

Gen. Math. Notes, Vol. 11, No. 2, August 2012, pp. 12-19 ISSN 2219-7184; Copyright © ICSRS Publication, 2012 www.i-csrs.org Available free online at http://www.geman.in

# Degree of Approximation of Continuous Functions by (E, q) $(C, \delta)$ Means

Ratna Singh<sup>1</sup> and S.S. Thakur<sup>2</sup>

<sup>1</sup>Department of Applied Mathematics Gyan Ganga College of Technology, Jabalpur- 482003, India E-mail: ratnaverma8@gmail.com

<sup>2</sup> Department of Applied Mathematics Jabalpur Engineering College, Jabalpur-482011, India E-mail: samajh\_singh@rediffmail.com

(Received: 6-7-12/Accepted: 18-8-12)

#### Abstract

In this paper, we obtain a theorem on the degree of approximation of function belonging to the Lipschitz class by (E, q)  $(C, \delta)$  product means of its Fourier series. Our theorem provides the Jackson order as the degree of approximation.

Keywords: Cesaro matrix, Euler matrix, degree of approximation.

## **1** Definition and Notations

Let f be  $2\pi$  – periodic and L- integrable over  $[-\pi, \pi]$ . The Fourier series of f at a point x is given by

(1.1) 
$$f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

A function  $f \in Lip \alpha$  ( $0 < \alpha \leq 1$ ) if

(1.2) 
$$f(x+t) - f(x) = O(|t|^{\alpha}).$$

It may be observe that such functions are necessarily continuous. The degree of approximation of a function  $f: R \to R$  by a trigonometric polynomial  $t_n$  of order *n* is defined by Zygmund [12, p-114],

(1.3) 
$$||t_n - f|| = \sup\{|t_n(x) - f(x)|: x \in R\},\$$

Let  $\sum_{n=0}^{\infty} a_n$  be given infinite series with the sequence  $(s_n)$  of partial sums of its first (n+1)-terms. The Euler means of the sequence  $(s_n)$  are defined by

$$(E,q) = E_n^q = (q+1)^{-n} \sum_{k=0}^n \binom{n}{k} q^{n-k} s_k, \ (q \ge 0),$$

where  $E_n^0$  is defined to be  $s_n$ . If  $t_n \to s$ ; as  $n \to \infty$ , we say that  $(s_n)$  or  $\sum_{n=0}^{\infty} a_n$  is summable (E,q) (q > 0) to s or symbolically we write  $(s_n) \in s(E,q)$ , for q > 0. See Hardy [8, p-180] and for real and complex values of  $q \neq -1$ , see Chandra [5].

The sequence  $(s_n)$  is said to be summable  $(C, \delta)$   $(\delta > -1)$  to limit s if

$$\left(A_n^{\delta}\right)^{-1}\sum_{k=0}A_{n-k}^{\delta-1}s_k \to s \text{ as } n \to \infty$$

where  $A_n^{\delta}$  are the binomial coefficients. See Zygmund [12, p-76].

The (E,q) transform of the  $(C,\delta)$  transform defines the  $(E,q)(C,\delta)$  transform of the partial sums  $s_n$  of the series  $\sum_{n=0}^{\infty} a_n$ .

The transform  $(E,q)(C,\delta)$  reduces to (E,q) and  $(C,\delta)$  respectively for  $\delta = 0$  and q = 0.

Thus if

$$\left( E_{q} C_{\delta} \right)_{n} = \left( 1 + q \right)^{-n} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} \left( A_{\nu}^{\delta} \right)^{-1} \sum_{k=0}^{n} A_{\nu-k}^{\delta-1} S_{k} \to S \text{ as } n \to \infty .$$

Then the series  $\sum_{n=0}^{\infty} a_n$  is said to be summable by  $(E,q)(C,\delta)$  means or simply summable  $(E,q)(C,\delta)$  to s.

