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Abstract
In this paper we consider the problem of continuity of solutions x(t, t0, x0)

of system

∆x(t) = f(t, x(t)), x(t0) = x0, t0 ≥ 0,

with respect to the initial values (t0, x0).
Keywords: Difference Equation, Existence of solution, Fixed Point The-

orem.

1 Introduction

Let J = {t0, t0 + 1, ..., t0 + a}, t0 ∈ R and E be an open subset of R. Consider
the difference equations with an initial condition,

∆u(t) = g(t, u(t)), u(t0) = u0. (1)

where u0 ∈ E, u : J → E, g : J × E → R.
The function φ : J → R is said to be a solution of initial value problem (1), if
it satisfies

∆φ(t) = g(t, φ(t)); φ(t0) = u0.

The initial value problem (1) is equivalent to the problem

u(t) = u0 +
t−1∑
s=t0

g(s, u(s)).
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By summation convetion
∑t0−1
s=t0

g(s, u(s)) = 0 and so u(t) given above is the
solution of (1).
Now we define the maximal and minimal solution of of (1).

Definition 1.1 Let r(t) be any solution of (1) on J . Then r(t) is said to
be maximal solution of (1), if every solution u(t) of (1) existing on J , the
inequality u(t) ≤ r(t) holds for t ∈ J .
A solution ρ(t) of (1) is said to be minimal solution of (1), if ρ(t) ≤ u(t) for
t ∈ J .

Theorem 1.2 [4] Suppose g : R0 → R, where R0 = {(t, u) ∈ J×E with |u−
u0| ≤ b}; |g(t, u)| ≤ M on R0 and g(t, u) is nondecreasing in u for all t ∈ J .
Let m : J → R such that
(i) (t,m(t)) ∈ R,
(ii) m(t0) ≤ u0,
(iii) ∆m(t) ≤ g(t,m(t))
for t ∈ [t0, t0 +α], α = min{a, b/2M + b}. If r(t) is maximal solution of (1)
on [t0, t0 + α], then m(t) ≤ r(t) on [t0, t0 + α].

Theorem 1.3 [2] Assume that
(i) the function g(t, u) is continuous and nonnegative for t0 ≤ t ≤ t0 + a, 0 ≤
u ≤ 2b, and, for every t∗, t0 < t∗ < t0 + a, u(t) ≡ 0 is the only function on
t0 ≤ t < t∗, which satisfies

∆u(t) = g(t, u(t)), u(t0) = 0

for t0 ≤ t < t∗;
(ii) f : R0 → R, where R0 = {t ∈ [t0, t0 + a] : |x − x0| ≤ b}, and for
(t, x), (t, y) ∈ R0,

|f(t, x)− f(t, y)| ≤ g(t, |x− y|).

Then the difference equation

∆x(t) = f(t, x), x(t0) = x0

has atmost one solution on t0 ≤ t ≤ t0 + a.

Theorem 1.4 [3] Let g : J × E → R and let J be the largest interval of
the existence of the maximal solution r(t) of (1). Suppose [t0, t1] is a compact
subinterval of J . Then there is an ε0 > 0 such that for 0 < ε < ε0, the maximal
solution r(t, ε) of

∆u(t) = g(t, u) + ε, u(t0) = u0 + ε

exists over [t0, t1], and limε→0 r(t, ε) = r(t) uniformly on [t0, t1].
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2 Main Results

Lemma 2.1 Let f : J ×R→ R be continuous and let

G(t, r) = max
|x−x0|≤r

|f(t, x)|.

Assume that r∗(t, t0, 0) is the maximal solution of

∆u(t) = G(t, u(t)),

through (t0, 0). Let x(t, t0, x0) be any solution of

∆x(t) = f(t, x), x(t0) = x0, t0 ≥ 0. (2)

Then

|x(t, t0, x0)− x0| ≤ r∗(t, t0, 0), t ≥ t0.

Proof: Define m(t) = |x(t, t0, x0)− x0|. Then

∆m(t) ≤ |∆x(t, t0, x0)|
= |f(t, x(t, t0, x0))|
≤ max

|x−x0|≤m(t)
|f(t, x)|

= G(t,m(t)).

This implies by Theorem 1.2 , that

m(t) = |x(t, t0, x0)− x0| ≤ r∗(t, t0, 0), t ≥ t0,

and this proves lemma.

