

Gen. Math. Notes, Vol. 17, No. 2, August, 2013, pp.1-7 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

Arens Regularity of Module Extensions of Banach Algebras

A. Zivari-Kazempour

Department of Mathematics, Ayatollah Borujerdi University Borujerd, Iran E-mail: zivari6526@gmail.com; zivari@abru.ac.ir

(Received: 16-5-13 / Accepted: 27-6-13)

Abstract

Let \mathcal{A} be a Banach algebra and \mathcal{A}'' be its second dual equipped with the first or second Arens product, X be a Banach \mathcal{A} -bimodule and let $\mathcal{U}=\mathcal{A}\oplus X$ as a module extensions of Banach algebra. In this paper we study the topological centres of \mathcal{U}'' and show that under certain conditions Arens regularity of \mathcal{A} implies that of \mathcal{U} .

Keywords: Arens regular, Module action, Topological centres, Bounded bilinear map.

1 Introduction

In 1951, Arens showed that each bounded bilinear map m on normed spaces has two natural but different extensions [1]. When these extensions coincide, m is said to be Arens regular. If the product of a Banach algebra \mathcal{A} enjoys this property, then \mathcal{A} is called Arens regular.

Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. Then $\mathcal{U}=\mathcal{A}\oplus X$, with norm ||(a,x)|| = ||a|| + ||x||, and product

$$(a, x)(b, y) = (ab, a \cdot y + x \cdot b) \quad (a, b \in \mathcal{A}, \ x, y \in X),$$

is a Banach algebra which is known as a module extension Banach algebra. Some aspects of algebras of this form have been discussed in [6] and [7].

In this paper we study Arens regularity of this class of Banach algebras for the special case $X = \mathcal{A}'$. We give a criterion for certain bounded bilinear map to be Arens regular (Theorem 3.1 below), and then we apply the above criterion to show that Arens regularity of \mathcal{A} implies that of \mathcal{U} with special hypothesis. Moreover, we present some properties of Banach algebra \mathcal{A} that are inherited by module extensions.

Throughout the paper we identify an element of a Banach space X with its canonical image in X''.

The second dual space \mathcal{A}'' of a Banach algebra \mathcal{A} admits two Banach algebra products known as the first and second Arens products, each extending the product on \mathcal{A} . These products which we denote by \Box and \diamondsuit , respectively, can be defined as follows

$$\Phi \Box \Psi = w^* - \lim_i \lim_j a_i b_j, \quad \Phi \diamondsuit \Psi = w^* - \lim_j \lim_i a_i b_j,$$

where (a_i) and (b_j) are nets in \mathcal{A} that converge, in w^* -topologies, to Φ and Ψ , respectively. The Banach algebra \mathcal{A} is said to be Arens regular if the product map $\pi : \mathcal{A} \times \mathcal{A} \longrightarrow \mathcal{A}$ is regular in the sense of [1], or $\Phi \Box \Psi = \Phi \diamondsuit \Psi$ on the whole of \mathcal{A}'' . For any fixed $\Phi \in \mathcal{A}''$, the maps $\Psi \longmapsto \Psi \Box \Phi$ and $\Psi \longmapsto \Phi \diamondsuit \Psi$ are $w^* \cdot w^*$ continuous on \mathcal{A}'' . Thus, with the w^* -topology, (\mathcal{A}'', \Box) is a right topological semigroup and $(\mathcal{A}'', \diamondsuit)$ is a left topological semigroup. The following sets

$$Z_t^1(\mathcal{A}'') = \{ \Phi \in \mathcal{A}'' : \Psi \longmapsto \Phi \Box \Psi \text{ is } w^* - w^* \text{ continuous on } \mathcal{A}'' \},$$
$$Z_t^2(\mathcal{A}'') = \{ \Phi \in \mathcal{A}'' : \Psi \longmapsto \Psi \diamondsuit \Phi \text{ is } w^* - w^* \text{ continuous on } \mathcal{A}'' \},$$

are called the first and the second topological centres of \mathcal{A}'' , respectively. It is easy to check that \mathcal{A} is Arens regular if and only if $Z_t^1(\mathcal{A}'') = Z_t^2(\mathcal{A}'') = \mathcal{A}''$. For example, each C^* -algebra is Arens regular and for locally compact group G, the group algebra $L^1(G)$ is Arens regular if and only if G is finite [12]. For more information on Arens product and topological centres, we refer the reader to [3] and [5].

