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Abstract

The present article is devoted to the developement of the new seventh and
eighth order iterative methods for finding simple root of nonlinear equations.
The proposed methods are improvement of the existing sixth order method.
Numerical examples are also presented to support the theoretical results. Fi-
nally, we have compared new methods with some existing methods by basins of
attraction and observed that the proposed scheme is more efficient.

Keywords: Iterative method, Newton method, order of convergence, com-
putational efficiency, basin of attraction.

1 Introduction

Solving nonlinear equations arise in many branches of science and engineering,
is one of the most important problems in numerical analysis. The Newton’s
method is well known and most likely used method for solving nonlinear equa-
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tions. The iterative step of Newton’s method is given by [15]

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, 3, ....

provided f ′(xn) 6= 0. It’s a second order one point method and evaluated of one
derivative and one function for each iteration. Multipoint iteration methods
have overcome the theoretical limit of one point method regarding the conver-
gence order of computational efficiency and become the most powerfull tool to
find the roots of nonlinear equation, boundary value problem and system of
nonlinear equations etc. The maximum attainable computational efficiency of
multi-point without method is closely related to the hypothesis given by Kung
and Traub[10]. Kung and Traub have conjecture that the convegence order of
any multipoint method without memory with n-evaluation is not larger than
2n−1. A number of modification of Newton’s method with improved rate of
convergence are reported by previous researcher in [1, 3, 4, 13, 7, 17, 11] and
there in. Some of the scheme developed from Newton method by some authors
are given below:
In [14] Zhao et. al presented eighth order iterative formula as defined by

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)
G(µn),

xn+1 = zn −H(νn)
f(zn)

f [xn, zn] + f [yn, zn]− f [xn, yn]
, (1)

where µn = f(yn)
f(xn),

νn = f(zn)
f(xn)

, G(µn) and H(νn) are real valued function. In [5]
Babajee et. al. Presented a eighth order method as defined by

yn = xn −
f(xn)

f ′(xn)

(
1 +

(
f(xn)

f ′(xn)

)5
)
,

zn = yn −
f(yn)

f ′(xn)

(
1− f(yn)

f(xn)

)−2
,

xn+1 = zn −
f(zn)

f ′(xn)

(
1 +

(
f(yn)
f(xn)

)2
+ 5

(
f(yn)
f(xn)

)4
+ f(zn)

f(yn)

)
(

1− f(yn)
f(xn)

− f(zn)
f(xn)

)2 , (2)
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In[16] Lofti et. al. proposed a eighth order method as defined by,

yn = xn −
f(xn)

f ′(xn)
,

zn = yn −
f(yn)

f ′(xn)
g(sn),

xn+1 = zn −
f(zn)

f [zn, yn] + f [zn, xn, xn](zn − yn)
h(tn), (3)

where sn = f(yn)
f(xn)

, tn = f(zn)
f(xn)

, g(sn) and h(tn) are weight functions.

The main goal and motivation behind this work is to develop new numerical
methods with better computational efficiency with a fixed number of functional
evaluations per iteration using weight function technique. In view of above, in
this paper we have developed three point methods of order seven and optimal
order eight. We have also studied the dynamics of these methods and compare
it with the dynamics of methods given by Zhao et. al.[14], Babajee et. al.[5],
Lofti et. al. [16] and Mirzaee and Hamzeh [7] using fractal pictures.
The dynamical behaviour of iterative methods for some quadratic and cu-
bic polynomials gives valuable information about the convergence and sta-
bility of the methods. In order to do this, we recall some basic concept
[5, 8, 6, 9, 2] and we shortly present them. Let R : C → C be a ratio-
nal map on a Riemann sphere for z ∈ C define its orbit as the set orb(z) =
{z,R(z), R2(z), ....., Rn(z)....} are subsequently, a point z0 is a fixed point of
R if R(z0) = z0. A periodic point z0 of period m is such that Rm(z0) = z0
where m is the smallest such integer and also a point z0 is called attracting if
|R′(z0)| ≤ 1 repelling if |R′(z0)| ≥ 1|, and neutral if |R′(z0)| = 1|. The Julia
set of a non-linear map R(z) denoted J(R) is the closure of the set of its re-
pelling periodic points, the complement of J(R) is the Fatou set F (R), where
the basin of attraction of the different roots lie. Let us consider the function
f : D ⊆ R → R a scaler function and has a simple root on the interval D.
That is f(α) = 0 and f ′(α) 6= 0 in this neighbourhood of α for detailed one
can [15, 10, 12].

