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Abstract
In this paper the concepts of µ−geodesic, µ−eccentricity, µ−radius,

µ−diameter, µ−center, µ−geodetic closure, µ−geodetic iteration number are
introduced. It is proved that if G : (V, σ, µ) is a connected fuzzy graph on n
nodes such that each pair of nodes is joined by a strong arc then the µ−distance
between two nodes is the reciprocal of its arc length. Also the concepts of
µ−convex set, µ−geodetic cover, µ−geodetic basis, µ−geodetic number, µ−check
node, µ−convex hull, µ−hull number are introduced. A sufficient condition for
a fuzzy graph to have its node set as µ−geodetic basis is obtained. µ−peripheral
vertex, µ−peripheral path and µ−eccentric vertex of fuzzy graph are analyzed.

Keywords: µ−geodesic, µ−eccentricity, µ−radius, µ−geodetic closure,
µ−geodetic iteration number, µ−convex set, µ−geodetic cover, µ−geodetic ba-
sis, µ−geodetic number, µ−check node, µ−convex hull, µ−hull number.

1 Introduction

Fuzzy graphs are introduced by Rosenfeld [8]. Rosenfeld has obtained the
fuzzy analogue of several graph theoretic concepts like paths, cycles, trees
and connectedness and established some of the properties [8]. Bhattacharya
has introduced fuzzy groups and metric notion in fuzzy graphs. Bhutani and
Rosenfeld have introduced the concept of strong arcs [1] and geodesic distance
in fuzzy graphs [2]. The definition of a geodesic basis, median are also given
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by the same author. Several important works on fuzzy graphs can be found
in [9]. Some metric aspects using the µ−distance is defined by Rosenfeld [8]
and further studied by Sunitha and Vijayakumar [11]. In this paper geodetic
iteration number and geodetic number of fuzzy graphs based on µ−distance is
introduced.

2 Preliminaries

The following definitions are from [8], [1], [7], [6] and [10].

A fuzzy graph is denoted by G : (V, σ, µ) where V is a vertex set, σ is a fuzzy
subset of V and µ is a fuzzy relation on σ. i.e., µ(x, y) ≤ σ(x)∧σ(y) ∀ x, y ∈ V .
We consider fuzzy graph G with no loops and assume that V is finite and
nonempty, µ is reflexive (i.e.,µ(x, x) = σ(x),∀x) and symmetric(i.e., µ(x, y) =
µ(y, x),∀(x, y)). In all the examples σ is chosen suitably. Also, we denote the
underlying crisp graph by G∗ : (σ∗, µ∗) where σ∗ = {u ∈ V : σ(u) > 0} and
µ∗ = {(u, v) ∈ V × V : µ(u, v) > 0}. The fuzzy graph H : (τ, ν) is said to be a
partial fuzzy subgraph of G : (σ, µ) if ν ⊆ µ and τ ⊆ σ. Let P ⊆ V , the fuzzy
graph H : (P, τ, ν) is called a fuzzy subgraph of G : (V, σ, µ) induced by P if
τ(x) = σ(x) ∀ x ∈ P and ν(x, y) = µ(x, y) ∀ x, y ∈ P . G : (V, σ, µ) is called
trivial if |σ∗| = 1.

