

Gen. Math. Notes, Vol. 26, No. 1, January 2015, pp.1-7 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Properties of β^* -Homeomorphisms in Topological Spaces

R. Ramesh¹, A. Vadivel² and D. Sivakumar³

¹Department of Mathematics, Pope John Paul II College of Education Reddiar Palayam, Puducherry-605010 E-mail: rameshroshitha@gmail.com ²Mathematics Section (FEAT), Annamalai University Annamalainagar, Tamil Nadu- 608002 E-mail: avmaths@gmail.com ³Department of Mathematics (DDE) Annamalai University, Annamalainagar- 608002 E-mail: sivakumardmaths@yahoo.com

(Received: 17-8-14 / Accepted: 22-11-14)

Abstract

The concept of β^* -homeomorphisms is introduced and investigated by Palanimani [13] earlier. In the present paper we investigate some more properties of β^* -homeomorphisms and also investigate contra β^* -homeomorphisms.

Keywords: β^* -closed, β^* -continuous, β^* -closed map, β^* -homeomorphism, contra β^* -irresolute and contra β^* -homeomorphism.

1 Introduction

N. Levine [7] introduced semi-continuous function using semiopen sets. Balachandran, Sundram and Maki [2] introduced the concept of generalized continuous maps and gc-irresolute maps on topological spaces. Several authors ([1], [3], [4], [5], [9] and [10]) studying the concepts of generalizations of continuous maps. Maki [8] introduced g-homeomorphism and gc-homeomorphism in topological spaces. Recently Palanimani [13] defined β^* -closed map and β^* -homeomorphism and studied some of their properties. Throughout the present paper, (X, τ) , (Y, σ) and (Z, η) (or X, Y and Z) represent nonempty topological spaces on which no separation axioms are assumed unless otherwise mentioned. The closure and interior of a subset $A \subseteq X$ will be denoted by Cl(A) and Int(A), respectively. The present paper is a continuation of [13] due to one of the present authors, we investigate more properties of functions preserving β^* -closed sets. In section 2, we recall some definitions on functions and we need some properties on functions (c.f. Lemma 2.5 and Theorem 2.6). In section 3, for a topological space (X, τ) , we introduce and invetigate groups of functions, say $\beta^*h(X; \tau)$ preserving β^* -closed sets respectively, they contain the homeomorphism group $h(X, \tau)$ as a subgroup (cf. Theorem 3.3). Moreover, these groups have an important property that they are one of topological invarients (Theorem 3.3). Using the concept of contra β^* -irresoluteness, In section 4, we construct more groups of functions, say $\beta^*h(X; \tau) \cup con-\beta^*h(X; \tau)$ for a topological space (X, τ) ; they contain the homeomorphism group A(A).

2 Preliminaries

We need the following definition, lemma and Theorem.

Definition 2.1 A subset A of a topological space (X, τ) is called a

- (i) generalized closed (briefly, g-closed) [6] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (ii) β^* -closed [11] if $Cl(Int(A)) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.2 [12] Let $f : X \to Y$ from a topological space X into a topological space Y is called β^* -continuous if the inverse image of every closed set in Y is β^* -closed in X.

Definition 2.3 [13] Let $f : X \to Y$ from a topological space X into a topological space Y is called β^* -closed map if for each closed set F of X, f(F) is β^* -closed in Y.

Definition 2.4 [12] A map $f : X \to Y$ from a topological space X into a topological space Y is called β^* -irreslute if the inverse image of every β^* -closed set in Y is β^* -closed in X.

Properties of β^* -Homeomorphisms in...

Lemma 2.5 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \zeta)$ be two functions between topological spaces.

(i) If f and g are β^* -irreslote, then the composition $g \circ f$ is also β^* -irresolute.

(ii) The identity function $1_X : (X, \tau) \to (Y, \sigma)$ is β^* -irresolutre.

Proof: The proofs are obvious from definitions.

Theorem 2.6 Let $f : (X, \tau) \to (Y, \sigma)$ be a function then every homeomorphism is β^* -continuous.

Proof: Let f be a homeomorphism. Then, $f^{-1}: (Y, \sigma) \to (X, \tau)$ is also a homeomorphism. By definition, it is shown that $f = (f^{-1})^{-1}$ is continuous. By Theorem 3.2 in [12], it is shown that f is β^* -continuous.

