

Gen. Math. Notes, Vol. 18, No. 1, September, 2013, pp.1-12 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

μ - Geodetic Iteration Number and μ - Geodetic Number of a Fuzzy Graph

J.P. Linda¹ and M.S. Sunitha²

Department of Mathematics, National Institute of Technology Calicut, Kozhikode - 673601, India ¹E-mail: lindajpsj@gmail.com ²E-mail: sunitha@nitc.ac.in

(Received: 12-6-13 / Accepted: 15-7-13)

Abstract

In this paper the concepts of μ -geodesic, μ -eccentricity, μ -radius, μ -diameter, μ -center, μ -geodetic closure, μ -geodetic iteration number are introduced. It is proved that if $G : (V, \sigma, \mu)$ is a connected fuzzy graph on nnodes such that each pair of nodes is joined by a strong arc then the μ -distance between two nodes is the reciprocal of its arc length. Also the concepts of μ -convex set, μ -geodetic cover, μ -geodetic basis, μ -geodetic number, μ -check node, μ -convex hull, μ -hull number are introduced. A sufficient condition for a fuzzy graph to have its node set as μ -geodetic basis is obtained. μ -peripheral vertex, μ -peripheral path and μ -eccentric vertex of fuzzy graph are analyzed.

Keywords: μ -geodesic, μ -eccentricity, μ -radius, μ -geodetic closure, μ -geodetic iteration number, μ -convex set, μ -geodetic cover, μ -geodetic basis, μ -geodetic number, μ -check node, μ -convex hull, μ -hull number.

1 Introduction

Fuzzy graphs are introduced by Rosenfeld [8]. Rosenfeld has obtained the fuzzy analogue of several graph theoretic concepts like paths, cycles, trees and connectedness and established some of the properties [8]. Bhattacharya has introduced fuzzy groups and metric notion in fuzzy graphs. Bhutani and Rosenfeld have introduced the concept of strong arcs [1] and geodesic distance in fuzzy graphs [2]. The definition of a geodesic basis, median are also given

by the same author. Several important works on fuzzy graphs can be found in [9]. Some metric aspects using the μ -distance is defined by Rosenfeld [8] and further studied by Sunitha and Vijayakumar [11]. In this paper geodetic iteration number and geodetic number of fuzzy graphs based on μ -distance is introduced.

2 Preliminaries

The following definitions are from [8], [1], [7], [6] and [10].

A fuzzy graph is denoted by $G: (V, \sigma, \mu)$ where V is a vertex set, σ is a fuzzy subset of V and μ is a fuzzy relation on σ . i.e., $\mu(x, y) \leq \sigma(x) \land \sigma(y) \forall x, y \in V$. We consider fuzzy graph G with no loops and assume that V is finite and nonempty, μ is reflexive (i.e., $\mu(x, x) = \sigma(x), \forall x$) and symmetric(i.e., $\mu(x, y) =$ $\mu(y, x), \forall(x, y)$). In all the examples σ is chosen suitably. Also, we denote the underlying crisp graph by $G^*: (\sigma^*, \mu^*)$ where $\sigma^* = \{u \in V : \sigma(u) > 0\}$ and $\mu^* = \{(u, v) \in V \times V : \mu(u, v) > 0\}$. The fuzzy graph $H: (\tau, \nu)$ is said to be a partial fuzzy subgraph of $G: (\sigma, \mu)$ if $\nu \subseteq \mu$ and $\tau \subseteq \sigma$. Let $P \subseteq V$, the fuzzy graph $H: (P, \tau, \nu)$ is called a fuzzy subgraph of $G: (V, \sigma, \mu)$ induced by P if $\tau(x) = \sigma(x) \forall x \in P$ and $\nu(x, y) = \mu(x, y) \forall x, y \in P$. $G: (V, \sigma, \mu)$ is called trivial if $|\sigma^*| = 1$.