A path P of length n is a sequence of distinct nodes u0, u1, ..., un such that
µ(ui−1, ui) > 0, i = 1, 2, ..., n and the degree of membership of a weakest arc is
defined as its strength. If u0 = un and n ≥ 3 then P is called a cycle and P is
called a fuzzy cycle, if it contains more than one weakest arc. The strength of
a cycle is the strength of the weakest arc in it. The strength of connectedness
between two nodes x and y is defined as the maximum of the strength of
all paths between x and y and is denoted by CONNG(x, y). A fuzzy graph
G : (σ, µ) is connected if for every x, y in σ∗, CONNG(x, y) > 0. A fuzzy graph
G is said to be complete if µ(u, v) = σ(u)∧σ(v), ∀u, v ∈ σ∗. A connected fuzzy
graph G : (σ, µ) is a fuzzy tree if it has a fuzzy spanning subgraph F : (σ, ν),
which is a tree where for all arcs (x, y) not in F there exists a path from x to
y in F whose strength is more than µ(x, y). An arc of a fuzzy graph is called
strong if its weight is at least as great as the connectedness of its end nodes
when it is deleted . Depending on CONNG(x, y) of an arc (x, y) in a fuzzy
graph G, Sunil Mathew and M.S.Sunitha [10] defined three different types
of arcs. Note that CONNG−(x,y)(x, y) is the the strength of connectedness
between x and y in the fuzzy graph obtained from G by deleting the arc (x, y).
An arc (x, y) in G is α− strong if µ(x, y) > CONNG−(x,y)(x, y). An arc (x, y)
in G is β− strong if µ(x, y) = CONNG−(x,y)(x, y). An arc (x, y) in G is δ−
arc if µ(x, y) < CONNG−(x,y)(x, y). A fuzzy cut node w is a node in G whose
removal reduces the strength of connectedness between some pair of nodes in
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G. If µ(u, v) > 0, then u and v are called neighbors. Also v is called strong
neighbor of u if arc (u,v) is strong. A node z is a fuzzy end node of G if it has
exactly one strong neighbor in G.

For any path P : u0, u1, ..., un the µ− length of P, l(P ) is defined as the sum

of reciprocals of arc weights . That is l(P ) =
n∑
i=1

1

µ(ui−1, ui)
. If n = 0 define

l(P ) = 0, and µ− distance dµ(u, v) is the smallest µ−length of any u−v path.

3 µ− Geodesics in Fuzzy Graph

In crisp graph the concept of geodesic and geodesic iteration number are dis-
cussed in [3] and [4]. Here we are extending these ideas to fuzzy graphs.
Depending on µ−distance we define µ−geodesic, µ−eccentricity, µ−radius,
µ−diameter, µ−center, µ−geodetic closure and µ−geodetic iteration number
as follows.

Definition 3.1 Any path P from x to y with smallest µ−length is called
µ−geodesic from x to y. ı.e., Any path P from x to y whose µ−length is
dµ(u, v) is called µ−geodesic from x to y.

Definition 3.2 The µ−eccentricity eµ(u) of a node u in G is given by

eµ(u) = Maxv∈V dµ(u, v)

The minimum µ−eccentricity among the vertices of G is its µ−radius de-
noted by rµ(G).

rµ(G) = Minv∈V eµ(u)

A node v is a µ−cental node if,

eµ(v)=rµ(G)

Let Cµ(G) be the set of all µ−central nodes of G. Then the fuzzy subgraph
induced by Cµ(G) denoted by < Cµ(G) > is called µ− center of G.

The maximum µ−eccentricity among the vertices of G is its µ−diameter
denoted by dµ(G).

dµ(G) = Maxv∈V eµ(u)

A node v is a µ−peripheral node or µ−diametral node if ,
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eµ(v)=dµ(G)

Example 3.3 Consider the fuzzy graph given in Fig.1.

b

b

b

b
b y

u x

v w

.5

.6 .8

.9

.7

Fig-1

Here µ−peripheral nodes are u and y.
µ−central nodes are x and v.
rµ(G) = 2.68.
dµ(G) = 4.21.

Definition 3.4 Let S be a set of nodes of a connected fuzzy graph G :
(V, σ, µ). Then the µ−geodetic closure of S is the set of all nodes that lie on
µ−geodesics between nodes of S denoted by (Sµ).

Example 3.5 Consider the fuzzy graph given in Fig.1.

If S = {u,w}.
Then (Sµ) = {u, v, w}.
Similarly if S = {u, x, y}.
Then (Sµ) = {u, v, w, x, y}.

4 µ− Geodetic Iteration Number for a Fuzzy

Graph [µ−gin(G)]

Let S be a set of nodes of a connected fuzzy graph G : (V, σ, µ). Let S1
µ, S

2
µ, ...,

are µ−closures where S1
µ = (Sµ), S2

µ = (S1
µ) = ((Sµ)) etc. Since we consider

only finite fuzzy graphs, the process of taking closures must terminate with
some smallest n such that Snµ = Sn−1µ . That is repeat the closure operation
until the stability occurs.

