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Abstract
In this work some fractional KPP-like equations with initial condition are

solved by Adomian decomposition method for two cases time-fractional order
and time-space fractional order respectively. The fractional derivative are de-
scribed in Caputo sense. The obtained solutions are presented in the form
of convergent series then the numerical solutions are plotted and discussed in
detail.
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1 Introduction

Fractional differential equations have been the focus of many studies due to
their frequent appearance in various applications in fluid mechanics, viscoelas-
ticity, biology, physics and engineering. Consequently, considerable attention
has been given to solve this kind of equations. Unfortunately, most of them
do not have exact solutions. Recently, several numerical methods have been
introduced for this purpose, one of them are the famous Adomian decomposi-
tion method (ADM). This method introduced in 1980 by George Adomian [1],
is one of the most frequently used for computing solutions of a large class of
linear and nonlinear ordinary and partial differential equations. In this method
the solution is considered as the sum of an infinite series, rapidly converging
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to an accurate solution without any need for linearization or discretization.
In outline of this work is as follows. We begin by giving some preliminary
Definitions on fractional calculus, then we recall briefly the basic principle of
the Adomian decomposition method. In section 4 the ADM is applied to the
fractional Newell-Whitehead equation to obtain the exact solutions of it some
concluding remarks are also given.

2 Preliminaries and Notations

In this section, we describe some necessary tools of the fractional calculus the-
ory (fractional integration and differentiation) required for the reminder of this
work. We stress that there are many books and papers that develop fractional
calculus and various related Definitions, we refer the interested reader to [5]
and the references therein.
Throughout this paper, the derivatives are considered in the Caputo sens, tak-
ing the advantage that such Definition allows traditional initial and boundary
conditions to be included in the formulation of the considered problem.

Definition 2.1 A real function f(x), x > 0, is said to be in the space
Cµ, µ ∈ R if there exits a real number λ > µ such that f(x) = xλg(x), where
g(x) ∈ C[0,∞) and it is said to be in the space Cm

µ if and only if f (m) ∈ Cµ
for m ∈ IN .

Definition 2.2 The Riemann-Liouville fractional integral operator of order
α of a real function f(x) ∈ Cµ, µ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0 and J0f(x) = f(x). (1)

The operator Jα has some proprieties, for α, β ≥ 0, γ, µ ≥ −1 :

• JαJβf(x) = Jα+βf(x),

• JαJβf(x) = JβJαf(x),

• Jαxξ = Γ(ξ+1)
Γ(α+ξ+1)

xα+ξ.

Next we define the Caputo fractional derivatives Dα of a function f(x) of any
real number α such that m − 1 < α ≤ m, m ∈ IN , for x > 0 and f ∈ Cm

−1 in
the terms of Jα as

Dαf(x) = Jm−αDmf(x) =
1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt (2)

and has the following proprieties for m − 1 < α ≤ m, m ∈ IN , µ ≥ −1 and
f ∈ Cm

µ
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• DαJαf(x) = f(x),

• JαDα = f(x)−
∑m−1

k=0 f
(k)(0+)x

k

k!
, for x > 0

In this paper, the Caputo derivative is taken as the following

Definition 2.3 For m to be the smallest integer that exceeds α, the Caputo
time-fractional derivative operator of order α > 0 is defined as

Dα
t u(x, t) =


1

Γ(m− α)

∫ t

0

(t− s)m−α−1∂
mu(x, s)

∂sm
ds, for m− 1 < α ≤ m

∂mu(x, t)

∂tm
for α = m ∈ N,

(3)
and the Caputo space-fractional derivative operator of order β > 0 is defined
as

Dβ
xu(x, t) =


1

Γ(m− β)

∫ x

0

(x− τ)m−β−1∂
mu(τ, t)

∂τm
dτ, for m− 1 < β ≤ m

∂mu(x, t)

∂xm
for α = m ∈ N,

(4)