A path P of length n is a sequence of distinct nodes $u_0, u_1, ..., u_n$ such that $\mu(u_{i-1}, u_i) > 0, i = 1, 2, ..., n$ and the degree of membership of a weakest arc is defined as its strength. If $u_0 = u_n$ and $n \ge 3$ then P is called a cycle and P is called a fuzzy cycle, if it contains more than one weakest arc. The strength of a cycle is the strength of the weakest arc in it. The strength of connectedness between two nodes x and y is defined as the maximum of the strength of all paths between x and y and is denoted by $CONN_G(x, y)$. A fuzzy graph $G: (\sigma, \mu)$ is connected if for every x, y in $\sigma^*, CONN_G(x, y) > 0$. A fuzzy graph G is said to be complete if $\mu(u, v) = \sigma(u) \wedge \sigma(v), \forall u, v \in \sigma^*$. A connected fuzzy graph $G: (\sigma, \mu)$ is a fuzzy tree if it has a fuzzy spanning subgraph $F: (\sigma, \nu)$, which is a tree where for all arcs (x, y) not in F there exists a path from x to y in F whose strength is more than $\mu(x, y)$. An arc of a fuzzy graph is called strong if its weight is at least as great as the connectedness of its end nodes when it is deleted. Depending on $CONN_G(x, y)$ of an arc (x, y) in a fuzzy graph G, Sunil Mathew and M.S.Sunitha [10] defined three different types of arcs. Note that $CONN_{G-(x,y)}(x,y)$ is the the strength of connectedness between x and y in the fuzzy graph obtained from G by deleting the arc (x, y). An arc (x, y) in G is α - strong if $\mu(x, y) > CONN_{G-(x,y)}(x, y)$. An arc (x, y)in G is β -strong if $\mu(x,y) = CONN_{G-(x,y)}(x,y)$. An arc (x,y) in G is δ arc if $\mu(x,y) < CONN_{G-(x,y)}(x,y)$. A fuzzy cut node w is a node in G whose removal reduces the strength of connectedness between some pair of nodes in

G. If $\mu(u, v) > 0$, then u and v are called neighbors. Also v is called strong neighbor of u if arc (u,v) is strong. A node z is a fuzzy end node of G if it has exactly one strong neighbor in G.

For any path $P: u_0, u_1, ..., u_n$ the μ - length of P, l(P) is defined as the sum of reciprocals of arc weights . That is $l(P) = \sum_{i=1}^{n} \frac{1}{\mu(u_{i-1}, u_i)}$. If n = 0 define l(P) = 0, and μ - distance $d_{\mu}(u, v)$ is the smallest μ -length of any u - v path.

3 μ - Geodesics in Fuzzy Graph

In crisp graph the concept of geodesic and geodesic iteration number are discussed in [3] and [4]. Here we are extending these ideas to fuzzy graphs. Depending on μ -distance we define μ -geodesic, μ -eccentricity, μ -radius, μ -diameter, μ -center, μ -geodetic closure and μ -geodetic iteration number as follows.

Definition 3.1 Any path P from x to y with smallest μ -length is called μ -geodesic from x to y. *i.e.*, Any path P from x to y whose μ -length is $d_{\mu}(u, v)$ is called μ -geodesic from x to y.

Definition 3.2 The μ -eccentricity $e_{\mu}(u)$ of a node u in G is given by

$$e_{\mu}(u) = Max_{v \in V}d_{\mu}(u, v)$$

The minimum μ -eccentricity among the vertices of G is its μ -radius denoted by $r_{\mu}(G)$.

$$r_{\mu}(G) = Min_{v \in V}e_{\mu}(u)$$

A node v is a μ -cental node if,

$$e_{\mu}(v) = r_{\mu}(G)$$

Let $C_{\mu}(G)$ be the set of all μ -central nodes of G. Then the fuzzy subgraph induced by $C_{\mu}(G)$ denoted by $< C_{\mu}(G) >$ is called μ - center of G.

The maximum μ -eccentricity among the vertices of G is its μ -diameter denoted by $d_{\mu}(G)$.

$$d_{\mu}(G) = Max_{v \in V}e_{\mu}(u)$$

A node v is a μ -peripheral node or μ -diametral node if,

$$e_{\mu}(v) = d_{\mu}(G)$$

Example 3.3 Consider the fuzzy graph given in Fig.1.