Definition 4.1 The smallest value of n so that Snµ = Sn−1µ is called µ−geodetic
iteration number of S denoted by µ− gin(S). Now µ−gin(G) is the maximum
value of µ−gin(S), for all S ⊂ V (G).
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Remark 4.2 For a trivial fuzzy graph G, µ−gin(G)=0.

Example 4.3 Consider the fuzzy graph given in Fig.1.

Taking S = {u, x, y}
S1
µ = (Sµ) = {u, x, v, w, y}
S2
µ = S1

µ

Therefore
µ−gin(S)=2.
It can be verified that maximum value of µ−gin(S)=2 for all S ⊂ V (G).
Therefore
µ−gin(G)=2.

Theorem 4.4 Let G : (V, σ, µ) be a connected fuzzy graph on n nodes such
that each pair of nodes is joined by a strong arc. Then

dµ(u, v) = 1
µ(u,v)

.

Also

dµ(u, v) = 1
CONNG(u,v)

.

Proof
Given that all arcs in G are strong. Thus G contain only α− strong and

β− strong arcs. Therefore we have two cases.
Case.1
Let (u, v) be an arc in G which is β− strong. Consider all other u − v

paths in G. Then the weight of the weakest arc in any u − v path is µ(u, v).
Therefore
CONNG(u, v) = µ(u, v).(By definition of β− strong )

Now let P : u = u0, u1, ..., un = v be such a u−v path. Then the µ− length
of the path P is

l(P ) =
n∑
i=1

1

µ(ui−1, ui)
>

1

µ(u, v)

Also µ−distance dµ(u, v) is the smallest µ−length of any u−v path. Therefore

dµ(u, v) = 1
µ(u,v)

.

Case.2
Let (u, v) be an arc in G which is α− strong. Then

CONNG(u, v) = µ(u, v) (By definition of α− strong).
Consider all other u-v paths in P . Let P : u = u0, u1, ..., un = v be such a
u− v path and (x, y) be an arc in G. Then
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µ(x, y) < µ(u, v) (By definition of α− strong)

i.e.,

1
µ(x,y)

> 1
µ(u,v)

Hence

l(P ) =
n∑
i=1

1

µ(ui−1, ui)
>

1

µ(u, v)

Also µ− distance dµ(u, v) is the smallest µ−length of any u−v path. Therefore

dµ(u, v) = 1
µ(u,v)

If the arc is α− strong or β− strong, then

µ(u, v) = CONNG(u, v) [10]

Therefore

dµ(u, v) = 1
CONNG(u,v)

.

‘
Hence the proof.

Corollary 4.5 For a complete fuzzy graph G : (V, σ, µ) on n nodes

dµ(u, v) = 1
µ(u,v)

.

Remark 4.6 For a complete fuzzy graph G ,each arc is a µ−geodesic be-
tween its end nodes. So when we consider any S ⊆ V (G), any pair of nodes in
S is connected by a µ−geodesic,i.e., no µ−geodesic between a pair of nodes of
S contains another node. So S1

µ = (Sµ) = S. This is true for any S ⊆ V (G).
Hence µ−gin(G)=1 for a complete fuzzy graph G.

Remark 4.7 The converse of Theorem 4.4 need not be true. That is if G
:(V ,σ,µ) is a connected fuzzy graph with dµ(u, v) = 1

µ(u,v)
for each arc (u, v)

∀u, v ∈ V (G), it does not imply that each pair of nodes in G is joined by a
strong arc.

Example 4.8 Consider the fuzzy graph given in Fig.2.
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Here for each arc (u, v) we have dµ(u, v) = 1
µ(u,v)

. But arc (u, v) and arc

(u,w) are not strong arcs.

5 µ−Geodetic Number of a Fuzzy Graph [µ−gn(G)]

Depending on µ−distance we define µ−convex set, µ−geodetic cover, µ−geodetic
basis, and µ−geodetic number of a fuzzy graph as follows. Then a sufficient
condition for a fuzzy graph to have its node set as µ−geodetic basis is obtained.

