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Abstract
In this paper, an application of variational iterah method is applied to solve
differential - difference equations (DDEs). Comparis are made between exact
solution and the variational iteration method. Tlastrate the ability and reliability
of the method, some examples are given, revedsirgjfectiveness and simplicity.
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1 Introduction

Recently, the variational iteration meth¢t-3] has been favorably applied to
various kinds of nonlinear problems, for examptagctional differential equations
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[4,5], nonlinear differential equatiorj], nonlinear thermo elasticify], nonlinear
wave equation$8,9]. In this Letter we apply the method to solve d#fdial -
differenceequations (DDES)

To illustrate the method, consider the followinghgeral functional equation

Lu(x)+ N(% = o ¥, (2)

WhereL is a linear operaton\ is a non-linear operator anyl(t) is a known

analytical function. According to the variationtdriation method, we can construct
the following correction functional

U (3 = 4 () [ A(E)] L () + Ny (&)~ &)} o, (2)

Where/ is a general Lagrange multiplier which can be fidie optimally via
variational theoryy, is an initial approximation with possible unknowasdu, is

considered as restricted variation, iog,, =0 .

2 numerical examples

In this sectionwe applied the method presented in this papewtoexamples to
show the efficiency of the approach.

Examplel. Consider the third order linear constant coeffitiDDE [10]
Y'(X)=-Y(X-YA+(e2) Y x)Y+ § xD+  x)=2e7 (3)
With conditions
y(0)=1y(9=0y(9=1
The analytical solution of the above problem isegiby,
y(x) =X+ x+2- € (4)

In the view of the variational iteration method, veenstruct a correction
functional in the following form:

Vea () = () + [CA{ V(€)= ¥(£)- %é)+(e2) Y¢-D)

(5)
+y (E-1)+y(é-1)-2e+ 3 &
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To find the optimal)l(s), calculation variation with respect tg,, we have the
following stationary conditions:

Substituting the identified multiplier into E((ﬁ) we have the following iteration
formula:

Your (X) = yn(X)—%IOX(X—f)Z{ y(§)-9(&)- 4¢§)+(e2) Y¢-1

+y (E-1)+y(é-1)-2e+ 3 &

(6)

2
Starting with the initial approximationyO:1+XE in Eqg. (6) successive

approximationy, (x) 's will be achieved. The plot of exact solution (_-'3) the 5th

order of approximate solution obtained using th&\dnd absolute error between
the exact and numerical solutions of this exampdeshown in Fig. 1.
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Fig. 1. The plots of approximate solutioxae solutiorandabsolute error for Example 1.
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Example 2. Now we consider the third order linear constamgfficient DDE[11]

v (9-c0s() Y (= s ) o xZ] 2y %7 |= sif Yo 2ed - (7)

With conditions:
y(0)=0.y(9 =1y (9= C
The analytical solution of the above problem isegivwy,
y(x) =sin(x). (8)

In the view of the variational iteration method, veenstruct a correction
functional in the following form:

o9 = 0 (3=31. 7 (=00 § o k- ¥ %7
+\/§y(x—gj—sin( X) + 2cog X) + } &£

Starting with the initial approximationy,=x in Eq. (9) successive

(9)

approximationg, ( x)’s will be achieved. The plot of exact solution Eg)., the 5th

order of approximate solution obtained using th#\&dnd absolute error between
the exact and numerical solutions of this exampgeshown in Fig. 2.
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Fig. 2. The plots of approximate solution, exadtison and absolute error for Example 2.
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3 Conclusion

The variational iteration method is an efficientthoa for solving various kinds of
problems. In this Letter, we apply the variatioitatation method to differential -
differenceequations. Since this method does not need to idoeetization of the
variables, there is no computation round off erréddso this method is useful for
finding an accurate approximation of the exact thmfu The obtained results
showed that this approach can solve the probleectfely and it needs less CPU
time. The computations associated with the examplésis paper were performed
using maple 13.
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