Here μ -peripheral nodes are u and y. μ -central nodes are x and v. $r_{\mu}(G) = 2.68.$ $d_{\mu}(G) = 4.21.$

Definition 3.4 Let S be a set of nodes of a connected fuzzy graph G : (V, σ, μ) . Then the μ -geodetic closure of S is the set of all nodes that lie on μ -geodesics between nodes of S denoted by (S_{μ}) .

Example 3.5 Consider the fuzzy graph given in Fig.1.

If $S = \{u, w\}$. Then $(S_{\mu}) = \{u, v, w\}$. Similarly if $S = \{u, x, y\}$. Then $(S_{\mu}) = \{u, v, w, x, y\}$.

4 μ - Geodetic Iteration Number for a Fuzzy Graph $[\mu$ -gin(G)]

Let S be a set of nodes of a connected fuzzy graph $G: (V, \sigma, \mu)$. Let $S^1_{\mu}, S^2_{\mu}, ...,$ are μ -closures where $S^1_{\mu} = (S_{\mu}), S^2_{\mu} = (S^1_{\mu}) = ((S_{\mu}))$ etc. Since we consider only finite fuzzy graphs, the process of taking closures must terminate with some smallest n such that $S^n_{\mu} = S^{n-1}_{\mu}$. That is repeat the closure operation until the stability occurs.

Definition 4.1 The smallest value of n so that $S^n_{\mu} = S^{n-1}_{\mu}$ is called μ -geodetic iteration number of S denoted by μ - gin(S). Now μ -gin(G) is the maximum value of μ -gin(S), for all $S \subset V(G)$.

Remark 4.2 For a trivial fuzzy graph G, μ -gin(G)=0.

Example 4.3 Consider the fuzzy graph given in Fig.1.

Taking $S = \{u, x, y\}$ $S^{1}_{\mu} = (S_{\mu}) = \{u, x, v, w, y\}$ $S^{2}_{\mu} = S^{1}_{\mu}$ Therefore $\mu - gin(S) = 2.$ It can be verified that maximum value of $\mu - gin(S) = 2$ for all $S \subset V(G)$. Therefore $\mu - gin(G) = 2.$

Theorem 4.4 Let $G : (V, \sigma, \mu)$ be a connected fuzzy graph on n nodes such that each pair of nodes is joined by a strong arc. Then

$$d_{\mu}(u,v) = \frac{1}{\mu(u,v)}.$$

Also

$$d_{\mu}(u,v) = \frac{1}{CONN_G(u,v)}.$$

Proof

Given that all arcs in G are strong. Thus G contain only α - strong and β - strong arcs. Therefore we have two cases.

Case.1

Let (u, v) be an arc in G which is β - strong. Consider all other u - v paths in G. Then the weight of the weakest arc in any u - v path is $\mu(u, v)$. Therefore

 $CONN_G(u, v) = \mu(u, v).$ (By definition of β - strong)

Now let $P: u = u_0, u_1, ..., u_n = v$ be such a u - v path. Then the μ - length of the path P is

$$l(P) = \sum_{i=1}^{n} \frac{1}{\mu(u_{i-1}, u_i)} > \frac{1}{\mu(u, v)}$$

Also μ -distance $d_{\mu}(u, v)$ is the smallest μ -length of any u - v path. Therefore

$$d_{\mu}(u,v) = \frac{1}{\mu(u,v)}.$$

Case.2

Let (u, v) be an arc in G which is α - strong. Then $CONN_G(u, v) = \mu(u, v)$ (By definition of α - strong). Consider all other u-v paths in P. Let $P : u = u_0, u_1, ..., u_n = v$ be such a u - v path and (x, y) be an arc in G. Then

$$\mu(x, y) < \mu(u, v)$$
 (By definition of α - strong)

i.e.,

$$\frac{1}{\mu(x,y)} > \frac{1}{\mu(u,v)}$$

Hence

$$l(P) = \sum_{i=1}^{n} \frac{1}{\mu(u_{i-1}, u_i)} > \frac{1}{\mu(u, v)}$$

Also μ - distance $d_{\mu}(u, v)$ is the smallest μ -length of any u-v path. Therefore

$$d_{\mu}(u,v) = \frac{1}{\mu(u,v)}$$

If the arc is α - strong or β - strong, then

$$\mu(u, v) = CONN_G(u, v) \ [10]$$

Therefore

6

$$d_{\mu}(u,v) = \frac{1}{CONN_G(u,v)}.$$

Hence the proof.