Definition 5.1 A set S is µ−convex if all nodes on any µ−geodesic between
two of its nodes are contained in S. Thus S is convex if (Sµ)=S.

Example 5.2 Consider the fuzzy graph given in Fig.1.

If S = {u, v, w}, then (Sµ)=S. Therefore S is a µ−convex set .

Definition 5.3 A µ−geodetic cover of G is a set S ⊆ V(G) such that every
node of G is contained in a µ− geodesic joining some pair of nodes in S.

Example 5.4 Consider the fuzzy graph given in Fig.1.
If S = {u, x, y}.
Then (Sµ) = {u,w, x, v, y} = V (G).
Therefor S is a µ−geodetic cover.

Consider the fuzzy graph given in Fig.2.
If S = {u, v, x, w}.
Then (Sµ) = {u, v, , x, w} = V (G).
Therefor S is a µ−geodetic cover.

Proposition 5.5 A connected fuzzy graph has at least one µ−geodetic cover.

Definition 5.6 The µ−geodetic number of G denoted by µ−gn(G), is the
minimum order of its µ−geodetic covers and any cover of order µ−gn(G) is a
µ−geodetic basis.
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Example 5.7 Consider the fuzzy graph given in Fig.1.

Here {u, x, y} is a µ−geodetic basis and µ−gn(G)= 3.

Definition 5.8 For a µ−geodetic cover S, a node in G \ S is called a
µ−check node.

Remark 5.9 In crisp graphs [3] the unique geodetic basis of a tree consists
of all its end nodes. But for a fuzzy tree µ−geodetic basis need not be the set
of fuzzy end nodes of G.

Example 5.10 Consider the fuzzy graph given in Fig.3.
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Here fuzzy end nodes are v and w. But {v,w} is not a µ−geodetic cover,
and µ−geodetic basis is {v,w,u} .

Theorem 5.11 Let G :(V ,σ,µ) be a connected fuzzy graph on n nodes such
that each pair of nodes in G is joined by a strong arc. Then µ−geodetic number,
µ−gn(G)= n.

Proof

Given G :(V ,σ,µ) be a connected fuzzy graph on n nodes such that each
pair of nodes in G is joined by a strong arc. Then

dµ(u, v) = 1
CONNG(u,v)

for each arc (u,v).[by Theorem 4.4]

Therefore no node lie on a µ−geodesic between any two other nodes. Hence
µ−geodetic basis consists of all nodes of G. Thus µ−gn(G)= n.

Corollary 5.12 For a complete fuzzy graph G, µ−gn(G)= n.

Remark 5.13 Converse of Theorem 5.11 need not be true. If G :(V ,σ,µ)
is a connected fuzzy graph on n nodes with µ−gn(G)= n, it does not imply
that each pair of nodes in G is joined by a strong arc.

Consider the fuzzy graph given in Fig.2.

µ−gn(G)= 4, But arc (u, v) and arc (u,w) are not strong arcs.
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Theorem 5.14 For any connected fuzzy graph G, µ−gn(G)=2 if and only
if there exists µ−peripheral nodes u and v such that every node of G is on a
µ−peripheral path joining u and v. Also let P :u = u0 ,u1 ,u2 ,...,un = v be a
µ−peripheral path then

dµ (u,v) = dµ (u0, u1)+ dµ (u1, u2)+ dµ (u2, u3)+...+dµ (un−1, un).

Proof

Let u and v be such that each node of G is on µ−peripheral path P joining
u and v. Since G is nontrivial, µ−gn(G) ≥ 2. Since P is a µ−geodesic joining
u and v, each node of G is on a µ−geodesic between u and v. So S={u,v} is
a µ−geodetic basis and µ−gn(G)= 2.

