

Gen. Math. Notes, Vol. 22, No. 2, June 2014, pp.1-6 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

A Note on the Convergence of Random Riemann and Riemann-Stieltjes Sums to the Integral

E. Dastranj

Department of Pure Mathematics, Faculty of Mathematical Sciences Shahrood University, P.O. Box – 203-2308889030 Shahrood, Iran E-mail: dastranj.e@gmail.com

(Received: 9-1-14 / Accepted: 1-4-14)

Abstract

Convergence in probability of random Riemann sums of a Lebesgue integrable function on [0,1) to the integral has been proved. In this article we generalize the result to an abstract probability space under some natural conditions and we show L_1 - convergence rather than convergence in probability.

Keywords: System of partitions, random Riemann Sums, Random Riemann-Stieltjes Sums, L1 Convergence, Integral.

1 Introduction

The concept of random Riemann sums is considered in [1,2,3,4,5,6]. We present a somehow modified definition of it as follows.

Denote the interval [0, 1) by I_0 and let I_0 be equipped with the Borel σ algebra **B**. Let m be the Lebesgue measure on **B**.

Let \mathcal{P}_0 be a finite partition of I_0 by intervals of positive length. We note that any collection of disjoint non-empty intervals can be ordered naturally in terms of the natural order of real numbers. Let this order too be denoted by <. Let J_i , $1 \leq i \leq n$, be the intervals constituting \mathcal{P}_0 s.t. $J_1 < J_2 < \ldots < J_n$. Corresponding to \mathcal{P}_0 , there is a unique finite sequence x_i , $0 \leq i \leq n$, of elements of I_0 s.t. $0 = x_0 < x_1 < \ldots < x_n = 1$ and s.t. x_{i-1} and x_i are the end points of J_i , for $1 \leq i \leq n$. In what follows \mathcal{P}_0 is fixed unless otherwise stated. For an arbitrary nonempty set S if \mathcal{P}_1 and \mathcal{P}_2 are partitions of S, we say \mathcal{P}_2 is a refinement of \mathcal{P}_1 and write $\mathcal{P}_1 \preceq \mathcal{P}_2$ if each element of \mathcal{P}_1 is a union of elements of \mathcal{P}_2 . In this article partitions of I_0 in the position that I_0 is assumed, i.e. when it is the range space of transformations, are as defined above. Hence if \mathcal{P}_1 and \mathcal{P}_2 , are partitions of I_0 , then $\mathcal{P}_1 \preceq \mathcal{P}_2$ if and only if the sequence corresponding to \mathcal{P}_1 is a subsequence of that corresponding to \mathcal{P}_2 . The norm of \mathcal{P}_0 w.r.t. m is $\|\mathcal{P}_0\| := \max\{m(J_i) : 1 \leq i \leq n\}$. For each $i, 1 \leq i \leq n$, let $t_i \in J_i$ be a random variable with uniform distribution in J_i .

Definition 1.1 Let $f : I_0 \longrightarrow \mathbb{R}$ be a Lebesgue integrable function. For the partition \mathcal{P}_0 of I_0 , the random Riemann sum of f w.r.t. \mathcal{P}_0 is defined to be the r.v.

$$\mathcal{S}_{\mathcal{P}_0}(f) = \sum_{i=1}^n f(t_i) m(J_i).$$

Definition 1.2 Let $(\Omega, \mathcal{F}, \mu)$ be a probability space. Call for a partition \mathcal{P} of Ω consisting of elements of \mathcal{F} , $\sup_{I \in \mathcal{P}} \mu(I)$ the norm of \mathcal{P} , w.r.t. μ and denote it by $|\mathcal{P}|_{\mu}$.

Definition 1.3 For a probability space $(\Omega, \mathcal{F}, \mu)$ a sequence $\{\Delta_n\}_{n\geq 1}$ of partitions of Ω is called a system of partitions if:

- 1. for each $n \geq 1$, Δ_n is a countable collection of elements of \mathcal{F} ;
- 2. the collection $\bigcup_{n>1} \Delta_n$ of subsets of Ω generates \mathcal{F} ;
- 3. $\lim_{n \to \infty} |\Delta_n|_{\mu} = 0.$

Call a system of partitions decreasing if for each $n \ge 1$, Δ_{n+1} is a refinement of Δ_n .

Henceforth Δ_n , $n \ge 1$, denotes a decreasing system of partitions of Ω and $\Delta = \bigcup_{n \ge 1} \Delta_n$.

It is not difficult to see that if for each ω , $\{\omega\} \in \mathcal{F}$, the condition $|\Delta_n|_{\mu} \longrightarrow 0$ is equivalent to μ being diffuse, i.e. having no atoms.