Corollary 4.5 For a complete fuzzy graph $G: (V, \sigma, \mu)$ on n nodes

$$d_{\mu}(u,v) = \frac{1}{\mu(u,v)}.$$

Remark 4.6 For a complete fuzzy graph G, each arc is a μ -geodesic between its end nodes. So when we consider any $S \subseteq V(G)$, any pair of nodes in S is connected by a μ -geodesic, i.e., no μ -geodesic between a pair of nodes of S contains another node. So $S^1_{\mu} = (S_{\mu}) = S$. This is true for any $S \subseteq V(G)$. Hence μ -gin(G)=1 for a complete fuzzy graph G.

Remark 4.7 The converse of Theorem 4.4 need not be true. That is if G: (V,σ,μ) is a connected fuzzy graph with $d_{\mu}(u,v) = \frac{1}{\mu(u,v)}$ for each arc (u,v) $\forall u, v \in V(G)$, it does not imply that each pair of nodes in G is joined by a strong arc.

Example 4.8 Consider the fuzzy graph given in Fig.2.

Here for each arc (u, v) we have $d_{\mu}(u, v) = \frac{1}{\mu(u,v)}$. But arc (u, v) and arc (u, w) are not strong arcs.

5 μ - Geodetic Number of a Fuzzy Graph $[\mu$ -gn(G)]

Depending on μ -distance we define μ -convex set, μ -geodetic cover, μ -geodetic basis, and μ -geodetic number of a fuzzy graph as follows. Then a sufficient condition for a fuzzy graph to have its node set as μ -geodetic basis is obtained.

Definition 5.1 A set S is μ -convex if all nodes on any μ -geodesic between two of its nodes are contained in S. Thus S is convex if $(S_{\mu})=S$.

Example 5.2 Consider the fuzzy graph given in Fig.1.

If $S = \{u, v, w\}$, then $(S_{\mu}) = S$. Therefore S is a μ -convex set.

Definition 5.3 A μ -geodetic cover of G is a set $S \subseteq V(G)$ such that every node of G is contained in a μ - geodesic joining some pair of nodes in S.

Example 5.4 Consider the fuzzy graph given in Fig.1. If $S = \{u, x, y\}$. Then $(S_{\mu}) = \{u, w, x, v, y\} = V(G)$. Therefor S is a μ -geodetic cover.

Consider the fuzzy graph given in Fig.2. If $S = \{u, v, x, w\}$. Then $(S_{\mu}) = \{u, v, , x, w\} = V(G)$. Therefor S is a μ -geodetic cover.

Proposition 5.5 A connected fuzzy graph has at least one μ -geodetic cover.

Definition 5.6 The μ -geodetic number of G denoted by μ -gn(G), is the minimum order of its μ -geodetic covers and any cover of order μ -gn(G) is a μ -geodetic basis.

Example 5.7 Consider the fuzzy graph given in Fig.1.

Here $\{u, x, y\}$ is a μ -geodetic basis and μ -gn(G)= 3.

Definition 5.8 For a μ -geodetic cover S, a node in $G \setminus S$ is called a μ -check node.

Remark 5.9 In crisp graphs [3] the unique geodetic basis of a tree consists of all its end nodes. But for a fuzzy tree μ -geodetic basis need not be the set of fuzzy end nodes of G.

Example 5.10 Consider the fuzzy graph given in Fig.3.

Here fuzzy end nodes are v and w. But $\{v,w\}$ is not a μ -geodetic cover, and μ -geodetic basis is $\{v,w,u\}$.

Theorem 5.11 Let $G:(V,\sigma,\mu)$ be a connected fuzzy graph on n nodes such that each pair of nodes in G is joined by a strong arc. Then μ -geodetic number, μ -gn(G)= n.

