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Abstract
The notion of the square submodule of a module M over an arbitrary com-

mutative ring R, which is denoted by �RM, was introduced by Aghdam and
Najafizadeh in [3]. In fact, �RM is the R−submodule of M generated by the
images of all bilinear maps on M. Furthermore, given a submodule N of an
R−module M, we say that M is nil modulo N if µ(M×M) ≤ N for all bilinear
maps µ on M. The main question about the square submodule is that whether
the quotient module M/�M is a nil module? In this paper, we investigate
the square submodules of some classes of modules over commutative domains.
Then, we have some results related to splitting modules which we need in our
discussions. Finally, we give some examples of mixed Abelian groups A such
that the quotient groups A/�A are not nil.
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1 Introduction

Given an Abelian group A, we call R a ring over A if the additive group
R+ = A. In this situation we write R = (A, ∗), where ∗ denotes the ring
multiplication. The multiplication is not assumed to be associative. Every
group can be provided with a ring structure in a trivial way, by defining all
products to be 0; such a ring is called a zero-ring. In general, we call a group A
a nil group if there is no ring on A other than the zero-ring. A generalization of
the notion of a nil group was considered by Feigelstock [5]. Given a subgroup
B of A, the group A is called to be nil modulo B if A ∗ A ⊆ B for every ring
(A, ∗) on A. The term square was used for the first time for an Abelian group
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by Stratton and Webb [10]. In fact, given an Abelian group A, the square
subgroup of A denoted by �A, is defined as:

�A = ∩{B ⊆ A | A is nil modulo B}.

The basic question about the square subgroup is whether A/�A is a nil group?
Aghdam [1] showed that if A is any arbitrary group, then

A/�A ∼= (D/T )⊕ (N/�N) , �D ≤ T ≤ D,

for some subgroup T of D, where D and N are the maximal divisible subgroup
and reduced part of A respectively. Moreover, in the case that A is a reduced
torsion group then A = �A and if A is non-torsion, then

A/�A ∼= N/�N .

Aghdam and Najafizadeh [2] continued the investigation for torsion-free groups
of rank two using their typesets. Then, they introduced the concept of the
square submodule of a module and a nil module in [3] . They studied different
properties of the square submodule for torsion and torsion-free modules over
commutative domains. In this paper, the square submodules of some classes
of modules over commutative domains are studied. Moreover, we have some
results related to splitting modules. Finally, the square submodule of a mixed
module is studied. It is shown by some examples that if M is a mixed module,
then M/�M is not a nil module in general.

2 Notations and Preliminaries

Throughout this paper, unless otherwise stated, R means a commutative do-
main with identity and Q its field of quotients. An R−submodule I of Q
for which there exist a non-zero element r in R such that rI ≤ R is called a
fractional ideal of R. The set F (R) of the non-zero fractional ideals of R is a
multiplicative monoid by the multiplication I.J = {

∑i=n
i=1 aibi | ai ∈ I, bi ∈

J, n ∈ N}. A non-zero fractional ideal I of R is called invertible if it is in-
vertible as an element of F (R). Moreover, we use the symbol I : J to the
residual which is defined as I : J = {q ∈ Q | qJ ≤ I}. An R−module H is
called h− divisible if it is an epic image of a direct sum of copies of Q. The
trace of a submodule N of an R−module M, which is denoted by TrM(N),
is the R−submodule of M generated by the images of all R−homomorphisms
in HomR(N,M). Finally, an R−module M splits if its torsion part, tM, is a
summand of M.

Definition 2.1. Let M be an R−module over a commutative ring R. A bi-
linear map on M is a function µ : M×M −→M such that for all m,n,mi, ni ∈
M and r ∈ R :
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(1) µ(m1 +m2, n) = µ(m1, n) + µ(m2, n);

(2) µ(m,n1 + n2) = µ(m,n1) + µ(m,n2);

(3) µ(rm, n) = µ(m, rn) = rµ(m,n).

Definition 2.2. Let µ and ν be bilinear maps on M and r ∈ R. We define

(µ+ ν)(m,n) = µ(m,n) + ν(m,n)

(rµ)(m,n) = r · µ(m,n).

The set of all bilinear maps on M forms an R−module which is denoted
by MultR(M). We call any element of MultR(M) a multiplication on the
R−module M.

Definition 2.3. Let N be a submodule of an R−module M. Then, we say
that M is nil modulo N if µ(M ×M) ≤ N for all µ ∈MultR(M).

Definition 2.4. Let M be a module over a commutative ring R. The square
submodule of M is denoted by �RM and is defined as:

�RM =
∑
{Im(ϕ) | ϕ ∈MultR(M)}.

We use the symbol �M if no ambiguity arises.