Definition 1.1. Let α ∈ R, xn ∈ R, n = 0, 1, 2, ... then the sequence {xn}
is said to converge to α if

Limn→∞|xn − α| = 0

If in addition, there exist a constant C > 0, an integer n0 > 0, and p > 0. s.
t. for all n > n0

|xn+1 − α| > C|xn − α|p,
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then {xn} is said to convergence to root α with order at least p. If p = 2 or 3,
the convergence is said to be quadratic or cubic, respectively. Here en = xn−α
is the error at the nth iterate and the relation

en+1 = Cepn +O(ep+1
n ), (4)

is called the error equation. the value of p is called the order of convergence.

Definition 1.2. The computational efficiency of an iterative method of or-
der p requiring n function evaluation per iteration is most frequently calculated
by Ostrowski-Traub’s efficiency index, which is defined by

E = n
√
p.

Definition 1.3. Suppose that xn−1, xn and xn+1 are three successive itera-
tions closer to the root α. Then computational order of convergence of methods
are approximated by

COC ≈ ln|(en+1)(en)−1|
ln|(en)(en−1)−1|

,

Now we summarize contents of the paper. In section.1, seventh and eighth
order scheme are developed and its convergence analysis are studied. In sec-
tion.2, the efficiency of the new proposed method is discussed and is compared
with the existing methods of similar nature. Some numerical example are con-
sidered in section 3 to show that the convergence behavior of methods and to
certify the theoretical results. Section 4 includes the concluding remarks.

1.1 Iterative Methods and Convergence Analysis

Consider the method presented by Mirzaee and Hamzee [7]

yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)

f(yn)− f(xn)

2f(yn)− f(xn)
,

xn+1 = zn −
f(zn)f(xn)(2f(yn)− f(xn))

f ′(xn)[4f(yn)f(xn)− 2f(yn)2 − f(xn)2]
. (5)

This mehtod includes three function and one derivative evaluation per itera-
tion. The order of convergence of this method is sixth and efficiency index of
above method is 1.565.

Method 1: We proposed the improved scheme by using weight function in
the second and last step in method [7] given as follows
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yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)
A(tn),

xn+1 = zn −
f(zn)

f ′(xn)
(B(tn) ∗H(un)). (6)

where tn = f(yn)
f(xn)

, un = f(zn)
f(yn)

. The following theorem demonstrates its conver-
gence analysis.

Theorem 1.4. Let α ∈ D be simple zero of a sufficiently differentiable
function f : D ⊂ R → R for an open interval D which contains x0 as an
initial approximation of α. Then the three-step iteration (6) has seventh order
convergence if

A(0) = 1, A′(0) = 1, A′′(0) = 4, A(3)(0) = 30, B(0) = 1, H(0) = 1, B′(0) = 2,
H ′(0) = 1, B′′(0) = 12 and its error equation is given by

en+1 =
1

24
c22c3(48c3 + c22(−144 + 4B(3)[0]− A(4)[0]))e7 +O[e]8.

Proof: Let α be the simple root of f(x) and f ′(α) 6= 0. We denote the
error equation at nth iteration has en = xn−α. We apply the Taylor expansion
in each term involved in (6) around the simple root, First we have

f(xn) = f ′(α)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n], (7)

where ci = f (i)(α)
i!f ′(α)

, i = 1, 2, 3... and we also have

f ′(xn) = f ′(α)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n], (8)

From (7) and (8) it can be found that

f(xn)

f ′(xn)
= en − c2e2n + (2c22 − 2c3)e

3
n + ...+O(e9n). (9)

By considering(9) and the first step of (6) , we obtain

yn − α = c2e
2
n + (−2c22 + 2c3)e

3
n + (4c32 − 7c2c3 + 3c4)e

4
n...O(e9n).