A bounded net $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} is a bounded approximate identity (BAI for short) if, for each $a \in \mathcal{A}$, $ae_{\alpha} \longrightarrow a$ and $e_{\alpha}a \longrightarrow a$. An element $\Phi_0 \in \mathcal{A}''$ is called mixed unit if it is a right unit for (\mathcal{A}'', \Box) and a left unit for $(\mathcal{A}'', \diamondsuit)$. It is well-known that an element $\Phi_0 \in \mathcal{A}''$ is a mixed unit if and only if it is a weak^{*} cluster point of some BAI $(e_{\alpha})_{\alpha \in I}$ in \mathcal{A} [2]. We denote by WAP(\mathcal{A}) the closed subspace of \mathcal{A}' consisting of all the weakly almost periodic functionals in \mathcal{A}' [5].

2 Topological Centres of Module Extensions

Suppose that X is a Banach \mathcal{A} -bimodule with the left and right module actions $\pi_1 : \mathcal{A} \times X \longrightarrow X$ and $\pi_2 : X \times \mathcal{A} \longrightarrow X$, respectively. According to [4], X'' is

Arens Regularity of Module Extensions...

a Banach \mathcal{A}'' -bimodule, where \mathcal{A}'' equipped with the first Arens product. The module actions are defined by

$$\Phi \cdot \nu = w^* - \lim_i \lim_j \widehat{a_i \cdot x_j}, \quad \nu \cdot \Phi = w^* - \lim_j \lim_i \widehat{x_j \cdot a_i},$$

where (a_i) and (x_j) are noted in \mathcal{A} and X that converge, in w^* -topologies, to Φ and ν , respectively.

The second dual \mathcal{U}'' of $\mathcal{U} = \mathcal{A} \oplus X$ is identified with $\mathcal{A}'' \oplus X''$, as a Banach space. Also the first Arens product \Box on \mathcal{U}'' is given by

$$(\Phi,\mu)\Box(\Psi,\nu) = (\Phi\Box\Psi, \Phi\cdot\nu + \mu\cdot\Psi),$$

where $\Phi \Box \Psi$ is as usual the first Arens product of Φ and Ψ in \mathcal{A}'' . An easy argument shows that the first topological centre $Z_t^1(\mathcal{U}'')$ of \mathcal{U}'' consists of the elements of the form $(\Phi, \mu) \in \mathcal{U}''$ such that:

a) $\Phi \in Z_t^1(\mathcal{A}'')$; b) $\nu \longmapsto \Phi \cdot \nu : X'' \longrightarrow X''$ is $w^* \cdot w^*$ continuous; c) $\Psi \longmapsto \mu \cdot \Psi : \mathcal{A}'' \longrightarrow X''$ is $w^* \cdot w^*$ continuous; (see [6], [7]).

In a similar way X'' can be made into an $(\mathcal{A}'', \diamondsuit)$ -bimodule. We denote this module action by the symbol "•". Thus, the Banach algebra \mathcal{U} is Arens regular if and only if π_1 , π_2 and π are regular, or equivalently, \mathcal{A} is Arens regular and

$$\Phi \cdot \nu = \Phi \bullet \nu, \quad \nu \cdot \Phi = \nu \bullet \Phi \qquad (\Phi \in \mathcal{A}'', \ \nu \in X'').$$