Let  $s_n(f;x)$  be the  $n^{\text{th}}$  partial sum of the series (1.1). Then  $(E,q)(C,\delta)$  mean of  $(s_n(f;x))$ , where q > 0 and  $\delta > -1$ , is given by

(1.4) 
$$\left( E_{q} C_{\delta} \right)_{n} \left( f; x \right) = \left( 1 + q \right)^{-n} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} \left( A_{\nu}^{\delta} \right)^{-1} \sum_{k=0}^{n} A_{\nu-k}^{\delta-1} s_{k} \left( f; x \right) \right)^{n}$$

We shall use the following notations for each  $x \in R$ :

(1.5) 
$$\emptyset_x(t) = f(x+t) + f(x-t) - 2f(x).$$

(1.6) 
$$D_n(t) = \frac{1}{2} + \sum_{k=1}^n \cos kt = \frac{\sin(2n+1)(t/2)}{2\sin(t/2)}$$

(1.7) 
$$K_{v}^{\delta}(t) = \left(A_{v}^{\delta}\right)^{-1} \sum_{k=0}^{\infty} A_{v-k}^{\delta-1} D_{k}(t) .$$

(1.8) 
$$A_{v}^{\delta} = \begin{pmatrix} v + \delta \\ v \end{pmatrix} \quad (\delta \ge 0).$$

### 2 Introduction

The degree of approximation of functions belonging to  $Lip \alpha$  ( $0 < \alpha \le 1$ ), by Cesàro means and Nörlund means have been discussed by a number of researchers like Lebesgue [9], Alexits [1] and Chandra [6].

In 1910, Lebesgue [9] proved the following :

Theorem A: If  $f \in C_{2\pi} \cap Lip\alpha$  ( $0 < \alpha \le 1$ ), then (2.1)  $||s_n(f) - f|| = O\{n^{-\alpha}logn\}.$ 

In 1961, Alexits [1, p-301] proved the following along with other results. **Theorem B:** If  $f \in C_{2\pi} \cap Lip\alpha$  ( $0 < \alpha \le 1$ ), then (2.2)  $0 \le x \le 2\pi |f(x) - \sigma_n^r(f;x)| = O\{n^{-\alpha}\}.$ where  $0 < \alpha < r \le 1$  and  $\sigma_n^r(f;x)$  is (C, r)-mean of  $s_n(f;x)$ .

The case  $\alpha = r = 1$  was proved by Bernstein [3].

In 1981, Chandra [6] proved the following : **Theorem C:** If  $f \in C_{2\pi} \cap Lip\alpha$  ( $0 < \alpha \le 1$ ), then (2.3)  $\|E_n^q(f) - f\| = O\{n^{-\alpha/2}\}$  (q > 0). The estimate in (2.3) was improved by Chandra [7].

In 2010, Nigam [10] obtained the following result on product summability method:

Theorem D: If  $f \in C_{2\pi} \cap Lip\alpha$  (0 <  $\alpha$  < 1), then (2.4)  $\|(EC)_n^1 - f\| = O\{(n+1)^{-\alpha}\}.$ 

and, Tiwari and Bariwal [11] proved the following for (E,1)(C,1) and (E,q)(C,1) means of its Fourier series.

Theorem E: If  $f \in C_{2\pi} \cap Lip\alpha$  ( $0 < \alpha < 1$ ), then (2.5)  $\|(EC)_n^{\alpha} - f\| = O\{(n+1)^{-\alpha}\}.$ 

In this paper we obtain a theorem on the degree of approximation of continuous functions by  $(E,q)(C,\delta)$  means of its Fourier series. This generalizes the result for (E,1)(C,1) and (E,q)(C,1) means.

**Theorem:** If  $f \in C_{2\pi} \cap Lip\alpha \ (0 < \alpha \le 1)$ , then

(2.6) 
$$\| (E_{q}C_{\delta})_{n}(f;x) - f(x) \| = \{ O\{(n+1)^{-\alpha} \}, \ (0 < \alpha < \delta \le 1) \ (0 < \alpha \le 1, \ \delta > 1) \\ O\{(n+1)^{-\alpha} \log (n+1) \}, \ (0 < \alpha \le \delta \le 1).$$

## 3 Lemmas

We shall use the following lemmas in the proof of the theorems:

Lemma 1[12, p-94]: For  $(0 < \delta \le 1)$ , n = 1, 2, 3 - --,  $0 < t \le \pi$ , (3.1)  $|K_{v}^{\delta}(t)| \le A_{\delta} v^{-\delta} t^{-(\delta+1)}$ , where  $A_{\delta}$  depending on  $\delta$  only.