We also have

f(yn) = f ′(α)[c2e
2
n + {−2c22 + 2c3}e3n

+{5c32 − 7c2c3 + 3c4}e4n + {2c22(−2c22 + 2c3)

−2(4c42 − 10c22c3 + 3c23 + 5c2c4 − 2c5)}e5n...O(e9n)], (10)
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Now f(yn)

f(xn)
= c2en + {−3c22 + 2c3}e2n + {8c32 − 10c2c3 + 3c4}e3n

+O(e9n). (11)

In the same way by considering (11) and second step of (6), we obtain

(zn − α) = {1− A(0)}en + c2{A(0)− A′(0)}e2n + {2c3(A(0)− A′(0))

−1

2
c22{4A(0)− 8A′(0) + A′′(0))}e3n + ...+O(e4n). (12)

To get maximum possible order of convergence the coefficient of en, e2n and e3n
in above equation must vanish and by equating the coefficient of en, e2n and e3n
to zero, we get A(0) = 1 and A′(0) = 1 A′′(0) = 4. Additionally, we have

f(zn) = f ′(α)[{c2c3 + c32(5−
1

6
A(3)(0))}e4n

{−2c23 − 2c2c4 − c22c3(−32 + A(3)(0)) + c42(−36 +
5

3
A(3)(0) +

1

24
A(4)(0))}e5n

+{−7c3c4 + c2(−3c5 − 2c23(−33 + A(3)(0))− 3

2
c22c4(−32 + A(3)(0))

+
1

3
c32c3(−786 + 37A(3)(0)− A(4)(0))− 1

120
c52(−20400 + 1240A(3)(0)

−65A(4)(0) + A(4)(0))}e6n...+O(e9n). (13)

Considering (10) and (13) we obtained

f(zn)

f(yn)
= {−c3 + c22(5−

1

6
A(3)(0)}e2n

+{−2c4 −
2

3
c2c3(−30 + A(3)(0)) + c32(−26 +

4

3
A(3)(0)− 1

24
A(4)(0))}e3n

+{−3c5 + c23(19− 2

3
A(3)(0))− c2c4(−29 + A(3)(0)) +

1

12
c22c3(86A(3)(0)

−3(520 + A(4)(0)))− 1

120
c42(−11160 + 820A(3)(0)− 55A(4)(0) + A(5)(0))}e4n

...+O(e9n) (14)

and similarly

f(zn)

f ′(xn)
= {−c2c3 + c32(5−

1

6
A(3)(0)}e4n

+{−2c23 − 2c2c4(−34 + A(3)(0)) + c42(−46 + 2A(3)(0)− 1

24
A(4)(0))}e5n

+{−7c3c4 + c2(−3c5 + c23(73− 2A(3)(0)) +
1

2
c22c4(104− 3A(3)(0))

+
1

6
c32c3(89A(3)(0)− 2(1035 + A(4)(0))) + c52(262− 43

3
A(3)(0)

+
5

8
A(4)(0)− 1

120
A(5)(0))}e6n...+O(e9n). (15)
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Finally, Taylor expansion for the simple root in the last step of (6) by using
(11), (13) and (15) becomes

(zn − α)− f(zn)

f ′(xn)
B(tn)H(un)

= {1

6
(−1 +B(0)H(0))c2(6c3 + c22(−30 + A(3)(0)))}e4n

+{(2(−1 +B(0)H(0)c23 + 2(−1 +B(0)H(0))c2c4

+c22c3(32 +H(0)B′(0) +B(0)H(0)(−34 + A(3)(0))− A(3)(0))

+
1

24
c42(−864 + 4H(0)B′(0)(−30 + A(3)(0)) + 40A(3)(0)− A(4)(0)

+B(0)H(0)(1104− 48A(3)(0) + A(4)(0)))}e5n
+{7(−1 +B(0)H(0)c3c4 + c2(3(−1 +B(0)H(0))c5 + c23(66

+4H(0)B′(0)−B(0)(H ′(0) +H(0)(73− 2A(3)(0))− 2A(3)(0))

+
1

2
c22c4(96 + 4H(0)B′(0)− 3A(3)(0) +B(0)H(0)(−104 + 3A(3)(0))

+
1

6
c32c3(−1572 + 74A(3)(0) +H(0)(3B′′(0) +B′(0)(−282 + 8A(3)(0)))

−2A(4)(0) +B(0)(−2H ′(0)(−30 + A(3)(0)) +H(0)(2070− 89A(3)(0)

+2A(4)(0)))) +
1

360
c52(−3(−20400 + 1240A(3)(0) + 5H(0)− 2B′′(0)

(−30 + A(3)(0)) +B′(0)(−1464 + 60A(3)(0)− A(4)(0)))− 65A(4)(0)

+A(5)(0)) +B(0)(−10H ′(0)(−30 + A(3)(0))2 + 3H(0)(−31440

+1720A(3)(0)− 75A(4)(0) + A(5)(0))))}e6n
+{6(−1 +B(0)H(0)c24 + 10(−1 +B(0)H(0))c3c5 +

2

3
(66 + 12H(0)

