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Abstract

In this paper the concepts of u—geodesic, j—eccentricity, p—radius,
p—diameter, pu—center, u—geodetic closure, —geodetic iteration number are
introduced. It is proved that if G : (V,o,u) is a connected fuzzy graph on n
nodes such that each pair of nodes is joined by a strong arc then the u—distance
between two nodes is the reciprocal of its arc length. Also the concepts of
u—convez set, p— geodetic cover, u—geodetic basis, j1— geodetic number, pu— check
node, pu—convex hull, p—hull number are introduced. A sufficient condition for
a fuzzy graph to have its node set as pi— geodetic basis is obtained. p—peripheral
vertex, u—peripheral path and p—eccentric vertex of fuzzy graph are analyzed.

Keywords: p—geodesic, u—eccentricity, pu—radius, p—geodetic closure,
u—geodetic iteration number, p—conver set, —geodetic cover, p— geodetic ba-
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1 Introduction

Fuzzy graphs are introduced by Rosenfeld [8]. Rosenfeld has obtained the
fuzzy analogue of several graph theoretic concepts like paths, cycles, trees
and connectedness and established some of the properties [8]. Bhattacharya
has introduced fuzzy groups and metric notion in fuzzy graphs. Bhutani and
Rosenfeld have introduced the concept of strong arcs [1] and geodesic distance
in fuzzy graphs [2]. The definition of a geodesic basis, median are also given
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by the same author. Several important works on fuzzy graphs can be found
in [9]. Some metric aspects using the p—distance is defined by Rosenfeld [§]
and further studied by Sunitha and Vijayakumar [11]. In this paper geodetic
iteration number and geodetic number of fuzzy graphs based on p—distance is
introduced.

2 Preliminaries

The following definitions are from [8], [1], [7], [6] and [10].

A fuzzy graph is denoted by G : (V, o, 1) where V' is a vertex set, o is a fuzzy
subset of V and p is a fuzzy relation on 0. i.e., pu(z,y) < o(z)Ao(y)Vz,y € V.
We consider fuzzy graph G with no loops and assume that V' is finite and
nonempty, p is reflexive (i.e.,u(z,x) = o(x),Vr) and symmetric(i.e., p(z,y) =
w(y, x),V(z,y)). In all the examples o is chosen suitably. Also, we denote the
underlying crisp graph by G* : (¢*, u*) where 0* = {u € V : o(u) > 0} and
p* = {(u,v) € VxV:p(u,v)>0}. The fuzzy graph H : (7,v) is said to be a
partial fuzzy subgraph of G : (o, ) if v C pand 7 C 0. Let P C V, the fuzzy
graph H : (P, T,v) is called a fuzzy subgraph of G : (V, o, 1) induced by P if
7(x) =o(x) Vo e P and v(z,y) = ulx,y) Vao,y € P. G: (V,o,un) is called
trivial if |o*| = 1.

A path P of length n is a sequence of distinct nodes ug, uq, ..., u, such that
p(ui—1,u;) > 0,i=1,2,...,n and the degree of membership of a weakest arc is
defined as its strength. If ug = w, and n > 3 then P is called a cycle and P is
called a fuzzy cycle, if it contains more than one weakest arc. The strength of
a cycle is the strength of the weakest arc in it. The strength of connectedness
between two nodes x and y is defined as the maximum of the strength of
all paths between z and y and is denoted by CON Ng(z,y). A fuzzy graph
G : (o, p) is connected if for every z,y in 0, CON Ng(z,y) > 0. A fuzzy graph
G is said to be complete if p(u,v) = o(u) Ao (v),Vu,v € o*. A connected fuzzy
graph G : (o, ) is a fuzzy tree if it has a fuzzy spanning subgraph F' : (o, v),
which is a tree where for all arcs (x,y) not in F' there exists a path from x to
y in F whose strength is more than p(z,y). An arc of a fuzzy graph is called
strong if its weight is at least as great as the connectedness of its end nodes
when it is deleted . Depending on CON N¢(z,y) of an arc (x,y) in a fuzzy
graph G, Sunil Mathew and M.S.Sunitha [10] defined three different types
of arcs. Note that CONNg_(,,)(x,y) is the the strength of connectedness
between z and y in the fuzzy graph obtained from G by deleting the arc (z,y).
An arc (z,y) in G is a— strong if p(z,y) > CONNg_(zy)(z,y). An arc (z,y)
in G is f— strong if p(x,y) = CONNg_(zy)(2,y). An arc (z,y) in G is —
arc if p(z,y) < CONNg_(zy)(z,y). A fuzzy cut node w is a node in G whose
removal reduces the strength of connectedness between some pair of nodes in
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G. If p(u,v) > 0, then u and v are called neighbors. Also v is called strong
neighbor of w if arc (u,v) is strong. A node z is a fuzzy end node of G if it has
exactly one strong neighbor in G.