Proof

Given $G:(V,\sigma,\mu)$ be a connected fuzzy graph on n nodes such that each pair of nodes in G is joined by a strong arc. Then

 $d_{\mu}(u,v) = \frac{1}{CONN_G(u,v)}$ for each arc (u,v).[by Theorem 4.4]

Therefore no node lie on a μ -geodesic between any two other nodes. Hence μ -geodetic basis consists of all nodes of G. Thus μ -gn(G)= n.

Corollary 5.12 For a complete fuzzy graph G, μ -gn(G)= n.

Remark 5.13 Converse of Theorem 5.11 need not be true. If $G:(V,\sigma,\mu)$ is a connected fuzzy graph on n nodes with $\mu-gn(G)=n$, it does not imply that each pair of nodes in G is joined by a strong arc.

Consider the fuzzy graph given in Fig.2.

 μ -gn(G)=4, But arc (u, v) and arc (u, w) are not strong arcs.

Theorem 5.14 For any connected fuzzy graph G, $\mu-gn(G)=2$ if and only if there exists μ -peripheral nodes u and v such that every node of G is on a μ -peripheral path joining u and v. Also let $P:u = u_0$, u_1 , u_2 ,..., $u_n = v$ be a μ -peripheral path then

$$d_{\mu}(u,v) = d_{\mu}(u_0,u_1) + d_{\mu}(u_1,u_2) + d_{\mu}(u_2,u_3) + \dots + d_{\mu}(u_{n-1},u_n).$$

Proof

Let u and v be such that each node of G is on μ -peripheral path P joining u and v. Since G is nontrivial, μ -gn(G) ≥ 2 . Since P is a μ -geodesic joining u and v, each node of G is on a μ -geodesic between u and v. So S={u,v} is a μ -geodetic basis and μ -gn(G)= 2.

Conversely let μ -gn(G) = 2 and $S = \{u,v\}$ be a μ -geodetic basis for G. To Prove that $d_{\mu}(G) = d_{\mu}(u,v)$. Assume $d_{\mu}(u,v) < d_{\mu}(G)$. Then $\exists \mu$ -peripheral nodes s and t such that s and t belong to distinct μ -geodesics joining u and v and $d_{\mu}(s,t) = d_{\mu}(G)$. Then, $d_{\mu}(u,v) = d_{\mu}(u,s) + d_{\mu}(s,v)$ (1) $d_{\mu}(u,v) = d_{\mu}(u,t) + d_{\mu}(t,v)$ (2) $d_{\mu}(s,t) \leq d_{\mu}(s,u) + d_{\mu}(u,t)$ (3) $d_{\mu}(s,t) \leq d_{\mu}(s,v) + d_{\mu}(v,t)$ (4) Since $d_{\mu}(u,v) < d_{\mu}(s,t)$ (3) $\Longrightarrow d_{\mu}(u,v) < d_{\mu}(s,u) + d_{\mu}(u,t)$ and by (1) $d_{\mu}(s,v) < d_{\mu}(u,t) + d_{\mu}(v,t) = d_{\mu}(u,v)$ by (1), which is a contradiction. Thus u and v must be μ -peripheral nodes.

Next Given $P:u = u_0$, u_1 , u_2 , ..., $u_n = v$ be a μ -peripheral path. Since every node of G is on μ -peripheral path,

$$d_{\mu}(u_{i-1}, u_i) = \frac{1}{\mu(u_{i-1}, u_i)}.$$

Therefore
$$d_{\mu}(u, v) = \min \{\sum_{i=1}^{n} \frac{1}{\mu(u_{i-1}, u_i)}\}.$$

= $\sum_{i=1}^{n} d_{\mu}(u_{i-1}, u_i).$

Therefore

$$d_{\mu}(u,v) = d_{\mu}(u_0, u_1) + d_{\mu}(u_1, u_2) + d_{\mu}(u_2, u_3) + \dots + d_{\mu}(u_{n-1}, u_n)$$

Hence the proof.

Remark 5.15 In crisp graph G, if v is a node that is farthest from u, then v is not a cut node of G [5]. But in fuzzy graphs, if v is a node that is farthest from u in G, then v can be a fuzzy cut node of G. That is in fuzzy graphs fuzzy cut node can be μ -eccentric node and μ -peripheral node.

Example 5.16 Consider the fuzzy graph given in Fig.4.