3 More on Functions Preserving β^* -Closed Sets

Definition 3.1 A bijection $f : (X, \tau) \to (Y, \sigma)$ is called β^* -homeomorphism [13] if f is both β^* -continuous and β^* -closed (or f^{-1} is β^* -continuous).

For a topological space (X, τ) , we introduce the following: (1) $h(X; \tau) = \{f | f : (X, \tau) \to (X, \tau) \text{ is a homeomorphism } \}.$ (2) $\beta^* h(X; \tau) = \{f | f : (X, \tau) \to (X, \tau) \text{ is a } \beta^*\text{-homeomorphism } \}.$

Theorem 3.2 For a topological spaces (X, τ) then $h(X; \tau) \subseteq \beta^* h(X; \tau)$.

Proof: Let $f \in h(X; \tau)$. Then by definition f and f^{-1} are continuous. By Theorem 3.2 in [12], it is shown that f and f^{-1} are β^* -continuous and so f is β^* -homeomorphism, i.e., $f \in \beta^* h(X; \tau)$.

Theorem 3.3 Let (X, τ) be a topological space. Then, we have the following properties.

- (i) The collection $\beta^*h(X; \tau)$ forms a group under the composition of functions.
- (ii) The homeomorphism group $h(X; \tau)$ is a subgroup of the group $\beta^*h(X; \tau)$.

Proof: (i) A binary operation $\eta_X : \beta^* h(X; \tau) \times \beta^* h(X; \tau) \to \beta^* h(X; \tau)$ is well defined by $\eta_X(a, b) = b \circ a$, where $b \circ a : X \to X$ is the composite function of the functions a and b such that $(b \circ a)(x) = b(a(x))$ for every point $x \in X$. Indeed, by Lemma 2.5 (i), it is shown that, for every β^* -homeomorphisms aand b, the composition $b \circ a$ is also β^* -homeomorphism. Namely, for every pair $(a, b) \in \beta^* h(X; \tau), \ \eta_X(a, b) = b \circ a \in \beta^* h(X; \tau)$. Then, it is claimed that the binary operation $\eta_X : \beta^* h(X; \tau) \times \beta^* h(X; \tau) \to \beta^* h(X; \tau)$ satisfies the axiom of group. Namely, putting $a.b = \eta_X(a, b)$, the following properties hold $\beta^* h(X; \tau)$.

(1) ((a.b).c) = (a.(b.c)) holds forevery elements $a, b, c \in \beta^* h(X; \tau)$;

(2) for all element $a \in \beta^* h(X; \tau)$, there exists an element $e \in \beta^* h(X; \tau)$ such that a.e = e.a = a hold in $\beta^* h(X; \tau)$;

(3) for each element $a \in \beta^* h(X; \tau)$, there exists an element $a_1 \in \beta^* h(X; \tau)$ such that $a.a_1 = a_1.a = e$ hold in $\beta^* h(X; \tau)$.

Indeed, the proof of (1) is obvious; the proof of (2) is obtained by taking $e = 1_X$, where 1_X is the identity function on X and using Lemma 2.5 (ii); the proof of (3) is obtained by taking $a_1 = a^{-1}$ for each $a \in \beta^* h(X; \tau)$ and Definition 3.1, where a^{-1} is the inverse function of a. Therefore, by definition of groups, the pair $(\beta^* h(X; \tau), \eta_X)$ forms a group under the composition of functions. i.e., $\beta^* h(X; \tau)$ is a group.

(ii) It is obvious that $1_X : (X, \tau) \to (X, \tau)$ is a homeomorphism and so $h(X; \tau) \neq \phi$. It follows from Theorem 3.2 that $h(X; \tau) \subseteq \beta^* h(X; \tau)$. Let $a, b \in h(X; \tau)$. Then we have that $\eta_X(a, b^{-1}) = b^{-1} \circ a \in h(X; \tau)$, here $\eta_X : \beta^* h(X; \tau) \times \beta^* h(X; \tau) \to \beta^* h(X; \tau)$ is the binary operation (cf. Proof of Theorem 3.3 (i)). Therefore, the group $h(X; \tau)$ is a subgroup of $\beta^* h(X; \tau)$.

Theorem 3.4 Let (X, τ) and (Y, σ) be topological spaces. If (X, τ) and (Y, σ) are homeomorphism, then there exist isomorphisms: i.e., $\beta^*h(X; \tau) \cong \beta^*h(Y; \sigma)$.