3 Main Results

Let $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$. Then clearly Arens regularity of \mathcal{U} implies that of \mathcal{A} , but the converse is not true in general, even if \mathcal{A} is commutative. For example, let $\mathcal{A} = c_0$, the sequence space of the sequences that converges to zero. Then \mathcal{A} is commutative and Arens regular under pointwise multiplication. Since \mathcal{A} is not reflexive, we can find two bounded sequences (x_n) in \mathcal{A} and (f_m) in \mathcal{A}' such that

$$\lim_{n} \lim_{m} \langle f_m, x_n \rangle = 1, \qquad \lim_{m} \lim_{n} \langle f_m, x_n \rangle = 0.$$

Now let $a_n = (x_n, 0)$, $b_m = (0, f_m)$ in \mathcal{U} . Then $a_n b_m = (0, x_n \cdot f_m)$. Suppose that $\lambda = (0, 1)$ in $\mathcal{U}' = \mathcal{A}' \times \mathcal{A}''$, where 1 = (1, 1, ..., 1, ...) is the unit element of \mathcal{A}'' . Then we have

$$\langle \lambda, a_n b_m \rangle = \langle 0, 0 \rangle + \langle 1 \cdot x_n, f_m \rangle = \langle f_m, x_n \rangle.$$

It follows that

$$\lim_{n} \lim_{m} \langle \lambda, a_{n} b_{m} \rangle = 1, \quad \lim_{m} \lim_{n} \langle \lambda, a_{n} b_{m} \rangle = 0.$$

Thus, $\lim_{n} \lim_{m} \langle \lambda, a_{n}b_{m} \rangle \neq \lim_{m} \lim_{n} \langle \lambda, a_{n}b_{m} \rangle$ and so $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$ dose not Arens regular by the double limit theorem [11].

The next result, which is the main one in the paper, provides a criterion for Arens regularity of π_1 and π_2 .

Theorem 3.1 Let \mathcal{A} be a Banach algebra.

(i) If $R_{\Psi} : \mathcal{A}'' \longrightarrow \mathcal{A}'' \ (\Phi \longmapsto \Phi \Box \Psi)$ is $w^* \cdot w$ continuous for all $\Psi \in \mathcal{A}''$, then π_2 is regular. In particular, if $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$, then π_2 is regular. (ii) If $L_{\Psi} : \mathcal{A}'' \longrightarrow \mathcal{A}'' \ (\Phi \longmapsto \Psi \Diamond \Phi)$ is $w^* \cdot w$ continuous for all $\Psi \in \mathcal{A}''$, then π_1 is regular. In particular, if $\mathcal{A}'' \Diamond \mathcal{A}'' \subseteq \mathcal{A}$, then π_1 is regular.

Proof: We only prove (i).

Let (a_i) and (f_j) be a nets in \mathcal{A} and \mathcal{A}' such that $a_i \longrightarrow \Phi$ and $f_j \longrightarrow \mu$ in w^* -topology. As R_{Ψ} is w^* -w continuous, we have that $a_i \Box \Psi \longrightarrow \Phi \Box \Psi$ in the weak topology. Thus,

$$\langle \mu \bullet \Phi, \Psi \rangle = \lim_{i} \lim_{j} \langle \Psi, f_{j} \cdot a_{i} \rangle$$

$$= \lim_{i} \lim_{j} \langle \widehat{a_{i}} \cdot \Psi, f_{j} \rangle$$

$$= \lim_{i} \langle \mu, a_{i} \cdot \Psi \rangle = \langle \mu, \Phi \Box \Psi \rangle$$

$$= \lim_{j} \langle \Phi \Box \Psi, f_{j} \rangle$$

$$= \lim_{j} \lim_{i} \langle \widehat{a_{i}} \cdot \Psi, f_{j} \rangle$$

$$= \lim_{j} \lim_{i} \langle \Psi, f_{j} \cdot a_{i} \rangle$$

$$= \langle \mu \cdot \Phi, \Psi \rangle.$$

Therefore $\mu \bullet \Phi = \mu \cdot \Phi$ and so $\pi_2 : \mathcal{A}' \times \mathcal{A} \longrightarrow \mathcal{A}'$ is regular. Now assume that $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$ and let $\Phi_{\alpha} \longrightarrow \Phi$ in w^* -topology. Since $\mathcal{A}''' = \mathcal{A}' \oplus \mathcal{A}^{\perp}$ [3], where \mathcal{A}^{\perp} is the annihilator of \mathcal{A} , so for each $\mu \in \mathcal{A}'''$ there exist $f \in \mathcal{A}'$ and $\rho \in \mathcal{A}^{\perp}$ such that $\mu = \hat{f} + \rho$. This shows that $\Phi_{\alpha} \Box \Psi \longrightarrow \Phi \Box \Psi$ in weak topology of \mathcal{A}'' . Thus, R_{Ψ} is w^* -w continuous and so the result follows.