−2A(3)(0) +B(0)(−3 +H(0)(−75 + 2A(3)(0)))) + 2c2(2(−1 +B(0)

H(0))c6 + c3c4(98 + 14H(0)− 3A(3)(0) +B(0)(−2 +H(0)(−110

+3A(3)(0))))) +
1

6
c32c4(B(0)(4(−30 + A(3)(0)) +H(0)(−3000

+130A(3)(0)− 3A(4)(0))) + 3(752 +H(0)(268− 8A(3)(0))− 36A(3)(0)

+A(4)(0)}e7n +O(e8n). (16)

To get the maximum possible order of convergence the coefficient of e4n, e5n and
e6n in above equation must vanish and by equating the coefficient of e4n, e5n and
e6n to zero we get A(3)(0) = 30, B(0) = 1, H(0) = 1, B′(0) = 2, H ′(0) = 1,
B′′(0) = 12. Putting all these value in the equation (14), we get the error
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equation for the method (6) as

en+1 =
1

24
c22c3(48c3 + c22(−144 + 4B(3)(0)− A(4)(0)))e7 +O(e)8.

This proves the results.

Method 2: It is remarkable that for attaining an optimal three step
method with four evaluations the order of convergence should be eighth but
the order of the scheme (6) is one unit lower, so it would be interesting from
practical and analytical point of view to increase the order of convergence from
seven to eight without using any new function evaluation per full iteration. To
serve the purpose, we consider

yn = xn −
f(xn)

f ′(xn)
,

zn = xn −
f(xn)

f ′(xn)
A(tn),

xn+1 = zn −
f(zn)

f ′(xn)
(B(tn) ∗H(un) ∗G(sn)), (17)

where tn, un are defined as Method 1 and sn = f(zn)
f(xn)

. Clearly iteration class

(17) requires three function evaluations and one derivative function evaluation.
Now we give the following theorem with proof.

Theorem 1.5. Assume that the function f : D ⊂ R → R for an open
interval D has a simple root α ∈ D. Let f(x) be sufficiently smooth in the
interval D and the initial guess x0 is sufficiently close to α. Then the order of
convergence of the new method defined by (17) is eighth if A(0) = 1, A′(0) = 1,
A′′(0) = 4, A(3)(0) = 30, A(4)(0) = 0, B(0) = 1, H(0) = 1, B′(0) = 2,
H ′(0) = 1, B′′(0) = 12, B(3)(0) = 36, G(0) = 1, G′(0) = 2,and its error equa-
tion is

en+1 =
1

120
c2c3(480c22c3 − 120c2c4 + 60c23(−2 +H ′′(0)) + c42(5B

(4)(0)

−A(5)(0)))e8n +O(e9n). (18)

Proof: Using Taylor’s series and symbolic computation, we can have the
similar relation as the proof of the theorem 1. So we only give the following
expressions
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f(zn)

f(xn)
= {−c2c3}e3n + {3c22c3 − 2c23 − 2c2c4 + c42(14− 1

24
A(4)(0))}e4n

+{−5c22c4 − 7c3c4 + c2(9c
2
3 − 3c5)−

1

3
c32c3(−315 + A(4)(0)) + c52(−154

+
7

12
A(4)(0)− 1

120
A(5)(0))}e5n

+{6c33 − 6c210c3c5 + c2(26c3c4 − 4c6) + c22(7c5 − c23(304 + A(4)(0)))

−1

2
c32c4(−318 + A(4)(0)) +

1

24
c42c3(131A(4)(0)− 2(16788 + A(5)(0)))

− 1

720
c62(−730080 + 3420A(4)(0)− 102A(5)(0) + A(6)(0))}e6n

+{23c23c4 − 17c4c5 − 13c3c6 + c2(18c24 + 34c3c5 − 5c7 + c33(398

−1

4
A(4)(0))) + c22(9c6 − 3c3c4(−309 + A(4)(0))) +

1

3
c32(−2c5(−318

+A(4)(0)) + c23(−15171 + 61A(4)(0)− A(5)(0))) +
1

8
c42c4(−16360

+64A(4)(0)− A(5)(0))− 1

120
c52c3(−1263240 + 6100A(4)(0)− 193A(5)(0)