**Lemma 2[4]:** For q > 0,

(3.2) 
$$\sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} (\nu+1)^{-1} = O\left\{ \frac{(1+q)^{n+1}}{(n+1)} \right\}.$$

**Lemma 3:** For  $\delta > 1$ ,

$$|K_{\nu}^{\delta}(t)| = O(1)\left(\frac{\delta}{(\nu+1)t^2}\right).$$

**Proof:** By (1.8), we have

$$\left|K_{v}^{\delta}\left(t\right)\right| \leq \left|\left(A_{v}^{\delta}\right)^{-1}\sum_{k=0}^{v}A_{v-k}^{\delta-1}D_{k}(t)\right|$$

$$\leq \frac{1}{2\sin(t/2)} \left(A_n^{\delta}\right)^{-1} \left| \sum_{k=0}^{\nu} A_{\nu-k}^{\delta-1} \sin(2k+1)(t/2) \right|$$

where  $A_{\nu-k}^{\delta-1}$  is monotonic decreasing then it gives maximum value at k=0, by Abel's lemma

$$\leq \frac{1}{2(t/\pi)} \left(A_n^{\delta}\right)^{-1} A_v^{\delta-1} \max_{0 \leq k' \leq v} \left| \sum_{k=k}^{v} \sin(2k+1)(t/2) \right|$$
$$\leq \frac{\delta}{(v+1)t^2}$$

This completes the proof of the Lemma.

## 4 **Proof of the Theorem**

The *nth* partial sum of the series (1.1) (see Zygmund [12, p-50]) is,

$$s_n(f;x) = f(x) + \frac{1}{\pi} \int_0^n \phi_x(t) D_n(t) dt$$

Then

$$\left( E_q C_\delta \right)_n (f; x) - f(x) = \frac{1}{\pi} \int_0^{\pi} \phi_x(t) (1+q)^{-n} \sum_{\nu=0}^n \binom{n}{\nu} q^{n-\nu} (A_{\nu}^{\delta})^{-1} \sum_{k=0}^n A_{\nu-k}^{\delta-1} D_k(t) dt$$

$$\left| \left( E_q C_\delta \right)_n (f; x) - f(x) \right| \le \frac{1}{\pi} \int_0^{\pi} |\phi_x(t)| \left| (1+q)^{-n} \sum_{\nu=0}^n \binom{n}{\nu} q^{n-\nu} (A_{\nu}^{\delta})^{-1} \sum_{k=0}^n A_{\nu-k}^{\delta-1} D_k(t) \right| dt$$

$$\le \frac{1}{\pi} \left\{ \int_0^{\frac{1}{(n+z)}} + \int_{\frac{1}{(n+z)}}^{\pi} \right\}$$

$$\le |I_1| + |I_2|, \text{ say.}$$
Now, for  $0 \le t \le -1$ 

Now, for  $0 \le t \le \frac{1}{(n+1)}$ , sinnt  $\le$  nsint, see Zygmund [12, p-91],

$$\begin{aligned} |I_1| &\leq \frac{1}{\pi} \int_{0}^{\frac{1}{(n+1)}} |\emptyset_x(t)| \left| (1+q)^{-n} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} (A_{\nu}^{\delta})^{-1} \sum_{k=0}^{n} A_{\nu-k}^{\delta-1} D_k(t) \right| dt \\ &\leq \frac{1}{2\pi} \int_{0}^{\frac{1}{(n+1)}} |\emptyset_x(t)| \left| (1+q)^{-n} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} (A_{\nu}^{\delta})^{-1} \sum_{k=0}^{n} A_{\nu-k}^{\delta-1} (2k+1) \right| dt ,\end{aligned}$$

We have by Boos [2, p-104],

$$\begin{split} |I_1| &\leq \frac{1}{2\pi} \int_{0}^{\frac{1}{(n+1)}} |\emptyset_x(t)| \, (1+q)^{-n} \sum_{\nu=0}^n \binom{n}{\nu} \, q^{n-\nu} (2\nu+1) dt \, , \\ &\leq \frac{1}{2\pi} \int_{0}^{\frac{1}{(n+1)}} |\emptyset_x(t)| \, (2n+1) dt \, , \end{split}$$

by (1.2), we have

$$= O(n+1) \int_{0}^{\frac{1}{(n+2)}} t^{\alpha} dt ,$$
$$= O(n+1)^{-\alpha}.$$

by **(1.8)**, we have

(4.1)

$$|I_2| \leq \frac{1}{\pi} \int_{\frac{1}{(n+1)}}^{\pi} |\emptyset_x(t)| (1+q)^{-n} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} |K_{\nu}^{\delta}(t)| dt$$