As an consequence of this theorem we have the following result.

Corollary 3.2 Let \mathcal{A} be an Arens regular Banach algebra and $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$. Then the following assertions hold.

(i) If $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$, then \mathcal{U} is Arens regular and $\mathcal{U}'' \Box \mathcal{U}'' \subseteq \mathcal{U}$.

(ii) If \mathcal{A} is commutative and $R_{\Psi} : \mathcal{A}'' \longrightarrow \mathcal{A}'' \ (\Phi \longmapsto \Phi \Box \Psi)$ is w^* -w continuous, then \mathcal{U} is Arens regular.

Example 3.3 Let $\mathcal{A} = \ell^1$ with pointwise product. Then \mathcal{A} is an Arens regular Banach algebra which is not reflexive, but $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$ by example 4.1 of [5]. Therefore by corollary 3.2, \mathcal{U} is Arens regular and $\mathcal{U}'' \Box \mathcal{U}'' \subseteq \mathcal{U}$.

Arens Regularity of Module Extensions...

We recall that \mathcal{A} is called weakly sequentially complete, (WSC for short) if every weakly Cauchy sequence in \mathcal{A} is weakly convergent.

Remark 3.4 (i) Let \mathcal{A} be a nonunital Banach algebra with a BAI. Then \mathcal{A} cannot be both WSC and Arens regular [10]. A similar fact is valid for $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$, since \mathcal{U} contains \mathcal{A} as a closed subalgebra. (ii) Suppose that the linear mappings $\varphi : \mathcal{A} \longrightarrow \mathcal{A}''$ ($a \longmapsto \Phi \cdot a$) and $\psi :$ $\mathcal{A}' \longrightarrow \mathcal{A}'$ ($f \longmapsto \Phi \cdot f$) are weakly compact for each $\Phi \in \mathcal{A}''$. Then both of π_1 and π_2 are regular by theorem 2.1 of [9]. Therefore in this case, Arens regularity of \mathcal{A} implies that of \mathcal{U} .

The converse of theorem 3.1 is not true in general. Indeed, let \mathcal{A} be a non-reflexive Banach space and let φ be a non-zero element of \mathcal{A}' such that $\|\varphi\| \leq 1$. Then the product $a \cdot b = \varphi(a)b$ turns \mathcal{A} into a regular Banach algebra for which $\pi_2 : \mathcal{A}' \times \mathcal{A} \longrightarrow \mathcal{A}'$ is regular but $\pi_1 : \mathcal{A} \times \mathcal{A}' \longrightarrow \mathcal{A}'$ is not regular [6]. Therefore the inclusion $\mathcal{A}'' \Box \mathcal{A}'' (= \mathcal{A}'' \Diamond \mathcal{A}'') \subseteq \mathcal{A}$ is not valid by theorem 3.1.

Proposition 3.5 Let \mathcal{A} be a Banach algebra which is a right ideal in \mathcal{A}'' . If the right module action of \mathcal{A} on \mathcal{A}' is regular, then $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$.

Proof: Assume that (a_i) be a net in \mathcal{A} such that $a_i \longrightarrow \Phi$ in w^* -topology. Then Arens regularity of the right module action of \mathcal{A} on \mathcal{A}' implies that for all $\Psi \in \mathcal{A}'', a_i \Box \Psi \longrightarrow \Phi \Box \Psi$ in the weak topology. Since \mathcal{A} is a right ideal in \mathcal{A}'' , it follows that $\Phi \Box \Psi \in \mathcal{A}$. Thus, $\mathcal{A}'' \Box \mathcal{A}'' \subseteq \mathcal{A}$.