For any path P: ug, uy, ..., u, the u— length of P, [(P) is defined as the sum

1
of reciprocals of arc weights . That is {(P) = Y —————. If n = 0 define

= m(uiog, ug)
[(P) =0, and p— distance d,(u,v) is the smallest y1—length of any u — v path.

3 pu— Geodesics in Fuzzy Graph

In crisp graph the concept of geodesic and geodesic iteration number are dis-
cussed in [3] and [4]. Here we are extending these ideas to fuzzy graphs.
Depending on p—distance we define p—geodesic, u—eccentricity, p—radius,
u—diameter, u—center, p—geodetic closure and p—geodetic iteration number
as follows.

Definition 3.1 Any path P from x to y with smallest u—length is called
w—geodesic from x to y. 1.e., Any path P from x to y whose u—Ilength is
d,(u,v) is called p—geodesic from x to y.

Definition 3.2 The p—eccentricity e,(u) of a node u in G is given by

eu(u) = Maz,evd,(u,v)

The minimum p— eccentricity among the vertices of G is its p—radius de-
noted by r,(G).

r,(G) = Minyeve,(u)
A node v is a p—cental node if,

eu(v)=ru(G)

Let C,(G) be the set of all pi—central nodes of G. Then the fuzzy subgraph
induced by C,(G) denoted by < C,,(G) > is called pi— center of G.

The maximum p—eccentricity among the vertices of G is its u—diameter
denoted by d,(G).

d,(G) = Maz,eve,(u)

A node v is a p—peripheral node or p—diametral node if |
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en(v)=d,(G)
Example 3.3 Consider the fuzzy graph given in Fig.1.

Fig-1

Here p—peripheral nodes are u and y.
p—central nodes are r and v.
r,(G) = 2.68.
d,(G) =4.21.

Definition 3.4 Let S be a set of nodes of a connected fuzzy graph G :
(V,o,u). Then the p—geodetic closure of S is the set of all nodes that lie on
p—geodesics between nodes of S denoted by (.S,,).

Example 3.5 Consider the fuzzy graph given in Fig.1.

If S = {u,w}.
Then (S,) = {u,v,w}.
Similarly if S = {u,z,y}.
Then (S,) = {u,v,w,z,y}.

4 pu— Geodetic Iteration Number for a Fuzzy
Graph [p—gin(G)]

Let S be a set of nodes of a connected fuzzy graph G : (V, o, ). Let S, 52, ...,
are p—closures where S} = (S5,),S% = (S,) = ((Sy)) etc. Since we consider
only finite fuzzy graphs, the process of taking closures must terminate with
some smallest n such that S = Sﬁfl. That is repeat the closure operation

until the stability occurs.

Definition 4.1 The smallest value of n so that S); = SLL*I 15 called p—geodetic

iteration number of S denoted by u— gin(S). Now p—gin(G) is the maximum
value of p—gin(S), for all S C V(G).
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Remark 4.2 For a trivial fuzzy graph G, p—gin(G)=0.
Example 4.3 Consider the fuzzy graph given in Fig.1.

Taking S = {u,z,y}
gé - Eﬁ“) = {u,z,v,w,y}
p p
Therefore
p—gin(S)=2.
It can be verified that mazimum value of p—gin(S)=2 for all S C V(G).
Therefore

u—gin(G)=2.

Theorem 4.4 Let G : (V, 0, 1) be a connected fuzzy graph on n nodes such
that each pair of nodes is joined by a strong arc. Then

d,(u,v) = u(i,v)'
Also
1
dyy(u,v) = CONNG(u,0)°
Proof

Given that all arcs in G are strong. Thus G contain only a— strong and
f— strong arcs. Therefore we have two cases.

Case.1

Let (u,v) be an arc in G which is f— strong. Consider all other v — v
paths in G. Then the weight of the weakest arc in any u — v path is u(u,v).
Therefore
CON N¢(u,v) = p(u, v).(By definition of f— strong )

Now let P : u = ug, uy, ..., u, = v be such a u—v path. Then the u— length
of the path P is

=3 —+ - !

i=1 ﬂ(uiflau» ,U(U,U)

Also p—distance d,,(u, v) is the smallest 1—length of any u—v path. Therefore

du(u,0) =

Case.2

Let (u,v) be an arc in G which is a— strong. Then
CON N¢(u,v) = p(u,v) (By definition of a— strong).
Consider all other u-v paths in P. Let P : u = wg,uy,...,u, = v be such a
u — v path and (z,y) be an arc in G. Then
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pu(x,y) < p(u,v) (By definition of a— strong)

ie.,

1 1
w(z,y) p(u,v)

Hence

Also pu— distance d,,(u, v) is the smallest yp—length of any u—v path. Therefore

dﬂ(“’? U) = H(’iﬂ})

If the arc is a— strong or S— strong, then
p(u,v) = CON Ng(u,v) [10]
Therefore

_ 1
dyu(u,v) = CONNG(u,0)"

Hence the proof.