Proof: It follows from assumption that there exists a homeomorphism, say $f: (X, \tau) \to (Y, \sigma)$. We define a function $f_*: \beta^*h(X, \tau) \to \beta^*h(Y, \sigma)$ by $f_*(a) = f \circ a \circ f^{-1}$ for every element $a \in \beta^*h(X, \tau)$; by Theorem 2.6 (or Theorem 3.2) and Lemma 2.5(i), the bijections $f \circ a \circ f^{-1}$ and $(f \circ a \circ f^{-1})^{-1}$ are β^* -closed and so f_* is well defined. The induced function f_* is a homeomorphism. Indeed, $f_*(\eta_X(a, b)) = f \circ b \circ f^{-1} \circ f \circ a \circ f^{-1} = (f_*(b)) \circ (f_*(a)) = \eta_X(f_*(a), f_*(a))$ hold. Obviously, f_* is bijective. Thus, we have (i), i.e., f_* is an isomorphism.

4 More on the Groups including the Homeomorphism Group $h(X; \tau)$ as Subgroup

Definition 4.1 For a topological spaces (X, τ) and (Y, σ) , we define the following functions. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be contra β^* -irresolute if $f^{-1}(V)$ is β^* -closed in (X, τ) for every β^* -open set V of (Y, σ) .

For these we can immediately see the following lemma.

Properties of β^* -Homeomorphisms in...

Lemma 4.2 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \eta)$ be two functions between topological spaces.

- (i) If f and g are contra β^* -irresolute, then the composition $g \circ f$ is also β^* -irresolute.
- (ii) If f is β^* -irresolute (resp. contra β^* -irresolute) and g are contra β^* -irresolute (resp. β^* -irresolute), then the composition $g \circ f$ is contra β^* -irresolute.

Definition 4.3 For a topological space (X, τ) , we define the collection of functions $\operatorname{con-}\beta^*h(X, \tau) = \{f | f : (X, \tau) \to (X, \tau) \text{ is a contra } \beta^*\text{-irresolute bijection and } f^{-1} \text{ is contra } \beta^*\text{-irresolute } \}.$

For a topological space (X, τ) , we construct alternative groups, say $\beta^* h(X; \tau) \cup$ con- $\beta^* h(X; \tau)$.

Theorem 4.4 Let (X, τ) be a topological space. Then, we have the following properties.

- (i) The union of two collections, $\beta^*h(X; \tau) \cup con-\beta^*h(X; \tau)$, forms a group under the composition of functions.
- (ii) The homeomorphism group $h(X; \tau)$ is a subgroup of $\beta^*h(X; \tau) \cup con-\beta^*h(X; \tau)$.

Proof: (i) Let $B_X = \beta^* h(X; \tau) \cup \operatorname{con-}\beta^* h(X; \tau)$. A binary operation $w_X: B_X \times B_X \to B_X$ is well defined by $w_X(a, b) = b \circ a$, where $b \circ a: X \to X$ is the composite function of the functions a and b. Indeed, let $(a, b) \in B_X$; if $a \in \beta^* h(X; \tau)$ and $b \in \operatorname{con} -\beta^* h(X; \tau)$, then $b \circ a : (X, \tau) \to (X, \tau)$ a contra β^* -irresolute bijection and $(b \circ a)^{-1}$ is also contra β^* -irresolute and so $w_X(a, b) = b \circ a \in \operatorname{con-}\beta^*h(X; \tau) \subset B_X$ (cf. Lemma 4.2 (ii)) if $a \in \beta^*h(X; \tau)$ and $b \in \beta^* h(X; \tau)$ then $b \circ a : (X, \tau) \to (X, \tau)$ is a β^* -irresolute bijection and so $w_X(a, b) = b \circ a \in \beta^* h(X; \tau) \subseteq B_X$ (cf. Lemma 2.5 (i)), if $a \in$ $\operatorname{con}-\beta^*h(X; \tau)$ and $b \in \operatorname{con}-\beta^*h(X; \tau)$, then $b \circ a: (X, \tau) \to (X, \tau)$ is a β^* irresolute bijection and $(b \circ a)^{-1}$ is also β^* -irresolute and so $w_X(a, b) = b \circ a \in$ $\beta^*h(X; \tau) \subset B_X$ (cf. Lemma 4.2(i)) if $a \in con\beta^*h(X; \tau)$ and $b \in \beta^*h(X; \tau)$ then $b \circ a : (X, \tau) \to (X, \tau)$ is a contra β^* -irresolute bijection and $(b \circ a)^{-1}$ is also β^* -irresolute and so $w_X(a, b) = b \circ a \in con - \beta^* h(X; \tau) \subseteq B_X$ (cf. Lemma 4.2 (ii)). By the similar arguments of Theorem 3.3, it is claimed that the binary operation $w_X : B_X \times B_X \to B_X$ satisfies the axiom of group; for the identy element e of B_X , $e = 1_X : (X, \tau) \to (X, \tau)$ (the identity function). Thus the pair (B_X, w_X) forms a group under the composition of functions, i.e., $\beta^* h(X; \tau) \cup \operatorname{con-}\beta^* h(X; \tau)$ is a group.