Theorem 2.2 Let f : J×R→ R be continuous and for (t, x), (t, y) ∈ J×R,

|f(t, x)− f(t, y)| ≤ g(t, |x− y|), (3)

where g : J ×R→ is continuous mapping. Assume that u(t) ≡ 0 is the unique
solution of difference equation

∆u(t) = g(t, u(t)) (4)

such that u(t) = 0. Then if the solutions u(t, t0, u0) of (4) through every point
(t0, u0) are continuous with respect to initial conditions (t0, u0), the solutions
x(t, t0, x0) of (2)are unique and continuous with respect to the initial values
(t0, u0).
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Proof: Since the uniqueness of the solutions follows froem the Theorm 1.3,
we have to prove the continuity part only. To that end, let x(t, t0, u0) and
(y(t, t0, u0) be the solutions of (2) through (t0, x0) and (t0, y0) respectively.
Defining m(t) = |x(t, t0, x0) − y(t, t0, y0)|, the condition (3) implies the in-
equality

∆m(t) ≤ g(t,m(t)),

and by Theorem 1.2, we obtain

m(t) ≤ r(t, t0, |x0 − y0|), t ≥ t0,

where r(t, t0, |x0−y0|) is the maximal solution of (4) such that u(t0) = |x0−y0|.
Since the solutions u(t, t0, u0) of (4) are assumed to be continuous with respect
to the initial values, it follows that

lim
x0→y0

r(t, t0, |x0 − y0|) = r(t, t0, 0),

and, by hypothesis, r(t, t0, 0) ≡ 0. This is in view of the definition of m(t),
yields that

lim
x0→y0

x(t, t0, x0) = y(t, t0, y0),

which shows the continuity of x(t, t0, x0) with respect to x0.
We shall next prove the continuity with respect to initial time t0.
If x(t, t0, x0), y(t, t∗, x0), t

∗ > t0, are the solutions of (2) through (t0, x0), (t∗, x0),
respectively, then, as before we obtain the inequality

∆m(t) ≤ g(t,m(t)),

where m(t) = |x(t, t0, x0) − y(t, t∗, x0)|. Also, m(t∗) = |x(t∗, t0, x0) − x0|.
Hence by Lema (2.1), m(t∗) ≤ r∗(t∗, t0, 0), and consequently, m(t) ≤ r̄(t),
t > t∗, where r̄(t) = r̄(t, t∗, r∗(t∗, t0, 0)) is the maximal solution of (4) through
(t∗, r∗(t∗, t0, 0)). Since r∗(t0, t0, 0) = 0, we have

lim t∗ → t0r̄(t, t
∗, r∗(t∗, t0, 0)) = r̄(t, t0, 0),

and, by hypothesis, r̄(t, t0, 0) is identically zero, thus proving the continuity of
x(t, t0, x0) with respect to t0.

Theorem 2.3 Let f : E → R, where E is an open (t, x, µ)-set in R×R×R,
and for µ = µ0, let x0(t) = x(t, t0, x0, µ0) be a solution of

∆x(t) = f(t, x, µ0), x(t0) = x0, (5)
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existing for t ≥ t0. Assume further that

lim
µ→µ0

f(t, x, µ) = f(t, x, µ0), (6)

uniformly in (t, x), and for (t, x1, µ), (t, x2, µ) ∈ E,

|f(t, x1, µ)− f(t, x2, µ)| ≤ g(t, |x1 − x2|) (7)

where g : J × R+ → R+. Suppose that u(t) ≡ 0 is the unique solution of (4)
such that u(t0) = 0. Then given ε > 0, there exists a δ(ε) > 0 such that, for
every µ, |µ− µ0| < δ(ε), the system

∆x(t) = f(t, x, µ), x(t0) = x0 (8)

admits a unique solution x(t) = x(t, t0, x0, µ) satisfying

|x(t)− x0(t)| < ε, t ≥ t0.

Proof: The uniqueness of solutions is obvious from Theorem 1.3. From the
assumption that u(t) = 0 is the unique solution of (4), it follows, by Theorem
1.4, that, given any compact interval [t0, t0 + a] contained in J and any ε >
0, there exist a positive number η = η(ε) such that the maximal solution
r(t, t0, 0, η) of

∆u(t) = g(t, u) + η

exists on t0 ≤ t ≤ t0 + a and satisfies

r(t, t0, 0, η) < ε, t ∈ [t0, t0 + a].

Furthermore, because of the condition (6), given η > 0, there exists a δ =
δ(η) > 0 such that |f(t, x, µ)− f(t, x, µ0)| < η provided |µ− µ0| < δ.
Now, let ε > 0 be given and define m(t) = x(t) − x0(t), where x(t), x0(t) are
the solutions of (8) and (5) respectively. Then using the assumption (7), we
get

∆m(t) ≤ g(t,m(t)) + |f(t, x0(t), µ)− f(t, x0(t), µ0)|.

From this it turns out that whenever |µ− µ0| < δ,

∆m(t) ≤ g(t,m(t)) + η.

By Theorem 1.2, we have

m(t)≤ r(t, t0, 0, η), t ≥ t0

and hence

|x(t)− x0(t)| < ε, t ≥ t0

provided that |µ− µ0| < δ.
Clearly δ depends on ε since η does. The proof is complete.
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