3 The Adomian Decomposition Method

The principles of the Adomian decomposition method and its applicability
for various kinds of differential equations can be found in [1][6] and related
references.
We consider the general class of time-space fractional KPP equations of the
form

Dα
t u = Dβ

xu+ φ(u) t > 0 0 < α, β ≤ 1 (5)

with the initial condition
u(x, 0) = f(x) (6)

Where φ is a nonlinear function of u, differentiable for 0 ≤ u ≤ 1, φ(0) = 0,
φ(u) > 0 for 0 < u < 1, φ(0) = 0 and φ′(0) > φ′(u) for 0 < u < 1; of which the
Fisher and the Newell-Whitehead equations are special cases. We recall that
such equation has the same origin as the Zeldovich equation.
The Adomian method is based on applying the Riemann-Liouville integral
operator Jα on both sides of the eq.(5) which yields

u(x, t) = u(x, 0) + Jα[ψ(u) + φ(u)], (7)
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where ψ(u) = Dβ
xu. The method assumes a series solution for u(x, t) given by

u(x, t) =
∞∑
n=0

un(x, t), (8)

where th nonlinear term φ(u) is decomposed as the following

φ(u) =
∞∑
n=0

An(u0, ..., un), (9)

where An are called Adomian polynomials, which can be calculated for all
forms of φ(u) throughout the general formula given by Adomian [1]:

An =
1

n!

[
dn

dλn
φ(

n∑
k=0

λkuk)

]
λ=0

. (10)

Substitution of (8) and (9) in (7) leads to

u(x, t) = u(x, 0) +
∞∑
n=0

JαAn +
∞∑
n=0

Jαψ(un). (11)

From the above equation, the terms of un(x, t) follows immediately

u0(x, t) = u(x, 0) = f(x),

u1(x, t) = JαA0 + Jαψ(u0),

u2(x, t) = JαA1 + Jαψ(u1)

.

.

.

un+1(x, t) = JαAn + Jαψ(un)

(12)

Remark 3.1 The convergence of the series (8) has been investigated both
theoretically and numerically in [2].

4 Applications and Discussions

In order to illustrate the efficiency of the method, the following two examples
will be discussed. First we will consider a time-fractional Newell-Whithead
equation, while the second deals with the same equation of both space and time
fractional derivative.The obtained results are calculated using the symbolic
calculus software Maple 13.



Approximate Analytical and Numerical Solutions... 5

4.1 Exemple 1.

Consider the time-fractional Newell-Whitehead equation

Dα
t u = uxx + u− u3, (13)

with the initial condition

u(x, 0) = u0(x, t) =
sinh x√

2

1 + cosh x√
2

. (14)

The exact solution for eq.(13), for the case α = 1, is given by

u(x, t) =
e

x√
2 − e−

x√
2

e
x√
2 + e

− x√
2 + 2e−

3
2
t
, (15)

Equation (13) when α = 1, called also amplitude equation, arises after carrying
out a suitable normalization in the study of thermal convection of a fluid heated
from below. Considering the perturbation from a stationary state, the equation
describes the evolution of the amplitude of the vertical velocity if this varies
slowly [3].
According to the previous section, we substitute the initial condition (14) into
(12) and usig eq. (10) to get the Adomian polynomials, yields the following

u0 =
sinh x√

2

1 + cosh x√
2

,

un+1 = Jα(An + un + (un)xx).

(16)

Using the above to get the following first four terms of the decomposition series
of u(x, t)

u0(x, t) = u(x, 0) := f(x),

un+1(x, t) = Jα(An + un + unxx) = fn+1(x)
tα

Γ(α + 1)
,

(17)

where the Adomian polynomials are defined

A0 = −u3
0,

A1 = −u2
0u1,

A2 = −3u0u
2
1 − 3u2

0u2,

A3 = −u3
1 − 6u0u1u2 − 3u2

0u3,

(18)
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and the functions (fk)k=0..4 are given by

f0 = u0,

f1 = −f 3
0 + f0 + f ′′0 ,

f2 = −f 2
0 f1 + f1 + f ′′1 ,

f3 = −3f0f
2
1

Γ(2α + 1)

Γ(α + 1)2
− 3f 2

0 f2 + f2 + f ′′2 ,

f4 = −f 3
1

Γ(3α + 1)

Γ(α + 1)3
− 6f0f1f2

Γ(3α + 1)

Γ(α + 1)Γ(2α + 1)
− 3f 2

0 f3 + f3 + f ′′′3 .