If \mathcal{A} is an ideal in \mathcal{A}'' then $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$ is not an ideal in \mathcal{U}'' , in general. For example let \mathcal{A} be the group algebra of a compact group G. Then \mathcal{A} is an ideal in \mathcal{A}'' , as is well-known. However \mathcal{U} is not an ideal in \mathcal{U}'' . The next result deals with this question that when \mathcal{U} is an ideal in \mathcal{U}'' .

Proposition 3.6 Suppose that \mathcal{A} is an Arens regular Banach algebra which is an ideal in \mathcal{A}'' . Then \mathcal{U} is an ideal in \mathcal{U}'' .

Proof: Assume that \mathcal{A} is an ideal in \mathcal{A}'' , $(a, f) \in \mathcal{U}$ and $(\Phi, \mu) \in \mathcal{U}''$. Since $\mathcal{A}''' = \mathcal{A}' \oplus \mathcal{A}^{\perp}$, so there exists $g \in \mathcal{A}'$ and $\rho \in \mathcal{A}^{\perp}$ such that $\mu = \hat{g} + \rho$. Then by hypotheses $\rho \cdot \hat{a} = 0$, therefore $\mu \cdot \hat{a} = \hat{g} \cdot \hat{a}$. It follows that $\mu \cdot \hat{a}$ is w^* -continuous linear functional on \mathcal{A}'' , and so $\mu \cdot \hat{a} \in \mathcal{A}'$. One can verify that $\Phi \cdot \hat{f} \in \mathcal{A}'$ because \mathcal{A} is Arens regular. Thus, $\Phi \cdot \hat{f} + \mu \cdot \hat{a} \in \mathcal{A}'$. Therefore by definition we have $(\Phi, \mu) \Box(a, f) \in \mathcal{U}$, so \mathcal{U} is a left ideal in \mathcal{U}'' . Similarly, \mathcal{U} is a right ideal in \mathcal{U}'' .

Let \mathcal{A} be a Banach algebra with a BAI. We say that \mathcal{A}' factors on the left (right) if $\mathcal{A}' = \mathcal{A}' \cdot \mathcal{A}$ ($\mathcal{A}' = \mathcal{A} \cdot \mathcal{A}'$), and factors if both equalities $\mathcal{A} \cdot \mathcal{A}' = \mathcal{A}' = \mathcal{A}' \cdot \mathcal{A}$ hold [8]. It is well-known that if \mathcal{A} is Arens regular,

then \mathcal{A}' factors and so $\mathcal{U}=\mathcal{A}\oplus\mathcal{A}'$ has a BAI [7].

As an immediate corollary of above proposition and Theorem 3.1 of [11] we have the following.

Corollary 3.7 Let \mathcal{A} be an Arens regular Banach algebra with a BAI and let $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$. If \mathcal{A} is an ideal in \mathcal{A}'' , then $\mathcal{U}' \cdot \mathcal{U} = WAP(\mathcal{U}) = \mathcal{U} \cdot \mathcal{U}'$.

Let \mathcal{A} be a Banach algebra with a BAI and $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$. If \mathcal{U} is Arens regular, then \mathcal{U}' factors. However, the converse is false in general. Indeed, let \mathcal{A} be the group algebra of the discrete group \mathbb{Z} . Then \mathcal{U} being unital and so \mathcal{U}' factors, but \mathcal{U} does not Arens regular.

Theorem 3.8 Let \mathcal{A} be an Arens regular Banach algebra with a BAI. If \mathcal{U} is a right (left) ideal in \mathcal{U}'' , and \mathcal{U}' factors on the left (right), then \mathcal{U} is Arens regular.