Definition 2.5. Let M be a module over a commutative ring R. Then M
is called a nil module if �M = 0.

Clearly, M is a nil R−module if and only if M is nil modulo 0. Moreover,
�M is the intersection of all submodules N of M such that M is nil modulo
N, i.e., the smallest R−submodule N of M such that M is nil modulo N.

Theorem 2.6. Let M be a module over a commutative ring R with S =
EndR(M). Then

(1) MultR(M) ∼= HomR(M ⊗RM,M) ∼= HomR(M,EndR(M)),

(2) �M = TrM(M ⊗RM) = TrS(M)M.

Proof. 1) Straightforward.
2) We prove that TrM(M ⊗R M) = TrS(M)M. To do this, we observe that
for any θ ∈ HomR(M,S) and for any x, y ∈M, the map

f : M ×M →M

f(x, y) = θ(x)(y)
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is a bilinear map which induces the R−homomorphism,

ϕ : M ⊗RM →M

ϕ(x⊗ y) = θ(x)(y).

But M is nil modulo �M, hence θ(n)(m) = ϕ(m ⊗ n) ∈ �M for all θ ∈
HomR(M,S) and m,n ∈ M, thus TrS(M)M ⊆ �M. Conversely, for any
ϕ ∈ HomR(M ⊗RM,M) and any m ∈M, the map θ : M → S such that,

θ(m) : M →M

θ(m)(n) = ϕ(m⊗ n),

is an R−homomorphism which satisfies θ(m)(n) ∈ TrS(M)M, hence ϕ(m ⊗
n) ∈ TrS(M)M which means M is nil modulo TrS(M)M. Therefore �M ⊆
TrS(M)M and consequently �M = TrS(M)M.

Proposition 2.7. Let I be an ideal of commutative domain R with quotient
field Q and S = EndR(I). Then

(1) �I = (S : I)I2. In particular, �I = 0 if and only if I = 0.

(2) �I = I for every ideal I of R exactly if R is a Clifford regular domain.

Proof. 1) By Theorem 2.6 we have �I = TrS(I)I. Hence, it suffices to show
that TrS(I) = (S : I)I. This follows from the fact that S = I : I and every
R−homomorphism θ : I → S can be considered as an element of S : I. Now
the last assertion is clear.
2) An appeal to [4], shows that (S : I)I = (I : I2)I2. Therefore, �I = I
exactly if the isomorphy class [I] of I is a regular element of the semigroup
S(R) of fractional ideals of R.

Proposition 2.8. Let M be a reduced torsion module over a Dedekind do-
main R. Then �M = M.

Proof. See [3, Proposition 5.2].

Theorem 2.9. Let R be a commutative domain. Then,

(1) If R is a Prüfer domain, then relative divisibility and purity are equiva-
lent.

(2) The torsion submodule of all mixed R−modules are pure if and only R
is Prüfer.

Proof. See [8, Theorem 8.11 and Theorem 8.12 page 47].
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Theorem 2.10. Let R be a commutative domain. Then, the torsion sub-
module of an h−divisible module is a summand.

Proof. See [8, Lemma 2.2 page 251].

Theorem 2.11. Let A and C be Abelian groups. Then, there are isomor-
phisms

t(A⊗ C) ∼= [tA⊗ tC]⊕ [tA⊗ C/tC]⊕ [A/tA⊗ tC],

(A⊗ C)/t(A⊗ C) ∼= A/tA⊗ C/tC.
Proof. See [7, Theorem 61.5].

3 Non-nil Quotients Modulo Square Submod-

ule

In this section, we investigate about the torsion part of any module over a
commutative ring. Moreover, we have have some results related to splitting
modules which we need in our discussions.

Lemma 3.1. Let M =
⊕i=n

i=1 Mi be a module over a commutative domain
R. Then M splits if and only if each Mi is splitting for all i = 1, 2, ..., n.

Proof. It is sufficient to prove for the case n = 2.
⇒) Suppose that M1 and M2 splits, hence there exist submodules N1 of

M1 and N2 of M2 such that M1 = tM1 ⊕N1 and M2 = tM2 ⊕N2. Therefore

M = M1 ⊕M2 = (tM1 ⊕N1)⊕ (tM2 ⊕N2) = t(M1 ⊕M2)⊕ (N1 ⊕N2).