Corollary 4.5 For a complete fuzzy graph G : (V,o, 1) on n nodes

d,(u,v) = H(i’v).

Remark 4.6 For a complete fuzzy graph G ,each arc is a p—geodesic be-
tween its end nodes. So when we consider any S C V(G), any pair of nodes in
S is connected by a p—geodesic,i.e., no p—geodesic between a pair of nodes of
S contains another node. So S}, = (S,) = S. This is true for any S C V(G).
Hence p—gin(G)=1 for a complete fuzzy graph G.

Remark 4.7 The converse of Theorem 4.4 need not be true. That is if G
:(V,o,u) is a connected fuzzy graph with d,(u,v) = “(i 5 Jfor each arc (u,v)

Yu,v € V(G), it does not imply that each pair of nodes in G is joined by a
strong arc.

Example 4.8 Consider the fuzzy graph given in Fig.2.
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Here for each arc (u,v) we have d,(u,v) = But arc (u,v) and arc

)
(u,w) are not strong arcs.

5 p— Geodetic Number of a Fuzzy Graph [p—gn(G)]

Depending on p—distance we define u—convex set, u—geodetic cover, p—geodetic
basis, and p—geodetic number of a fuzzy graph as follows. Then a sufficient
condition for a fuzzy graph to have its node set as u—geodetic basis is obtained.

Definition 5.1 A set S is u—convez if all nodes on any u— geodesic between
two of its nodes are contained in S. Thus S is convex if (S,)=S.

Example 5.2 Consider the fuzzy graph given in Fig.1.

If S = {u,v,w}, then (S,)=S. Therefore S is a pu—convex set .

Definition 5.3 A p—geodetic cover of G is a set S C V(G) such that every
node of G is contained in a pu— geodesic joining some pair of nodes in S.

Example 5.4 Consider the fuzzy graph given in Fig.1.
If S ={u,x,y}.
Then (S,) = {u,w,z,v,y} = V(G).
Therefor S is a p—geodetic cover.

Consider the fuzzy graph given in Fig.2.
If S = {u,v,z,w}.
Then (S,) = {u,v,,z,w} = V(G).
Therefor S is a p—geodetic cover.

Proposition 5.5 A connected fuzzy graph has at least one u— geodetic cover.

Definition 5.6 The pu—geodetic number of G denoted by pu—gn(G), is the
minimum order of its u—geodetic covers and any cover of order u—gn(G) is a
[—geodetic basis.
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Example 5.7 Consider the fuzzy graph given in Fig.1.

Here {u,x,y} is a u—geodetic basis and p—gn(G)= 3.

Definition 5.8 For a p—geodetic cover S, a node in G \ S is called a
u—check node.

Remark 5.9 In crisp graphs [3] the unique geodetic basis of a tree consists
of all its end nodes. But for a fuzzy tree u—geodetic basis need not be the set

of fuzzy end nodes of G.
Example 5.10 Consider the fuzzy graph given in Fig.5.

Fig.3

Here fuzzy end nodes are v and w. But {v,w} is not a p—geodetic cover,
and p—geodetic basis is {v,w,u} .

Theorem 5.11 Let G :(V,0,1) be a connected fuzzy graph on n nodes such
that each pair of nodes in G s joined by a strong arc. Then pu—geodetic number,

u—gn(G)=n.
Proof

Given G :(V,o,u) be a connected fuzzy graph on n nodes such that each
pair of nodes in G is joined by a strong arc. Then

d,(u,v) = WG(W) for each arc (u,v).[by Theorem 4.4]

Therefore no node lie on a p—geodesic between any two other nodes. Hence
pu—geodetic basis consists of all nodes of G. Thus pu—gn(G)= n.

Corollary 5.12 For a complete fuzzy graph G, p—gn(G)= n.
Remark 5.13 Converse of Theorem 5.11 need not be true. If G :(V,o,u)

is a connected fuzzy graph on n nodes with p—gn(G)= n, it does not imply
that each pair of nodes in G is joined by a strong arc.