+2A(6)(0) + c72(−5179 +
88

3
A(4)(0)− 41

30
A(5)(0) +

1

36
A(6)(0)− A(7)(0)

5040
)}e7n

+O(e8n),

and
en+1 = (zn − α)− f(zn)

f ′(xn)
(B(tn) ∗H(un) ∗G(sn)) = {(−1 +G(0))c2c3}e4n

+{−48c22c3 + 48c23 + 48c2c4 + c42(−336 + A(4)(0))}e5n
+

1

120
{(−1 +G(0))(360c22c4 − 840c3c4 + 360c2(2c

2
3 − c5)− 40c32c3(−324

+A(4)(0)) + c52(−16800 + 65A(4)(0)− A(5)(0)))}e6n
+{−2(−1 +G(0))(2c33 − 3c24 − 5c3c5)− 4(−1 +G(0))c2(4c3c4 − c6)

+
1

2
(−1 +G(0))c32c4(−328 + A(4)(0)) + A(4)(0))) +

1

24
c42c3(122A(4)(0)

−2(15360 + A(5) +G(0)(30576 + 4B(3)(0)− 123A(4)(0) + 2A(5)(0)))

+
1

720
(−1 +G(0))c62(−619200 + 3000A(4)(0)− 96A(5)(0) + A(6)(0)))e7n

+...+O(e9n). (19)

This is clearly shows that the weight function in (17) must be chosen as stated
in the theorem to make it optimal. Now, we have the following error equation

en+1 =
1

120
c2c3(480c22c3 − 120c2c4 + 60c23(−2 +H ′′(0)) + c42(5B

(4)(0)

− A(5)(0)))e8n +O(e9n). (20)
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2 Numerical Reports

To get the accuracy of methods, it is necessary to study the numerical results
of the presented methods and schemes available in the literature. In order to
illustrate the convergence behavior of new methods and to check the validity of
the theoretical results we employ Method 1 and Method 2 to solve some non-
linear equations. For comparison in numerical experiment we test presented
method with existing eighth-order methods presented in equation(18)(ZWG)
of [14], equation(11)(BCST) of [5], equation(5)(LCTAZ) of [16]. In Table 1
we have mention seven nonlinear test functions with their roots. As shown
in Table 3, the proposed methods are giving a better accuracy to the eighth-
order methods discribed in ZWG, BCST and LCTAZ. All computations were
done using Mathematica 9. We have used the stopping criteria for computer
program: |f(xn)| < 10−125. For numerical testing we consider the following
functions along with the mentioned weight function.

Table 1: Functions and their roots
f(x) α
f1(x) = x2 − ex − 3x+ 2 α1 ≈ 0.2575302854...
f2(x) = x3 + 4x2 − 10 α2 ≈ 1.3652300134...
f3(x) = Sin2x− x2 + 1 α3 ≈ 1.4044916482...
f4(x) = e−x + sinx− 1 α4 ≈ 2.0768312743...
f5(x) = (1 + cosx)(ex − 2) α5 ≈ 0.6931478055...
f6(x) = x5 − sinx α6 ≈ 0.9610369414...
f7(x) = x5 − x2 + 7x− 41 α7 ≈ 1.9878112719...

Table 2: Some forms of weight functions
Method 1 A(tn) B(tn) H(un)
forms 1−tn

1−2tn
1−tn
1−3tn eun

Method 2 A(tn) B(tn) H(un) G(sn)
forms 1 + tn + 2t2n + 5t3n 1 + 2tn + 6t2n + 6t3n

1
1−un

1
1−2sn
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Table 3: Numerical comparison of different methods
n TNFE |f(xn)| COC