Remark 1.4 Euclidean spaces and more generally, locally compact second countable Hausdorff topological spaces and hence complete separable, i.e. Polish, metric spaces, with Borel σ -algebras and diffuse probability measures, when they admit such measures, yield decreasing systems of partitions.

In the sequel we assume $(\Omega, \mathcal{F}, \mu)$ is a fixed probability space for which μ is atomless and there exists a decreasing system Δ_n , $n \geq 1$ of partitions. Although to some stage we can proceed on a more general basis as described above, for the sake of simplicity and clarity we assume, in what follows, finite partitions for Ω instead of countable ones. Further we assume partitions have elements with positive, instead of nonnegative measures. A Note on the Convergence of Random Riemann...

Let \mathcal{P} be a (finite) partition of Ω consisting of measurable sets $A_1, A_2, ..., A_k$ (such that for each $i, 1 \leq i \leq k, \mu(A_i) > 0$).

For each $i, 1 \leq i \leq k$, let z_i be a random element of $A_i \in \mathcal{P}$, chosen according to the probability law $\mu_i(.) = \frac{\mu(.)}{\mu(A_i)}$.

There are randomization mechanisms, i.e. probability spaces which yield the required random elements. In all cases in this article, appropriate randomization mechanisms can be shown to exist[2].

Suppose $f : (\Omega, \mathcal{F}, \mu) \longrightarrow (\mathbb{R}, \mathbf{B}_{\mathbb{R}})$ is an integrable function where $\mathbf{B}_{\mathbb{R}}$ is the Borel σ -algebra in \mathbb{R} . In the sequel f will remain fixed.

Definition 1.5 The random Riemann-Stieltjes sum of f w.r.t. \mathcal{P} is defined to be

$$S'_{\mathcal{P}}(f) = \sum_{1 \le i \le k} f(z_i) \mu(A_i).$$

Note that when $\Omega = I_0$, $\mathcal{F} = \mathbf{B}$, and $\mu = m$, then $S'_{\mathcal{P}}(f) = S_{\mathcal{P}}(f)$.

In [3] the sequence of random Riemann sums are considered for a fixed and non-random sequence of partitions $\{\Delta_n\}_{n\geq 1}$ of I_0 such that $\Delta_n \leq \Delta_{n+1}, n \geq 1$, $\|\Delta_n\| \longrightarrow 0$ and t_i 's are taken to be independent, and it is proved that such a sequence of random Riemann sums tends to $\int_{I_0} f dm$, a.s..

In [1] t_i 's are taken to be independent and some results are proved for arbitrary but non-random, not necessarily being refined, sequences of partitions for which again the corresponding sequence of norms w.r.t. the Lebesgue measure m is assumed to tend to zero.

The following is a modified version of Proposition 2.1. of [1]:

For any $\epsilon > 0$, and any sequence of partitions \mathcal{P}_n , $n \ge 1$, of I_0 whose elements are finite unions of disjoint intervals, if $\lim_{n \to \infty} || \mathcal{P}_n || = 0$, then

$$P(\mid S_{\mathcal{P}_n}(f) - \int_{I_0} f dm \mid > \epsilon) \longrightarrow 0.$$

In [6] based on the construction of a mapping from a general probability space $(\Omega, \mathcal{F}, \mu)$ to (I_0, \mathbf{B}, m) under some reasonable and rather weak and general conditions, results of [3] and [1] are generalized, from the space (I_0, \mathbf{B}, m) to $(\Omega, \mathcal{F}, \mu)$.

In this paper L_1 -convergence of the random sequence $S'_{\Delta_n}(f)$, $n \ge 1$, to $\int_{\Omega} f d\mu$ is proved. It will easily be seen (Theorem2, below) that by the method applied here, in the case of [1] too, without the assumption of independence of z_i 's, L_1 -convergence can be deduced.

2 Conclusion

These are the main results of the paper.

Theorem 2.1 The random sequence $S'_{\Delta_n}(f), n \ge 1$, convergence to $\int_{\Omega} f d\mu$ in L_1 .

Theorem 2.2 Let $g : I_0 \longrightarrow \mathbb{R}$ be a Lebesgue integrable function and $\{\mathcal{P}_n\}_{n\geq 1}$ be a sequence of partitions of I_0 s.t. $\| \mathcal{P}_n \| \longrightarrow 0$. Then the random Riemann sums of g, $S_{\mathcal{P}_n}(g)$, convergence to $\int_{I_0} gdm$ in L_1 .