⇐) Suppose that M splits, then the sequence

0→ tM1 ⊕ tM2
α //M1 ⊕M2

is an splitting exact sequence, in which α(x) = x. This means that there exists
a homomorphism β as

0→ M1 ⊕M2
β // tM1 ⊕ tM2 ,

such that βα is identity on tM1 ⊕ tM2. Now we show that the exact sequence

0→ tM1 ⊕ tM2
α1 //M1 ⊕ tM2

where α1(x) = α(x) for all x ∈ tM1 ⊕ tM2, is an splitting exact. To do this,
we define β2 : M1 ⊕ tM2 → tM1 ⊕ tM2 by β2(x) = β(x) for all x ∈M1 ⊕ tM2.
Therefore,

β2α2(x) = β2(α2(x)) = β2(α1(x)) = β1(α1(x)) = x.

Consequently, β2α2 is identity on tM1⊕tM2, which yields M1⊕tM2 is splitting.
Thus, M1 splits. By the same manner we deduce that M2 is splitting.
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Lemma 3.2. Let M be a mixed module over a Prüfer domain R. If M/tM
is divisible, then t(M ⊗M) = t(M)⊗ t(M).

Proof. We observe that the following exact sequence of R−modules is pure;

0→ t(M)→M →M/t(M)→ 0.

In fact, in view of Theorem 2.9, tM is a pure submodule of M. Now tensoring
this sequence successively with t(M),M and M/t(M) yields the following pure
exact sequences,

0→ t(M)⊗ t(M)→M ⊗ t(M)→M/t(M)⊗ t(M)→ 0

0→ t(M)⊗M →M ⊗M →M/t(M)⊗M → 0

0→ t(M)⊗M/t(M)→M ⊗M/t(M)→M/t(M)⊗M/t(M)→ 0.

Now in view of the fact that the tensor product of a torsion module with a
divisible module is the zero module, we reach the pure exact sequence,

0→ t(M)⊗ t(M)→M ⊗M →M/t(M)⊗M/t(M)→ 0.

Consequently,
t(M ⊗M) = t(M)⊗ t(M).

In the case of Abelian groups, we get the following corollary.

Corollary 3.3. Let A be a mixed group such that A/t(A) is p−divisible and
t(A) is a p−group. Then

t(A⊗ A) = t(A)⊗ t(A).

Proof. Follows from Theorem 2.11 and the fact that the tensor product of a
p−group with a p−divisible group is zero.

Proposition 3.4. Let M and N be h−divisible modules over a commutative
domain R. Then M ⊗R N is splitting.

Proof. First we observe that M⊗RN is h−divisible. Now our assertion follows
from Theorem 2.10.

In the case of Abelian groups we have the following theorem of I. M. Irwin
and his colleagues.

Corollary 3.5. Let X, Y be groups such that t(X), t(Y ) are p−primary and
X/t(X), Y/t(Y ) are p−divisible. If {xi}i∈I is a maximal torsion-free linear
independent subset of X such that xi is of infinite p−height, then X⊗Y splits.

Proof. See [9, Theorem 3.2]
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4 Examples

Now, we are in the position to give examples of rank one and rank n mixed
Abelian groups A in which A/�A are not nil. Let p be a prime number. Let

M =
i=∞⊕
i=1

Z(xi)⊕Q,

in which o(xi) = pi. Take A = Z(xi + p−i ; i = 1, 2, 3, ...). Clearly, A is of
rank one. On the other hand pi(xi + p−i) = 1, so 1 is of infinite p−height.
Moreover, t(A) = t(M) ∩ A is a p−group. Now we have

< 1 >⊆ p∞A ⊆ A ∩ p∞Q =< 1 >,

which implies that A is a p−reduced and non-splitting group. But 1 has infinite
order and infinite p−height in A, hence by Corollary 3.5, A⊗A splits and by
Corollary 3.3, A ⊗ A = (t(A ⊗ A)) ⊕D for some subgroup D of A ⊗ A. Now
using the fact that HomZ(D,A) = 0, we have

MultZ(A) ∼= HomZ(A⊗Z A,A)
∼= HomZ((t(A)⊗Z t(A))⊕D,A)
∼= HomZ(t(A)⊗Z t(A), A)
∼= HomZ(t(A)⊗Z t(A), t(A)).

Therefore, by (2) of Theorem 2.6 and Proposition 2.8, �A = t(A). Conse-
quently,

A/�A = A/t(A) ∼=< p−i; i = 1, 2, 3, ... >= Qp

is not a nil group. A is an example of a rank one mixed group with A/�A
non-nil.

For a rank n mixed group, take B = ⊕i=ni=1Ai where Ai ∼= A. In view of
Lemma 3.1, B is not a splitting group. On the other hand by Corollary 3.5,
B ⊗ B splits hence B ⊗ B = (t(B) ⊗ t(B)) ⊕ D′ for some subgroup D′ of
B ⊗ B. Now as in the case of rank one group A we conclude that B = t(B)
and B/�B = B/t(B) is not a nill group.
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