Consider the fuzzy graph given in Fig.2.

p—gn(G)= 4, But arc (u,v) and arc (u,w) are not strong arcs.
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Theorem 5.14 For any connected fuzzy graph G, u—gn(G)=2 if and only
if there exists p—peripheral nodes u and v such that every node of G is on a
u—peripheral path joining u and v. Also let P:u = ug ,uy ,ug ,...,u, = v be a
w—peripheral path then

d, (uw,v) =d, (uo,ur)+ d, (ur,u2)+ d, (ug,us)+...+d, (Un_1,uy).

Proof

Let v and v be such that each node of GG is on u—peripheral path P joining
w and v. Since G is nontrivial, p—gn(G) > 2. Since P is a u—geodesic joining
u and v, each node of G is on a u—geodesic between u and v. So S={u,v} is
a pi—geodetic basis and p—gn(G)= 2.

Conversely let u—gn(G) = 2 and S = {u,v} be a u—geodetic basis for G.
To Prove that d,(G) = d, (u,v).
Assume d,, (u,v) < d,(G).
Then 3 p—peripheral nodes s and ¢ such that s and ¢ belong to distinct
p—geodesics joining w and v and d,, (s,t) = d,(G).
Then, d,, (u,v) = d, (u,s) + d, (s,v) ..... (1)
d, (u,0) =d, (u,t) + d, (t,w) ... (2)
d, (s,;t) <d, (s,u) +d, (ut) ... (3)
d, (s,;t) <d, (sp) +d, (vit) ... (4)
Since d,, (u,v) < d,, (s,t)
(3) = d, (u,v) <d, (s,u) +d, (u,t) and by (1)
d, (s,v) < d, (u,t) and from (4)
d, (s;t) <d, (ut) +d, (vit) =d, (u,v) by (1), which is a contradiction. Thus
u and v must be yu—peripheral nodes.

Next Given P:u = ug ,uy ,us ,...,u, = v be a u—peripheral path. Since
every node of GG is on p—peripheral path,

du(i1, ) = ot

1
= (i 1,ui)}'

Z (uz 1 uz

=1

Therefore d,,(u,v) = min Z

Therefore
d, (uw) = dy, (ug,ur)+ dy, (ur,u2)+ dy (ug, uz)+...4+dy, (Up—1, uy)

Hence the proof.
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Remark 5.15 In crisp graph G, if v is a node that is farthest from u, then
v is not a cut node of G [5]. But in fuzzy graphs, if v is a node that is farthest
from w in G, then v can be a fuzzy cut node of G. That is in fuzzy graphs fuzzy
cut node can be pu—eccentric node and pu—peripheral node .

Example 5.16 Consider the fuzzy graph given in Fig.4.

U ) w
8 6
v 7 s

Fig.4

In Fig.4 v is a fuzzy cut node and v is an pu—eccentric node of w as well.
Also v 1s a p—peripheral node.

6 pu— Convex Hull of a Fuzzy Graph

In this section p—convex hull and p—hull number of a fuzzy graph with respect
to p—distance is defined.

Definition 6.1 Let S C V(G) and repeatedly take its closures S}, = (S,.), S» =
(S;) = ((Sy)) etc. Since we consider only fuzzy graphs with finite number of
nodes, this process of taking closures must terminate with some smallest n such
that S = Sﬁ_l. The resulting set is called p—conver hull of S in G, and is
denoted by [S,].

Example 6.2 Consider the fuzzy graph given in Fig.1.

Here let S = {u,x,y}, which is not u—convez, and p—convex hull of S in

G, [S.] = {u,v,w,z,y} .

Remark 6.3 It is clear from the definition that a subset S C V(G) is
p—convex if and only if [S,] = S. Also [S,] is the smallest pu—convex set
containing S.

Definition 6.4 The minimum order of the set S C V(G) such that [S,] =
V(G) is called the p—hull number of G denoted by h,(G) and such a set is
called minimum p—hull set of G.
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Example 6.5 Consider the fuzzy graph given in Fig.1.

S ={u,z,y}.
[Su] = {u,v,w,z,y} = V(G) .

S ={u,z,y} is a minimum p—hull set.

ha(G) = 3.

Remark 6.6 Let G :(V,o,u) be a connected fuzzy graph with G* complete
and all arcs in G are strong. Then h,(G)= n.

Proposition 6.7 For a connected fuzzy graph G :(V,o,1), 2 < h,(G) < n,
where n 1s the number of nodes in G.

7 Conclusion

In this paper, we introduced p—geodesic, p—eccentricity, u—radius, y—diameter,
p—center, pu—geodetic closure, pu—geodetic iteration number, p—convex set,
u—geodetic cover, u—geodetic basis, u—geodetic number, and pg—convex hull
of a fuzzy graph and studied some properties.
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