**Case-I**: for  $\delta \leq 1$ , by Lemma 1, we have

$$\begin{aligned} |I_2| &\leq \frac{1}{\pi} \int_{\frac{1}{(n+1)}}^{\pi} |\emptyset_x(t)| \, (1+q)^{-n} \sum_{\nu=0}^n \binom{n}{\nu} q^{n-\nu} A_\delta \, \nu^{-\delta} t^{-(\delta+1)} \, dt \\ &\leq \frac{A_\delta}{\pi} \int_{\frac{1}{(n+1)}}^{\pi} |\emptyset_x(t)| \, t^{-(\delta+1)} \, (1+q)^{-n} \sum_{\nu=0}^n \binom{n}{\nu} q^{n-\nu} (\nu+1)^{-\delta} \, dt \end{aligned}$$

by Lemma 2 and (1.2), we get

$$|I_2| = O((n+1)^{-\delta}) \int_{\frac{1}{(n+1)}}^{\pi} t^{\alpha - (\delta+1)} dt$$

**Condition I**: when  $\alpha = \delta$ , then

(4.2) 
$$\begin{aligned} |I_2| &= O((n+1)^{-\alpha}) \int_{\frac{1}{(n+1)}}^{\pi} t^{-1} dt \\ &= O((n+1)^{-\alpha}) \log(n+1). \end{aligned}$$

**Condition II**: when  $\alpha < \delta$ , then

$$\begin{split} |I_2| &= O\left((n+1)^{-\delta}\right) \left(t^{\alpha-\delta}\right)_{\overline{(n+1)}}^{\pi} \\ &= O\left((n+1)^{-\alpha}\right). \end{split}$$

Combining (4.2) and (4.3), we have

(4.3)

(4.4)  
$$\begin{aligned} O\{(n+1)^{-\alpha}\}, & (0 < \alpha < \delta \le 1) \\ |I_2| &= \{ \\ O\{(n+1)^{-\alpha} \log (n+1)\}, & (0 < \alpha \le \delta \le 1). \end{aligned}$$

**Case-II**: for  $\delta > 1$ , by Lemma 3, we have

$$|I_2| \leq \frac{1}{\pi} \int_{\frac{1}{(n+1)}}^{\pi} |\phi_x(t)| (1+q)^{-n} \sum_{\nu=0}^{n} {n \choose \nu} q^{n-\nu} \frac{\delta}{(\nu+1)t^2} dt$$

By Lemma 3 and (1.2), we have

$$= O((n+1)^{-1}) \int_{\frac{1}{(n+1)}}^{n} t^{\alpha-2} dt$$

(4.5) 
$$= O((n+1)^{-\alpha}).$$

Now, collecting the estimate (4.1), (4.4) and (4.5) we get required result (2.6).

## References

- [1] G. Alexits, Über die annäherung einer statigen function druch die cesaroschen mittel ihrer fourier-reihe, *Math. Ann.*, 100(1928), 264-277.
- [2] J. Boos, *Classical and Modern Methods in Summability*, Oxford Univ. Press, (2000).
- [3] S.N. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, *Mém. Royale Acad. Belgique*, 2(4) (1912), 1-103.
- [4] P. Chandra, On the absolute Euler summability of conjugate series of a fourier series, *Periodica Math. Hungarica*, 3(3-4) (1973), 189-194.
- [5] P. Chandra, On some summability methods, *Bollettino della Unione Mathematica Italiana*, 4(3)(12) (1975), 211-224.
- [6] P. Chandra, On the degree of approximation of continuous functions, *Comm. Fac. Sci. Univ. Ankara*, Sér A, 30(1981), 7-16.
- [7] P. Chandra, Degree of approximation of continuous functions, *Riv. Mat. Univ. Parma*, 4(14) (1988), 61-70.
- [8] G.H. Hardy, *Divergent Series*, Oxford, (1949).
- [9] H. Lebesgue, Sur la representation trigonométrique approchée des fonctions satisfaisant à une condition de Lipschitz, *Bull. Soc. Math. France*, 38 (1910), 184-210.

- [10] H.K. Nigam, Degree of approximation of functions belonging to  $Lip\alpha$  class and weighted  $(L^r, \varepsilon(t))$  class by product summability method, *Surveys in Mathematics and its Applications*, 5 (2010), 113-122.
- [11] S.K. Tiwari and C. Bariwal, Degree of approximation of function belonging to the Lipschitz class by almost (E, q)(C, 1) means of its fourier series, *Int. J. Math. Archive*, (1)(1) (2010), 2-4.
- [12] A. Zygmund, *Trigonometric Series, Vol. I (Second Edition)*, Cambridge University Press, London/New York, (1968).