(ii) By Theorem 3.3 (ii) above, it is shown that $h(X; \tau)$ is a subgroup of $\beta^* h(X; \tau) \cup \operatorname{con-}\beta^* h(X; \tau)$.

The groups of Theorem 4.4 are also invarient concepts under homeomorphisms between topological spaces (c.f. Theorem 3.4).

Theorem 4.5 Let (X, τ) and (Y, σ) be topological spaces. If (X, τ) and (Y, σ) are homeomorphic, then there exist isomorphisms i.e., $\beta^*h(X; \tau) \cup con-\beta^*h(X; \tau) \cong \beta^*h(Y; \sigma) \cup con-\beta^*h(Y; \sigma)$.

Proof: Let $f : (X, \tau) \to (Y, \sigma)$ be a homeomorphism. We put $B_X = \beta^* h(X; \tau) \cup \operatorname{con-}\beta^* h(X; \tau)$ (resp. $B_Y = \beta^* h(Y; \sigma) \cup \operatorname{con-}\beta^* h(Y; \sigma)$) for a topological space (X, τ) (resp. (Y, σ)). First we have a well defined function $f_* : B_X \to B_Y$ by $f_*(a) = f \circ a \circ f^{-1}$ for every element $a \in B_X$. Indeed by Theorem 2.6(ii) (or Theorem 3.2), f and f^{-1} are β^* -irresolute. By Lemma 2.5(i) and Lemma 4.2 (ii), the bijections $f \circ a \circ f^{-1}$ and $(f \circ a \circ f^{-1})^{-1}$ are β^* -irresolute or contra β^* -irresolute and so f_* is well defined. The induced function f_* is a homeomorphism. Indeed, $f_*(w_X(a,b)) = f \circ b \circ f^{-1} \circ f \circ a \circ f^{-1} = (f_*(b)) \circ (f_*(a)) = w_Y(f_*(a)) \circ (f_*(a))$ hold, $w_X : B_X \times B_X \to B_X$ and $w_Y : B_Y \times B_Y \to B_Y$ are the binary operations defined in Proof of Theorem 4.4(i). Obviously, f_* is bijective. Thus, we have the isomorphisms.

References

- I. Arockiarani, Studies on generalizations of generalized closed sets and maps in topological spaces, *Ph. D Thesis*, Bharathiar University, Coimbatore, (1997).
- [2] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, *Mem. I ac Sci. Kochi Univ. Math.*, 12(1991), 5-13.
- [3] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, *Indian J. Pure Appl. Math.*, 20(1995), 271-284.
- [4] R. Devi, K. Balachandran and H. Maki, On generalized α-continuous maps, Far. East J. Math. Sci. Special, 1(1997), 1-15.
- [5] J. Dontchev and H. Maki, On θ-generalized closed sets, Topology Atlass, URL:http://www.Unipissing.ca/topology/p/a/b/a/08.htm.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.

- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [8] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part-III, 42(1993), 13-21.
- [9] A.S. Mashhour, I.A. Hasanein and S.N. El-Deep, α-continuous and α-open mappings, Acta. Math. Hung, 41(1983), 213-218.
- [10] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [11] P.G. Palanimani and R. Parimelazhagan, β^* -closed sets in topological spaces, *ROSR Journal of Mathematics*, 5(1) (2013), 47-50.
- [12] , β^* -continuous maps and pasting lemma in topological spaces, International Journal of Scientific and Engineering Research, 4(1) (2013), 1-4.
- [13] —, β^* -homeomorphisms in topological spaces, International Journal of Computer Applications, 67(13) (2013), 1-3.