(19)

Then the solution in series form is given by

u(x, t) = f(x) + f1
tα

Γ(α + 1)
+ f2

t2α

Γ(2α + 1)
+ f3

t3α

3Γ(α + 1)
+ ... (20)

We stress that only four terms of the decomposition series were used for the
approximate solution (20).

(a) (b)

Figure 1: The numerical solutions of u(x, t): (a) by ADM (20) and (b) the exact solutions
given in (15).

Figure.1 shows the evolution result for the Newell-Whitehead equation
when α = 1: (a) corresponds to the solution obtained by ADM (20) and
(b) corresponds to the exact solution given in (15). It is easy to see that the
two solutions look almost identical. Figure.2 (a) and (b) depict the evolution
solution of the cases of α = 0.5 and α = 0.05 respectively. It is to be noted that
as the time-fractional derivative parameter α decreases, the evolution solution
u(x, t) bifurcates for small values of |x|.
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(a) (b)

Figure 2: The numerical solutions of u(x, t): (a) α = 0.50 (b) α = 0.05.

Remark 4.1 The case of a Newell-Whitehead equation with space-fractional
derivative

∂u

∂t
=
∂βu

∂xβ
+ u− u3 with β ∈ (0, 1]. (21)

can be handled similarly.

4.2 Exemple 2.

In this example we consider the Newell-whitehead equation both time and
space fractional derivative, namely

∂αu

∂tα
=
∂βu

∂xβ
+ u− u3 with 0 < α ≤ 1 and 1 < β ≤ 2, (22)

with a simple initial condition u(x, 0) = x2. In analogous way, the ADM anal-
ysis gives

u0 = u(x, 0), (23)

and

un+1 = Jα(An + un +Dβ
x(un)). (24)

With the aid of the above recursive relationship equations and the Adomian
polynomials, the first three terms of u(x, t) follow immediately upon setting

u0(x, t) = u(x, 0) := f(x),

un+1(x, t) = Jα(An + un +Dβ
xun) = fn+1(x)

t3α

Γ(3α + 1)
,

(25)

where the functions (fk)k=0..3 are given by
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f0 = u0,

f1 = f 2
0 + u0 +Dβ

xf0,

f2 = −f 2
0 f1 + f1 +Dβ

xf1,

f3 = −3f0f
2
1

Γ(2α + 1)

Γ(α + 1)2
− 3f 2

0 f2 + f2 +Dβ
xf2.

(26)

The solution in series form reads

u(x, t) = f(x) + f1
tα

Γ(α + 1)
+ f2

t2α

Γ(2α + 1)
+ f3

t3α

3Γ(α + 1)
+ ... (27)

For this example, only three terms of the decomposition series were used for
the approximate solution. Figure.3 shows the evolution result for the Newell-
Whithead equation with time-space fractional derivatives: (a) α = 0.20, β =
1.2 and (b) α = 0.75, β = 1.75. As it can be seen the profile of u(x, t) for small
value of α (resp. β) is quite different from one of large values of α (resp. β).

(a) (b)

Figure 3: The numerical solutions of u(x, t): (a)α = 1 etβ = 1.2, (b): α = 0.75 et β = 1.75.

5 Conclusion

In this paper, the Adomian decomposition method was applied for solving
time- and space- fractional Newell-Whitehead equation with initial conditions.
The analytical results have been given in terms of a power series with easily
computed terms. The fractional derivative was defined in the Caputo sense.
The results show that the solution strongly depends on the fractional derivation
order parameter.
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