In Fig.4 v is a fuzzy cut node and v is an μ -eccentric node of w as well. Also v is a μ -peripheral node.

6 μ - Convex Hull of a Fuzzy Graph

In this section μ -convex hull and μ -hull number of a fuzzy graph with respect to μ -distance is defined.

Definition 6.1 Let $S \subseteq V(G)$ and repeatedly take its closures $S^1_{\mu} = (S_{\mu}), S^2_{\mu} = (S^1_{\mu}) = ((S_{\mu}))$ etc. Since we consider only fuzzy graphs with finite number of nodes, this process of taking closures must terminate with some smallest n such that $S^n_{\mu} = S^{n-1}_{\mu}$. The resulting set is called μ -convex hull of S in G, and is denoted by $[S_{\mu}]$.

Example 6.2 Consider the fuzzy graph given in Fig.1.

Here let $S = \{u, x, y\}$, which is not μ -convex, and μ -convex hull of S in $G, [S_{\mu}] = \{u, v, w, x, y\}$.

Remark 6.3 It is clear from the definition that a subset $S \subseteq V(G)$ is μ -convex if and only if $[S_{\mu}] = S$. Also $[S_{\mu}]$ is the smallest μ -convex set containing S.

Definition 6.4 The minimum order of the set $S \subseteq V(G)$ such that $[S_{\mu}] = V(G)$ is called the μ -hull number of G denoted by $h_{\mu}(G)$ and such a set is called minimum μ -hull set of G.

Example 6.5 Consider the fuzzy graph given in Fig.1.

$$S = \{u, x, y\}.$$

$$[S_{\mu}] = \{u, v, w, x, y\} = V(G) .$$

$$S = \{u, x, y\} \text{ is a minimum } \mu-hull \text{ set.}$$

$$h_{\mu}(G) = 3.$$

Remark 6.6 Let $G:(V,\sigma,\mu)$ be a connected fuzzy graph with G^* complete and all arcs in G are strong. Then $h_{\mu}(G) = n$.

Proposition 6.7 For a connected fuzzy graph $G:(V,\sigma,\mu), 2 \leq h_{\mu}(G) \leq n$, where n is the number of nodes in G.

7 Conclusion

In this paper, we introduced μ -geodesic, μ -eccentricity, μ -radius, μ -diameter, μ -center, μ -geodetic closure, μ -geodetic iteration number, μ -convex set, μ -geodetic cover, μ -geodetic basis, μ -geodetic number, and μ -convex hull of a fuzzy graph and studied some properties.

References

- K.R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, *Information Sciences*, 152(2003), 319-322.
- [2] K.R. Bhutani and A. Rosenfeld, Geodesics in fuzzy graphs, *Electronic Notes in Discrete Mathematics*, 15(2003), 51-54.
- [3] F. Buckley and F. Harary, *Distance in Graphs*, Addison-Wesley Publishing Company, Inc., (1990).
- [4] F. Harary, *Graph Theory*, Addison-Wesley Publishing Company, Inc., (1969).
- [5] G. Chartrand and P. Zang, *Introduction to Graph Theory*, Tata McGraw-Hill Edition, (2006).
- [6] J.N. Mordeson and P.S. Nair, *Fuzzy Graphs and Fuzzy Hypergraphs*, Physica - Verlag, (2000).

- [7] J.N. Mordeson and Y.Y. Yao, Fuzzy cycles and fuzzy trees, *The Journal* of Fuzzy Mathematics, 10(1) (2002), 189-202.
- [8] A. Rosenfeld, Fuzzy graphs, In: *Fuzzy Sets and their Application to Cognitive and Decision Processes*, Academic Press, (1975).
- [9] K.R.S. Narayan and M.S. Sunitha, Connectivity in a fuzzy graph and its complement, *General Mathematics Notes*, 9(1) (2012), 38-43.
- [10] S. Mathew and M.S. Sunitha, Types of arcs in a fuzzy graph, *Information Sciences*, 179(2009), 1760-1768.
- [11] M.S. Sunitha and A. Vijayakumar, Some metric aspects of fuzzy graphs, Proceedings of the Conference on Graph Connections, CUSAT, Allied Publishers, (1999), 111-114.