Conversely let µ−gn(G) = 2 and S = {u,v} be a µ−geodetic basis for G.
To Prove that dµ(G) = dµ (u,v).
Assume dµ (u,v) < dµ(G).
Then ∃ µ−peripheral nodes s and t such that s and t belong to distinct
µ−geodesics joining u and v and dµ (s,t) = dµ(G).
Then, dµ (u,v) = dµ (u,s) + dµ (s,v) ..... (1)
dµ (u,v) = dµ (u,t) + dµ (t,v) ..... (2)
dµ (s,t) ≤ dµ (s,u) + dµ (u,t) .... (3)
dµ (s,t) ≤ dµ (s,v) + dµ (v,t) .... (4)
Since dµ (u,v) < dµ (s,t)
(3) =⇒ dµ (u,v) < dµ (s,u) + dµ (u,t) and by (1)
dµ (s,v) < dµ (u,t) and from (4)
dµ (s,t) < dµ (u,t) + dµ (v,t) = dµ (u,v) by (1), which is a contradiction. Thus
u and v must be µ−peripheral nodes.

Next Given P :u = u0 ,u1 ,u2 ,...,un = v be a µ−peripheral path. Since
every node of G is on µ−peripheral path,

dµ(ui−1, ui) = 1
µ(ui−1,ui)

.

Therefore dµ(u, v) = min {
n∑
i=1

1

µ(ui−1, ui)
}.

=
n∑
i=1

dµ(ui−1, ui).

Therefore

dµ (u,v) = dµ (u0, u1)+ dµ (u1, u2)+ dµ (u2, u3)+...+dµ (un−1, un)

Hence the proof.
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Remark 5.15 In crisp graph G, if v is a node that is farthest from u, then
v is not a cut node of G [5]. But in fuzzy graphs, if v is a node that is farthest
from u in G, then v can be a fuzzy cut node of G. That is in fuzzy graphs fuzzy
cut node can be µ−eccentric node and µ−peripheral node .

Example 5.16 Consider the fuzzy graph given in Fig.4.
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In Fig.4 v is a fuzzy cut node and v is an µ−eccentric node of w as well.
Also v is a µ−peripheral node.

6 µ− Convex Hull of a Fuzzy Graph

In this section µ−convex hull and µ−hull number of a fuzzy graph with respect
to µ−distance is defined.

Definition 6.1 Let S ⊆ V (G) and repeatedly take its closures S1
µ = (Sµ), S2

µ =
(S1

µ) = ((Sµ)) etc. Since we consider only fuzzy graphs with finite number of
nodes, this process of taking closures must terminate with some smallest n such
that Snµ = Sn−1µ . The resulting set is called µ−convex hull of S in G, and is
denoted by [Sµ].

Example 6.2 Consider the fuzzy graph given in Fig.1.

Here let S = {u, x, y}, which is not µ−convex, and µ−convex hull of S in
G, [Sµ] = {u, v, w, x, y} .

Remark 6.3 It is clear from the definition that a subset S ⊆ V (G) is
µ−convex if and only if [Sµ] = S. Also [Sµ] is the smallest µ−convex set
containing S.

Definition 6.4 The minimum order of the set S ⊆ V(G) such that [Sµ] =
V (G) is called the µ−hull number of G denoted by hµ(G) and such a set is
called minimum µ−hull set of G.
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Example 6.5 Consider the fuzzy graph given in Fig.1.

S = {u, x, y}.

[Sµ] = {u, v, w, x, y} = V (G) .

S = {u, x, y} is a minimum µ−hull set.

hµ(G) = 3.

Remark 6.6 Let G :(V ,σ,µ) be a connected fuzzy graph with G∗ complete
and all arcs in G are strong. Then hµ(G)= n.

Proposition 6.7 For a connected fuzzy graph G :(V ,σ,µ), 2 ≤ hµ(G) ≤ n,
where n is the number of nodes in G.

7 Conclusion

In this paper, we introduced µ−geodesic, µ−eccentricity, µ−radius, µ−diameter,
µ−center, µ−geodetic closure, µ−geodetic iteration number, µ−convex set,
µ−geodetic cover, µ−geodetic basis, µ−geodetic number, and µ−convex hull
of a fuzzy graph and studied some properties.
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