤ α[h(B,P (B)) + h(C,P (C))]

Therefore,

h(P (B), P (C)) ≤ α[h(B,P (B)) + h(C,P (C))].

Similarly it can be be established that for Kannan mapping Q; that is

h(Q(B), Q(C)) ≤ α[h(B,Q(B)) + h(C,Q(C))] .

This completes the proof.

Lemma 3.5 Let (X, d) be a metric space. Let pn, qn : n = 1, 2, ......, N be
pair of continuous Kannan mapping on (H(X), h(d)). Let the K-contractivity
factor for pn, qn be denoted by 'α2n+1','α2n+2' for each n, respectivly and α =
max{α2n+1, α2n+2 : n = 1, 2, ......, N}. De�ne P : H(X) → H(X) by P (B) =
p1(B) ∪ p3(B) ∪ ........ ∪ p

2N+1
(B)

P (B) = U2N+1
n=0 pn(B) for each BεH(X),

and Q : H(X)→ H(X) by Q(B) = q2(B) ∪ q4(B)...... ∪ q
2N+2

(B)

Q(B) = U2N+2
n=0 qn(B) for each BεH(X).

Then P and Q are pair of Kannan mapping with K-contractivity factor ′α′.

Proof.

We shall prove the theorem , using mathematical induction method and
the properties of metric h.On the basis of induction it is true for N=1.Now,
we demonstrate the fact for N=2.Let B,CεH(X), we have
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h(P (B), P (C)) = h(p1(B) ∪ p3(B), p1(C) ∪ p3(C))

≤ h(p1(B), p1(C)) ∨ h(p3(B), p3(C))

≤ α1[h(B, p1(B)) + h(C, p1(C))] ∨ α3[h(B, p3(B)) + h(C, p3(C))]

≤ (α1 ∨ α3)[{h(B, p1(B)) ∨ h(B, p3(B))}+ {h(C, p1(C)) ∨ h(C, p3(C))}]

= α[h(B, p1(B) ∪ p3(B)) + h(C, p1(C) ∪ p3(C))].

Therefore ,

h(P (B), P (C)) ≤ α[h(B,P (B) + h(C,P (C))].

By the condition of mathematical induction Lemma 3.5 is proved.

Similarly ;

h(Q(B), Q(C)) ≤ α[h(B,Q(B)) + h(C,Q(C))] for each B,CεH(X).

Thus, from all the above results and the de�nition of Gneralized K-Iterated
Function System(GKIFS).We are in the position to present the following the-
orem for GKIFS.

Theorem 3.6 Let {X, (po), p1, p3, ............p2N+1}, and {X, (qo), q2, q4, ............q2N+2},
where po, qo are the condensation mappings be a Generalized K-Iterated Func-
tion System with K-contractivity factor ′α′2n+1,

′ α′2n+2 respectively for each n
and α = max{α2n+1, α2n+2}.Then the transformation P : H(X) → H(X)
de�ned by P (B) = U2N+1

n=0 pn(B) for all BεH(X) and the transformation Q :
H(X)→ H(X) de�ned by Q(B) = U2N+2

n=0 qn(B) for all BεH(X).

Then P and Q are pair of continuous Kannan Mapping on the complete
metric space (H(X), h(d)) with contractivity factor α.

Its common �xed point, AεH(X) satis�es the condition;
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A = P (A) = U2N+1
n=0 pn(A)

and A = Q(A) = U2N+2
n=0 qn(A)

and is given by, A = limn→∞P
o(2n+1)(B) = limn→∞Q

o(2n+2)(B) for any
BεH(X).

The common �xed point A,described above is called an attractor of the
GKIFS.
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