f1(x) = x2 − ex − 3x+ 2, x0 = 0
MH 3 12 4.2661×10−284 6
BCST 3 12 7.8554×10−601 8
LCTAZ 3 12 1.22442×10−628 8
ZWG 3 12 5.6014×10−640 8
Method 1 3 12 1.7375×10−432 7
Method 2 3 12 5.6656×10−646 8
f2(x) = x3 + 4x2 − 10, x0 = 1.4
MH 3 12 1.3963×10−412 6
BCST 3 12 3.3903×10−884 8
LCTAZ 3 12 8.1291×10−900 8
ZWG 3 12 2.0753×10−921 8
Method 1 3 12 2.5909×10−615 7
Method 2 3 12 1.8773×10−1013 8
f3(x) = (sinx)2 − x2 + 1, x0 = 1.3
MH 3 12 1.4130×10−270 6
BCST 3 12 1.8917×10−467 8
LCTAZ 3 12 6.4120×10−406 8
ZWG 3 12 1.5358×10−426 8
Method 1 3 12 2.0502×10−327 7
Method 2 3 12 1.3592×10−486 8
f4(x) = e−x + sinx− 1, x0 = 2
MH 3 12 6.1367×10−308 6
BCST 3 12 1.1709×10−624 8
LCTAZ 3 12 9.0715×10−563 8
ZWG 3 12 2.2817×10−584 8
Method 1 3 12 2.2836×10−450 7
Method 2 3 12 1.5961×10−679 8
f5(x) = (1 + cosx)(ex − 2), x0 = 0.5
MH 3 12 3.6539×10−239 6
BCST 3 12 2.8311×10−551 8
LCTAZ 3 12 2.3369×10−549 8
ZWG 3 12 2.0304×10−571 8
Method 1 3 12 9.7337×10−405 7
Method 2 3 12 9.9590×10−602 8
f6(x) = x5 − sinx, x0 = 1
MH 3 12 2.6556×10−245 6
BCST 3 12 7.0322×10−553 8
LCTAZ 3 12 1.9786×10−462 8
ZWG 3 12 1.5024×10−484 8
Method 1 3 12 7.1331×10−414 7
Method 2 3 12 5.5247×10−592 8
f7(x) = x5 − x2 + 7x− 41, x0 = 1.97
MH 3 12 3.5859×10−407 6
BCST 3 12 9.1147×10−848 8
LCTAZ 3 12 5.0920×10−803 8
ZWG 3 12 7.2698×10−824 8
Method 1 3 12 3.0280×10−575 7
Method 2 3 12 9.6242×10−886 8
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3 Fractal Pictures for Basin of Attractions

Here we investigate the comparison of some high order simple root finder
method in the complex plane using basin of attraction.

(a) MH

&
(b) BCST

(c) LCTAZ

&
(d) ZWG

(e) Method1

&
(f) Method 2

Figure 1: Basin of attraction for the polynomial z2 − 1.
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(a) MH

&
(b) BCST

(c) LCTAZ

&
(d) ZWG

(e) Method 1

&
(f) Method 2

Figure 2: Basin of attraction for the polynomial z2 + 2 ∗ z − 1.
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(a) MH

&
(b) BCST

(c) LCTAZ

&
(d) ZWG

(e) Method 1

&
(f) Method 2

Figure 3: Basin of attraction for the polynomial z3 − z.
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It is known that the corresponding fractal of an iterative root-finding
method is a boundary set in the complex plane, which is characterized by
the iterative methods applied to a fixed polynomial f(z). We compare pro-
posed Method 1(6) and Method 2(17) to the iteratives methods presented
equation(18) of [14] denoted by ZWG, equation(11) of [5] denoted by BCST,
equation(5) of [16] denoted by LCTAZ by using the basin of attraction for
three complex polynomial p1(z) = z2 − 1 with two root of unity; p2(z) =
z2 + 2z − 1 with root -1.46771+0.226699I, -0.453398I, 1.46771+0.226699I and
p3(z) = z3 − z with -1, 0, 1. In our numerical experiment, we have used a
grid of 400*400 points in a rectangle D = [−3, 3] ∗ [−3, 3] ⊂ C and assign
a color to each point z0 ∈ D. We have assigned white color for divergent
points. Figures 1 shows that the method MH(eqn:8) of [7], Method 1(6) and
Method 2(17) without memory have very little diverging points compared to
other methods. Figures 2 shows that the basin of attraction for P2(z) and we
can see that the method MH(eqn:8) of [7], Method 1(6) and Method 2(17)
are slightly better than the schemes of method ZWG(eqn:18) of [14], method
BCST(eqn:11) of [5], method LCTAZ(eqn:5) of [16] and convergence speed of
our methods are faster than other methods. In fighure 3, the dynamical be-
havior of method MH(eqn:8) of [7], Method 1(6) and Method 2(17) are best
to the method ZWG(eqn:18) of [14], method BCST(eqn:11) of [5] and method
LCTAZ(eqn:5) of [16]. From the whole, we have seen that our method are
better than the other.

4 Conclusion

It is widely know that many problems in different scientific fields are reduced
to solve single valued non-linear equations. During the last few years numerous
papers devoted to the mentioned iterative methods have appeared in several
journals. In the forgoing study, we have proposed a three step seven and opti-
mal eight order without memory methods. These methods use four functional
evaluations per iteration. A comparison of computational efficiencies of the
new schemes with existing schemes are given in the table. Theoretical order
of convergence and the analysis of computational efficiency are verified in the
considered examples. The dynamical and numerical results have confirmed the
robust and efficient character of the proposed algorithm.
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