Proof: Assume that (Φ, μ) , (Ψ, ν) , $(\Lambda, \rho) \in \mathcal{U}''$ and let (a_i, f_j) be a net in \mathcal{U} such that $(a_i, f_j) \longrightarrow (\Lambda, \rho)$ in w^* -topology. Since \mathcal{U} is a right ideal in \mathcal{U}'' , we have

$$(a_i, f_j) \Box ((\Phi, \mu) \Box (\Psi, \nu)) = ((a_i, f_j) \Box (\Phi, \mu)) \Box (\Psi, \nu)$$

= $((a_i, f_j) \diamondsuit (\Phi, \mu)) \diamondsuit (\Psi, \nu)$
= $(a_i, f_j) \diamondsuit ((\Phi, \mu) \diamondsuit (\Psi, \nu))$
= $(a_i, f_j) \Box ((\Phi, \mu) \diamondsuit (\Psi, \nu)).$

It follows that $(\Lambda, \rho) \Box ((\Phi, \mu) \Box (\Psi, \nu)) = (\Lambda, \rho) \Box ((\Phi, \mu) \diamondsuit (\Psi, \nu))$ for all (Λ, ρ) in \mathcal{U}'' . Now since \mathcal{U}' factors on the left, (\mathcal{U}'', \Box) has an identity $(\Phi_0, 0)$ where Φ_0 is a unit element of (\mathcal{A}'', \Box) . Take $(\Lambda, \rho) = (\Phi_0, 0)$, therefore we have $(\Phi, \mu) \Box (\Psi, \nu) = (\Phi, \mu) \diamondsuit (\Psi, \nu)$, as well.

Example 3.9 Let $\mathcal{A} = c_0$, with pointwise product. Then \mathcal{A} is Arens regular Banach algebra with a BAI. Since \mathcal{A} is an ideal in \mathcal{A}'' , therefore \mathcal{U} is an ideal in \mathcal{U}'' by proposition 3.6. Now since \mathcal{U} is not Arens regular, \mathcal{U}' does not factors on the left or right by above result. Note that by corollary 3.7, we have $\mathcal{U}' \cdot \mathcal{U} = WAP(\mathcal{U}) = \mathcal{U} \cdot \mathcal{U}'.$

Now let $\mathcal{A} = L^1(G)$ for locally compact group G and $\mathcal{U} = \mathcal{A} \oplus \mathcal{A}'$. It is easy to see that if \mathcal{A}' factors, then \mathcal{A} is unital (i.e. G is discrete) and so \mathcal{U} is unital. Hence \mathcal{U}' factors. Thus, we have the next result which its proof is immediate by Theorem 2.6 of [8].

Proposition 3.10 Let \mathcal{A} be a WSC Banach algebra with a sequential BAI. Then \mathcal{A}' factors if and only if \mathcal{U}' factors. Arens Regularity of Module Extensions...

References

- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc, 2(1951), 839-848.
- [2] F.F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, (1973).
- [3] H.G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs, 24(2000).
- [4] H.G. Dales, F. Ghahramani and N. Gronbaek, Derivation into iterated duals of Banach algebras, *Studia Math*, 128(1998), 19-54.
- [5] H.G. Dales and A.T.M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc, 177(836) (2005), 1-191.
- [6] M.E. Gordji and M. Filali, Arens regularity of module actions, *Studia Math*, 181(2007), 237-254.
- [7] F. Ghahramani, J.P. McClure and M. Meng, On asymmetry of topological centers of the second duals of Banach algebras, *Proc. Amer. Math. Soc*, 126(1998), 1765-1768.
- [8] A.T.M. Lau and A. Ülger, Topological centres of certain dual algebras, Trans. Amer. Math. Soc, 348(1996), 1191-1212.
- [9] S. Mohammadzadeh and H.R.E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Austral. Math. Soc, 77(2008), 465-476.
- [10] A. Ulger, Arens regularity of weakly sequentially complete Banach algebras, Proc. Amer. Math. Soc, 127(1999), 3221-3227.
- [11] A. Ulger, Arens regularity sometimes implies RNP, Pacific J. Math., 143(1990), 377-399.
- [12] N.J. Young, The irregularity of multiplication in group algebras, Quart. J. Math, 24(1973), 59-62.