Lemma 2.3 Every indicator function can be approximated by a finite linear combination of indicator functions of elements of Δ , i.e. for each $A \in \mathcal{F}$ and each $\epsilon > 0$ there exists $M \in \mathbb{N}$ and members of Δ like $I_1, I_2, ..., I_M$ such that $E \mid \chi_A - \sum_{n=1}^M \chi_{I_n} \mid < \epsilon$

Proof. For each $\epsilon > 0$, there is a sequence I_n , $n \ge 1$, of disjoint elements of Δ s.t. $A \subseteq \bigcup_{n>1} I_n$, and

$$\mu(\bigcup_{n\geq 1}I_n) - \mu(A) < \frac{\epsilon}{2}$$

Let N be s.t.

$$\mu(\bigcup_{n\geq 1}I_n) - \mu(\bigcup_{n=1}^N I_n) < \frac{\epsilon}{2}.$$

Then

$$\mu(\bigcup_{n=1}^{N} I_n - A) + \mu(A - \bigcup_{n=1}^{N} I_n) < \epsilon.$$

Hence

$$E \mid \chi_A - \Sigma_{n=1}^N \chi_{I_n} \mid < \epsilon. \blacksquare$$

Proof of Theorem 2.1: Let \mathcal{L} be the set of all finite linear combinations of indicator functions of elements of Δ . We take the following standard steps.

- 1. It is clear that if a function g can be approximated by a member of \mathcal{L} , then so can cg for $c \in \mathbb{R}$.
- 2. If functions g_1 and g_2 can be approximated by members of \mathcal{L} , then so can $g_1 + g_2$.
- 3. If g_1, g_2, \ldots is an increasing sequence of non-negative integrable functions increasing to the integrable function h, and for each $n \ge 1$, g_n can be approximated by a member of \mathcal{L} , then so can h.

- 4. In view of the above steps, and Lemma1, for any $\epsilon > 0$ there is an element $g \in \mathcal{L}$ s.t. $E|f g| < \epsilon$.
- 5. For each $I \in \Delta$, for sufficiently large n we have

$$S'_{\Delta_n}(\chi_I) = \mu(I),$$

hence for any $g \in \mathcal{L}$, for sufficiently large n,

$$S'_{\Delta_n}(g) - \int_{\Omega} g d\mu = 0$$

It becomes clear that in terms of the L_1 norm, the set \mathcal{L} is dense in the collection of integrable functions on $(\Omega, \mathcal{F}, \mu)$. Therefore for any $\epsilon > 0$, there exists $g \in \mathcal{L}$ s.t. $\int |f - g| < \epsilon$. For any $n \ge 1$, we have

$$S'_{\Delta_n}(f) = S'_{\Delta_n}(g) + S'_{\Delta_n}(h),$$

and for any h and any n,

$$E \mid S'_{\Delta_n}(h) - \int_{\Omega} h d\mu \mid \leq E(S'_{\Delta_n}(|h|)) + \int_{\Omega} \mid h \mid = 2 \int_{\Omega} \mid h \mid .$$

Let h = f - g.

For sufficiently large n, we have

$$E|S'_{\Delta_n}(g) - \int_{\Omega} g d\mu| = 0$$

So for sufficiently large n,

$$E \mid S'_{\Delta_n}(f) - \int_{\Omega} f d\mu \mid \leq E \mid S'_{\Delta_n}(g) - \int_{\Omega} g d\mu \mid + E \mid S'_{\Delta_n}(h) - \int_{\Omega} h d\mu \mid \leq 0 + 2\epsilon. \blacksquare$$

Proof of Theorem 2.2: Since the Riemann integrable functions are dense in L_1 , in the step 5 above, it is sufficient to take g to be a Riemann integrable function s.t. f = g + h.

References

- [1] J. Grahl, A random approach to the Lebesgue integral, J. Math. Anal. Appl., 340(1) (2008), 358-365.
- [2] C.S. Kahane, Evaluating Lebesgue integrals as limits of Riemann sums, Math. Japonica, 38(6) (1993), 1073-1076.

- [3] J.C. Kieffer and C.V. Stanojevic, The Lebesgue integral as the almost sure limit of random Riemann sums, *Proc. Amer. Math. Soc.*, 85(3) (1982), 389-392.
- [4] A.S. Pruss, Randomly sampled Riemann sums and complete converjence in the law of larg numbers for a case without identical distribution, *Proc. Amer. Math. Soc.*, 124(3) (1996), 919-929.
- [5] A. Varsei and E. Dastranj, Further randomization of Riemann sums leading to the lebesgue integral, *Indian J. Pure Appl. Math.*, 42(6) (2011), 493-509.
- [6] A. Varsei and E. Dastranj, An approach to integral w.r.t. measure through random sums, *Dynam. Syst. Appl.*, 23(1) (2014), 31-38.